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Abstract
We propose to learn classification rules from
continuous data with class labels using a two-
step procedure: We first binarize data points,
and second perform feature selection on the bi-
narized data to obtain minimum necessary bi-
nary features that are required to classify given
data. Each binary feature represents an interval
on the original feature space, hence the user can
directly interpret classification rules as intersec-
tions of intervals. Although such interpretabil-
ity is indispensable in machine learning applica-
tions from biology to economics, we cannot of-
ten interpret classification rules obtained by re-
cently emerging highly accurate machine learn-
ing methods such as deep learning. We experi-
mentally demonstrate that our method can learn
simpler classification rules than a decision tree
classifier while keeping reasonable accuracy.

1. Introduction
Machine learning methods tend to derive complex classifi-
cation rules in order to achieve high classification accuracy
when we perform supervised classification on continuous
data. For example, a support vector machine (SVM) classi-
fies data points by a hyperplane on a high-dimensional im-
plicit feature space, thereby it is difficult to understand clas-
sification rules. For another example, recent deep learning
approaches (LeCun et al., 2015) can achieve high classifi-
cation accuracy, but the way how it classifies data points is
hard to understand. In contrast, decision tree based super-
vised learning methods (Han et al., 2011, Chapter 8.2) such
as CART (Breiman et al., 1984), ID3 (Quinlan, 1986), and
C4.5 (Quinlan, 1993) learn classification rules for continu-
ous data by dividing the entire feature space into rectangu-
lar areas. Although we can easily understand classification
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Figure 1. Concept diagram of proposed method.

rules obtained by such decision tree based methods, when
we classify high-dimensional continuous multivariate data,
they often fail to achieve high accuracy or obtain concise
classification rules. Thus, there is a need to develop a ma-
chine learning method which achieves sufficiently high ac-
curacy while obtaining interpretable simple rules for con-
tinuous data.

In order to solve the problem, we propose to combine bi-
narization of continuous data and feature selection on the
binarized data. First, we discretize continuous data and
convert them into binary data. Next, we apply Super-CWC
algorithm (Shin et al., 2015) to the binarized data, which
is an efficient feature selection method for binary data and
enables us to obtain a minimal binarized feature set to dis-
tinguish data points according to given class labels. Finally,
we obtain a combination of binarized features, which cor-
responds to the intersection of rectangular regions on the
original feature space and can be used to classify unlabeled
data. Figure 1 shows the conceptual diagram of our pro-
posed method.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our proposed method; Section 2.1 ex-
plains binarization and Section 2.2 introduces the Super-
CWC algorithm. Section 3 empirically examines our
method. Finally, Section 4 summarizes the contribution of
the paper.

2. The Proposed Method
Our proposed method consists of two stages. In the first
stage, we perform binarization, where we convert continu-
ous data into binary data. In the second stage, we perform
feature selection to compress binarized data and remove
unnecessary binary features in classification. We apply the
Super-CWC algorithm to binary data in the second stage
and obtain a minimal binary feature set that is consistent
with given class labels.
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Algorithm 1 Binalization
1: zi ← empty string for all i ∈ {1, 2, . . . , N}
2: for all j ∈ {1, 2, . . . , n} do
3: for all i ∈ {1, 2, . . . , N} do
4: for all k ∈ {1, 2, . . . , N} do
5: compute z

(j,k)
i by Eq. (1)

6: end for
7: zi ← concatenation of zi and (z

(j,1)
i , . . . , z

(j,N)
i )

8: end for
9: end for

10: S ← {(z1, y1), (z2, y2), . . . , (zN , yN )}
11: Output S

Input to the proposed method is a labeled continuous
data set. Each data point consists of a pair (xi, yi)
(i = 1, 2, . . . , N ) of an n-dimensional vector xi =
(x1

i , x
2
i , . . . , x

n
i ) and a class label yi ∈ {0, 1}. For

each feature j ∈ {1, 2, . . . , n}, we describe xj =
(xj

1, x
j
2, . . . , x

j
N ) .

2.1. Binarization

In the binarization stage, we convert each continuous fea-
ture vector into a binary vector. A converted feature vec-
tor corresponds to an intersection of rectangular regions
in the original feature space. Each binary feature corre-
sponds to an interval and each binary value of the vector
indicates whether or not the original continuous value be-
longs to the interval. We use each original continuous value
as a threshold of binarization. In other words, xj

i for each
i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , n} is converted into a
binary vector of N components (z

(j,1)
i , z

(j,2)
i , . . . , z

(j,N)
i )

by binarization, where z
(j,k)
i is defined as

z
(j,k)
i =

{
1 if xj

i is smaller than xj
k,

0 otherwise.
(1)

We present our binarization algorithm in Algorithm 1,
which works as follows: Input is a data set D =
{(x1, y1), (x2, y2), . . . , (xN , yN )} consisting of pairs of
continuous feature vectors and class labels. We binarize
each vector by Equation (1), that is, each xi is converted
into zi such that

zi =
(
z
(1,1)
i , . . . , z

(1,N)
i , z

(2,1)
i , . . . , z

(2,N)
i , . . . ,

z
(n,N)
i , . . . , z

(n,N)
i

)
. (2)

Output of th binarization stage is a set of pairs zi

and yi for all i ∈ {1, 2, . . . , N}, that is, S =
{(z1, y1), (z2, y2), . . . , (zN , yN )}.

2.2. Feature Selection by Super-CWC

In the second stage, we apply the feature selection algo-
rithm Super-CWC (Shin et al., 2015) to binary data ob-
tained by the discretization stage and delete unnecessary
binary feature vectors for distinguishing class labels.

The Super-CWC algorithm performs supervised feature se-
lection for binary data. It efficiently seeks feature combi-
nations which are consistent with given class labels by bi-
nary search and can obtain necessary minimal feature com-
binations. Mathematically, for a subset of feature indices
I ⊆ {1, 2, . . . , nN}, I is consistent with class labels if the
following condition is satisfied for all i, i′ ∈ {1, . . . , N}:
zj
i = zj

i′ for all j ∈ I implies yi = yi′ . Super-CWC uses
a function Bn such that Bn(I) = 0 if I is consistent and
Bn(I) = 1 otherwise.

Super-CWC receives pairs (zi, yi) (i = 1, . . . , N) of an
nN -dimensional binary vector zi = (z1i , z

2
i , . . . , z

nN
i ) ∈

{0, 1}nN and a class label yi ∈ {0, 1}. Suppose that
[nN ] = {1, 2, . . . , nN} is the set of binarized features.
Super-CWC searches a feature subset satisfying the follow-
ing condition.

min
I⊆[nN ],Bn(I)=0

|I|. (3)

Note that the output of Super-CWC may be a local min-
imum solution. Therefore, an output is a minimal binary
feature set which is consistent with given class labels. See
the literature (Shin et al., 2015) for more detail about the
algorithm of Super-CWC.

3. Experiments
In this section, we evaluate the proposed method using syn-
thetic and real-world datasets. In Section 3.1, we describe
experimental setting including the environment, a compar-
ison partner, datasets, and evaluation measure. We show
experimental results and discuss them in Section 3.2.

3.1. Experimental Setting

3.1.1. EXPERIMENT ENVIRONMENT

We performed all experiments on Windows10 Pro 64bit OS
with a single processor of Intel Core i7-4790 CPU 3.60
GHz and 16GB of main memory. All experiments were
conducted in Python 3. In our method, we used Scala im-
plementation of Super-CWC algorithm provided by the au-
thors1.

3.1.2. COMPARISON PARTNER

As a comparison partner, we employed CART (Breiman
et al., 1984), which is a popular decision tree based method

1https://github.com/tkub/scwc/
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Figure 2. Results on synthetic dataset DN , where n = 2 and N is
from 1, 000 to 8, 000 (shown in numbers associated with points).
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Figure 3. Results on synthetic dataset DN , where N = 1, 000
and n is from 2 to 15 (shown in numbers associated with points).

and the primary choice in scikit-learn (Pedregosa et al.,
2011), one of the most popular machine learning libraries
in Python. CART obtains explicit classification rules from
continuous data.

3.1.3. DATASETS

We used two types of synthetic datasets DN and DU .
In the dataset DN , data points with the class label 0
are generated from a n-dimensional normal distribution
(µ0, σ

2
0) = (0, 1), and those with the class label 1 are

generated from another n-dimensional normal distribution
(µ1, σ

2
1) = (2, 1). In the dataset DU , the first five fea-

tures are generated from the above two n-dimensional nor-
mal distributions, while the other features are irrelevant
(noises) to class labels, that is, they are generated from the
m-dimensional uniform distribution between zero and one,
resulting in 5 +m-dimensional feature vectors.

For real-world data, we collected six datasets from UCI
machine learning repository (Lichman, 2013) from small to
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Figure 4. Results on synthetic dataset DU , where N = 1, 000 and
m is from 10 to 100 (shown in numbers associated with points).

Table 1. Real-world datasets.
Name # data points # features

Parkinsons 197 23
Breast cancer 569 10
Vertebral 310 6
Wine quality 1600 12
CTG 2126 20
Seismic bumps 2584 25

large scale datasets (N is between about 200 to 2500), and
used only continuous features. Their properties are sum-
marized in Table 1.

3.1.4. EVALUATION

We used 10-fold cross validation and obtained the average
of classification accuracy. Moreover, to quantify the inter-
pretability of classification rules, we used the number of
thresholds of rules. Less thresholds mean simpler classifi-
cation rules, leading to higher interpretability. The number
of binary features in our method and that of nodes except
for leaves in CART correspond to the number of thresholds.
Thus a classifier is better if it has less thresholds while has
high accuracy.

3.2. Results and Discussion

We plot results for synthetic datasets in Figures 2, 3, and 4,
where the x-axis shows the number of thresholds and y-
axis shows classification accuracy. First, in Figure 2, we
used DN and changed the number N of the data points
from 1, 000 to 8, 000 while fixing the number of features
n = 2. Although accuracy of our method is marginally
lower than CART, where the difference is between 0.01 and
0.06, the number of thresholds is smaller than CART. When
N = 8, 000, the difference of the number of thresholds is
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Table 2. Results on real-world datasets. Best scores are denoted in Bold.
Name Number of thresholds Accuracy

Our method Decision tree Our method Decision tree

Parkinsons 21.4 12.3 0.82 0.88
Breast cancer 30.3 27.9 0.89 0.93
Vertebral 26.4 33.2 0.78 0.78
Wine quality 40.2 121.7 0.87 0.84
CTG 38.4 90.6 0.84 0.86
Seismic bumps 89.5 165.5 0.92 0.86

Figure 5. Classification rules obtained by our method.

about 500, which means that our method successfully ob-
tains a simpler classification rule. Second, in Figure 3, we
again used DN and changed the number n of features from
2 to 15 while fixing the number of data points N = 1, 000.
Results show that our method can obtain simpler classi-
fication rules while keeping the same level of classifica-
tion accuracy. In particular, when n = 10 or 15, accu-
racy of our method is better than CART. Third, in Figure 4,
we used DU and changed the number m of irrelevant fea-
tures from 2 to 100 while fixing the number of data points
N = 1, 000. We can observe the same trend as before:
our method consistently obtains simpler classification rules
with less thresholds, while can achieve the same level of
classification accuracy.

Results on real-world datasets are shown in Table 2, which
again confirm that our method can obtain simpler classifi-
cation rules that can achieve the same or better classifica-
tion accuracy compared to the decision tree method. For

Figure 6. Classification rules obtained by CART.

the datasets Parkinsons and Breast cancer, the number of
thresholds of our method is larger. This is why the num-
ber N of data points is too small, which makes it difficult
to obtain good thresholds for binarization. This trend is
consistent with results on synthetic data, where our method
becomes superior when N is larger in terms of the number
of thresholds in Figure 2.

To summarize, our results show that the proposed method
can obtain simpler classification rules than a decision tree
based method, CART, while attaining the same level of
classification accuracy. The reason might be that we re-
move unnecessary binary features, that is, thresholds used
in classification rules, by the feature selection algorithm
Super-CWC.

3.3. Illustrative Example

We illustrate classification rules obtained by our method
and CART on the synthetic dataset DU with m = 10 and
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N = 1, 000 in Figures 5 and 6, respectively. In this exam-
ple, the numbers of thresholds of our method and CART are
17 and 28, and the classification accuracies are 0.92 and
0.94, which means that our method obtains simpler rules
with the almost same accuracy. In Figures 5 and 6, we plot
two features out of five features generated from two normal
distributions, where green dots show data points in the class
1 while blue dots are those in the class 0. In both figures,
each line denotes a threshold of a classification rule and
green and blue areas are regions classified as the classes
1 and 0, respectively. Theses figures demonstrate that our
method learns simpler rules compared to CART, thanks to
the feature selection stage by the Super-CWC algorithm.

4. Conclusions
In this paper, we have proposed a novel method that can
find interpretable classification rules as intersections of
rectangular regions. Our method first binarizes a given
dataset and then performs supervised feature selection on
the binarized data to remove unnecessary binary features.
We have experimentally showed that we can obtain classifi-
cation rules with less thresholds compared to CART, a pop-
ular decision tree based method, while attaining the same
level of classification accuracy.

Our future work is to theoretically analyze the classification
ability of our method and compare it to other classification
methods, including decision tree methods.
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