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Abstract

Coalition operations are essential for responding to the
increasing number of world-wide incidents that require
large-scale humanitarian assistance. Many nations and non-
governmental organizations regularly coordinate to address
such problems but their cooperation is often impeded by lim-
its on what information they are able to share. In this pa-
per, we consider the use of an advanced cryptographic tech-
nique called secure multi-party computation to enable coali-
tion members to achieve joint objectives while still meet-
ing privacy requirements. Our particular focus is on a multi-
nation aid delivery scheduling task that involves coordinating
when and where various aid provider nations will deliver re-
lief materials after the occurrence of a natural disaster. Even
with the use of secure multi-party computation technology,
information about private data can leak. We describe how the
emerging field of quantitative information flow can be used to
help data owners understand the extent to which private data
might become vulnerable as the result of possible or actual
scheduling operations, and to enable automated adjustments
of the scheduling process to ensure privacy requirements.

Introduction
Coalition operations are becoming an increasing focus for
many nations. The need for collaboration derives from in-
creasing awareness of mutual interests among both allies and
nations that traditionally have not worked closely together.
For example, coalition operations for Humanitarian Assis-
tance and Disaster Relief (HADR) have increased substan-
tially in recent years in both numbers and scope. With the
impact of global warming, it is anticipated that there will be
even more large-scale humanitarian crises resulting from ad-
verse weather-related events and sea-level rises. These coali-
tions often involve not just government and military orga-
nizations but also non-governmental organizations (NGOs)
and commercial entities.

A key challenge facing coalitions is how to collaborate
without releasing information that could jeopardize national
(or organizational) interests. Information security mecha-
nisms for the military to date have focused on safeguarding
information by limiting its access and use. This approach has
lead to a significant undersharing problem, which impedes
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effective joint operations. Recent work on defining access
control mechanisms is useful for enabling selective sharing
of information that is safe to release (Phillips, Ting, and De-
murjian 2002). However, many coalition tasks require infor-
mation that participants do not wish to make available to
others.

For example, consider the problem of scheduling the de-
livery of aid (food, water, medicine, fuel) to impacted na-
tions after a natural disaster. Historically, international re-
sponse has involved dozens of countries and NGOs, each
with the desire to contribute in interconnected and po-
tentially conflicting ways. Ideally coordination would be
achieved by directly sharing information about the amount
of aid each contributor has available or can produce, where
that aid is situated, the position and storage capacity of ships
for delivering the aid, harbor facilities where aid ships could
dock, etc. But the owners of this data may be unwilling to
directly share it with coalition partners, for fear of revealing
information that impacts national security (e.g., ship loca-
tions) or competitive advantages (e.g., a company’s backlog
of inventory).

To address this problem of coalition collaboration with-
out revealing private information, we exploit a cryptographic
technology called secure multi-party computation (MPC)
(Yao 1982). MPC protocols enable mutually distrusting par-
ties to perform joint computations on private information
while it remains encrypted. In our work, we use MPC to
enable privacy-preserving computations over several types
of coordination tasks related to scheduling aid delivery.

While participants cannot directly learn others’ private in-
puts from the process/protocol of a secure multi-party com-
putation, they may be able to infer something about private
data based on the results of the computation. For this reason,
our privacy-aware scheduling solution makes use of a com-
plementary technology called quantitative information flow
(QIF) to measure the degree to which private data used in
the scheduling task might leak to other participants. Insights
gained from this analysis are folded back into the schedul-
ing process via an adaptive workflow capability, to ensure
that the vulnerability of private data stays within acceptable
thresholds.

The paper is organized as follows. We begin by sum-
marizing our aid distribution task, including a description
of the core scheduling problem and the data (private and



non-private) belonging to the various coalition members. We
then provide a short overview of secure multi-party compu-
tation followed by a description of how we employ it within
a broader adaptive workflow framework to address the aid
delivery scheduling task. Next, we describe our use of quan-
titative information flow to assess the vulnerability of private
information as the scheduling progresses and to adapt the
scheduling workflow in light of those assessments to ensure
adherence to predefined privacy requirements. We conclude
by identifying directions for future work and summarizing
our contributions.

HADR Aid Delivery Problem
The aid delivery problem that we consider involves two cat-
egories of participants:

• N Aid Provider nations, each of which has some number
Sn of ships with aid (e.g., food, medicine) to be delivered

• a single Aid Recipient nation that has P ports to which aid
can be delivered

Collectively, these participants need to formulate a sched-
ule for delivering aid on board the Aid Provider ships to
ports belonging to the Aid Recipient, ensuring delivery prior
to a specified deadline. As summarized in Figure 1a , a so-
lution involves assigning to each Aid Provider ship: a port to
which its aid should be delivered, a berth at the port, and a
docking time. These assignments are subject to various con-
straints on ship and port characteristics to ensure physical
compatibility between the ship and the port/berth, schedule
availability of the berth, and the ability for the ship to com-
pleting the docking before the assigned deadline. We further
seek an assignment that optimizes according to the follow-
ing load-balancing criteria.

Optimization Criteria: Load-balancing across ports.
Let Assigned(Porti) designate the number of aid provider
ships assigned to aid recipient port Porti. An optimal solu-
tion is a set of assignments that minimizes

MAXj,k(| Assigned(Portj)− Assigned(Portk) |)

Generating a solution to this scheduling problem re-
quires information from the various parties about their assets
(ships, ports), some of which they would prefer not to share
with other coalition members. Figure 1b summarizes this
private data. In both Figure 1b and Figure 1a the problem
data is color-coded, with blue used for private data belong-
ing to an Aid Provider nation and green for private data be-
longing to the Aid Recipient nation. As the coloring clearly
shows, determining a solution requires combining private in-
formation from multiple parties, which motivates our use of
secure multi-party within our scheduling algorithm.

Secure Multi-Party Computation
To address privacy concerns in our aid delivery use case,
we leverage MPC. MPC protocols compute a function and
reveal the output of the computation without revealing pri-
vate inputs to any other participant. Early MPC work was
based on two-party problems (Yao 1982), and subsequent

work produced general approaches for any number of par-
ticipants to participate in shared computation without learn-
ing private information (Goldreich, Micali, and Wigderson
1987).

Most MPC approaches involve modeling the desired algo-
rithm as a boolean circuit (fixed-time algorithms expressed
as a combination of AND, OR, and NOT logic gates). How-
ever, circuit-based approaches may require unrolling loops,
introducing potential performance implications. Alternate
approaches based on Oblivious RAM (Goldreich and Os-
trovsky 1996) do not require this full unrolling though have
other performance trade-offs. We use a circuit-based MPC
approach in our scenario, though our privacy analysis and
adaptive scheduling do not depend on the specifics of the
underlying MPC approach.

MPC has proven to be a powerful tool to enable a wide
range of use cases. For example, private keys can be split
among several hosts in order to reduce the number of hosts
that must be compromised in order to obtain the key. A com-
putation that requires the decryption operation can then be
done under MPC between the hosts, ensuring that the whole
key is never revealed in the clear (Archer et al. 2018). MPC
can also be used between companies in collaborative supply-
chain management, where the reluctance to share sensitive
data (such as costing and capacities) can lead to sub-optimal
production plans. The use of MPC allows for collaborative
supply-chain planning without compromising sensitive data
(Kerschbaum et al. 2011).

In our setting, each data owner provides their private in-
put to a MPC circuit designed such that their inputs are
not revealed to other participants. Then participants follow
the protocol for the multi-party computation, which allows
them to collectively compute the solution to the planning
and scheduling optimization problem. In the end, only the
final result (schedule) is revealed to the relevant parties.

Scheduling Workflow
Creating a single MPC circuit to solve the full optimized
scheduling problem in a general way is not practical at this
point in time. For this reason, our solution approach consists
of a workflow that decomposes the scheduling task into the
following sequence of steps.

Step A. Collect relevant inputs:

• Aid Provider: determine ports that can be reached by
each ship before the deadline D
• Aid Recipient: select ports to which aid will be ac-

cepted

Step B. Determine ports that satisfy joint ship/harbor phys-
ical compatibility constraints:

• Aid Provider ship draft is compatible with the harbor
depth in the port
• Aid Recipient port has sufficient offload capacity

Step C. Determine all berths within each feasible port from
Step B that satisfy joint ship/berth compatibility and berth
availability constraints:

• Aid Provider ship fits within the berth



For a Ship to be scheduled to dock at a given Docking Time at
a Berth belonging to a Port, the following must hold:

Port

• ship-draft ≤ port-harbor-depth
• ship-cargo-amount ≤ port-cargo-offload-capacity
• ship-earliest-arrival = EarthDistance(ship-location,port)

ship-maxspeed
• ship-earliest-arrival ≤ deadline

Berth in Port

• ship-length ≤ berth-length
Docking Time at Berth

• ship-earliest-arrival ≤ docking-time ≤ deadline
• berth-availability (pairs of berth-occupied-start and

berth-occupied-end) for berth at docking-time

(a) Constraints in the Scheduling Problem

Aid Provider Aid Recipient
Ship Info Port Info Berth Info

ship-location port-available berth-length
ship-length port-cargo-offload-capacity berth-occupied-start
ship-draft port-harbor-depth berth-occupied-end

ship-maxspeed

(b) Summary of Private Data by Data Owner

Figure 1: Constraints over the private data and the relationship of private data to the data owners

• Aid Recipient berth is available at planned ship arrival
time

Step D. Schedule the aid ships across possible ship-port-
berth-arrival-time options (from Step C) in accordance
with the optimization goal of load-balancing across ports.

Step A is a simple information gathering/filtering task per-
formed locally by individual participants. Step B requires
computation over private inputs from both the Aid Provider
and the Aid Recipient. Steps C and D combine private in-
puts with intermediate results from earlier steps. For these
reasons, we use three secure multi-party circuits within our
workflow:

• A two-party circuit for the physical compatibility test in
Step B (Aid Provider and Aid Recipient)

• A two-party circuit for the viability test in Step C (Aid
Provider and Aid Recipient)

• An N-party circuit for optimizing berth allocation in Step
D (all N Aid Providers)

The circuits for Steps B and C are straightforward but
must be run for each possible ship/port (Step B) and
ship/berth (Step C) combination. The circuit for Step D is
more complex. Because it is not possible to implement a
truly optimized solution in the MPC circuit model, we in-
stead opted for the following greedy approach to load bal-
ancing across ports.

1. Initialization: set the list of ship-port-berth solutions to be
empty and the working set of options to be the set of ship-
port-berth-unload time entries from Step C

2. Select a port P with the fewest number of assignments and
for which there remain options

3. Select earliest ship-port-berth-unload time entry for P and
add to the solutions list

4. Remove from the set of options all entries for the ship and
berth selected in Step 3

5. Repeat steps 2-4 until no more ship-port-berth solutions
remain

6. Output the solution list
We use the Lumen agent technology (described in (My-

ers et al. 2011)) to provide an adaptive workflow capabil-
ity for executing this scheduling process. Although we de-
pict only one workflow here, more generally our adaptive
workflow capability draws from a library of alternative ap-
proaches to a range of aid distribution scheduling problems,
enabling solution approaches to be matched to the specifics
of a given situation. For example, we have defined alter-
native workflows that embed different scheduling and op-
timization strategies and that make use of secure multi-party
computation in different ways as a means of investigating
tradeoffs between efficiency and privacy.

Quantifying Information Vulnerability
In this section we describe what is involved in using QIF to
reason about questions of how private data can be inferred
from the results of a computation.

Limitations of Multi-Party Computation
The “Millionaires’ Problem” (Yao 1982) is an early use-
case for multi-party computation in which two people, Alice
and Bob, use MPC to securely determine which of them is
richer without revealing their actual wealth to each other.
But while they don’t learn the other’s precise values, they do
learn something about each other.



The nature of the relationship between the revealed output
and the private inputs determines how much one may infer
about the inputs from the result. For example, if Alice and
Bob use MPC to instead compute the arithmetic mean of
their net worths, Alice could use the input she provided and
the resulting mean from the computation to solve for Bob’s
exact net worth. Alice may not be able to extract Bob’s input
via examination of the MPC circuit itself, but MPC cannot
change the relationship between inputs and output that exists
outside the circuit.

In our Aid Delivery scenario, private “inputs” may involve
sensitive capability and operational details. As the scenar-
ios increase in scope and complexity, it becomes difficult to
reason informally about what an adversary may be able to
infer.1 We use Quantitative Information Flow (QIF) to ad-
dress these concerns by characterizing an adversary’s abil-
ity to make these inferences based on information-theoretic
bounds on the relationship between results and private in-
puts.

Modeling Workflows
A QIF analysis begins by transforming a program (such
as our aid distribution workflow) into a model that repre-
sents the relationship between the (private) inputs and out-
puts. Specifically, these models are based on information-
theoretic channels, which we use to construct a mapping
from prior2 distributions on private data to distributions on
posterior distributions (Smith 2011; Smith 2009).

We use these models to support “predictive-mode” adap-
tive workflows in which we reason about what an adversary
could learn from any possible set of private inputs, as well
as “posterior-mode” in which we determine how much an
adversary may learn from some specific concrete result.

Quantifying Inference Capabilities
We can construct games in which we quantify the adver-
sary’s inference capability by measuring how their chances
of “winning” (i.e., guessing a piece of private data) improve
given additional information. We call the probability that an
adversary can with one chance correctly guess a piece of
private data the vulnerability of that variable.

In the “prior game,” the defender picks a private input
value by sampling from the prior distribution of possible
input values. The adversary makes their best guess of the
defender’s input based only on their knowledge of the prior
distribution of possible input values. The prior vulnerability

1In this work, an ‘adversary’ is a so-called honest-but-curious
actor who attempts to infer the values of private data by observing
the public results of each step in the workflow. Adversaries could
be other coalition partners or an unrelated third party that has ac-
cess to the computational framework.

2A ‘prior’ can be thought of as the initial set of beliefs that an
adversary has about a system. An adversary may have a prior over
the lengths of naval ships (e.g., between 10 and 1,500 feet long), or
the possible locations of the ships. If an adversary has no reason to
believe one value is more likely than any other then the prior is a
uniform distribution over the space of secrets, hence it is known as
a uniform prior.

is the probability the adversary will correctly guess the de-
fender’s private input (without any additional information).

In the “posterior game,” the defender again picks a pri-
vate input, but then performs the computation using that in-
put and shares (only) the result with the adversary. We also
assume the adversary has full knowledge of how the inputs
relate to outputs in the computation (e.g., could construct an
identical channel-based model of the computation). Here the
chance the adversary correctly guesses the defender’s private
input is called the posterior vulnerability.

To summarize, the prior game is how likely an adversary
is to guess the private input before seeing the result of the
computation, the posterior game is how likely the adversary
is to guess the private input after seeing the specific output
of the computation.

The Use of Vulnerability as a Metric
Vulnerability as a metric of risk is appealing because of its
relatively intuitive nature. The caveat to vulnerability as a
metric is that it is extremely sensitive to the chosen prior
belief. Therefore, care must be taken in deciding upon a prior
in order to assure that the metric reflects reality as much as
possible.

Supporting Workflow Adaptation
Our predictive-mode adaptation strategy is based on QIF
predictive leakage, which attempts to predict how much will
be leaked about the private data before the computation is
run on the concrete private values. We can also approximate
predictive leakage using Monte Carlo simulation, permitting
the use of these metrics even in scenarios where operational
requirements make it infeasible to complete the precise pre-
dictive leakage within a desired time frame. Incorporating
predictive leakage metrics into our workflows enables iden-
tification of potentially higher-risk situations where it may
be preferable to adapt or halt the workflow (based on some
policy) rather than participating in a computation that may
reveal too much.

Our posterior-mode adaptation strategy is based on QIF
dynamic leakage, which takes into account the actual results
of a computation. As opposed to the predictive leakage’s as-
sessments, that average all possible private input values, dy-
namic leakage enables our workflows to incorporate more
accurate assessments of what was actually revealed in the
specific ongoing workflow.

Sample Vulnerability Analysis
As discussed previously, the HADR aid delivery problem
provides a strong foundation for analyzing adaptive work-
flows in a privacy-aware setting. In this section we describe
how the notion of vulnerability can be used to inform the
cooperating parties of risk to their private data.

A Simplifying Example
To begin our discussion we first describe a simplified version
of the HADR aid delivery problem involving a single ship,
S, and a single port, P . In this simplified scenario, the only
private data is S’s location (ship_loc). We assume that



other relevant data (such as ship maximum speed) is known
publicly.

def reachable(deadline):
dist = distance(ship_loc, port_loc)
return (dist <= (max_speed * deadline))

Figure 2: The pseudo-code for a simple query

The channel is “is S able to reach port P within d hours?”.
As pseudo-code we write this channel as a function of d,
over some global set of private (ship_loc) and public
(port_loc, max_speed) variables.

Prior Belief In our simplified scenario an adversary who
wants to determine S’s private data will have some prior be-
lief about that data. In this case, the prior belief will be some
area of the ocean where S could be located. This may or may
not be informed by other information available to the adver-
sary. While QIF can be calculated over non-uniform priors,
in this exposition we assume uniform priors for the sake of
simplicity. Figure 3a shows a graphical representation of a
possible prior for the simplified scenario.

Because our prior is uniform, the adversary’s chance of
guessing the ship’s position (the prior vulnerability, Vprior),
is simply

Vprior =
1

number of possible locations in the prior

This makes intuitive sense: under a uniform prior, the ad-
versary’s likelihood of winning the prior game is equivalent
to choosing a point out of the prior at random.

Posterior Belief When ship S, cooperating in the simpli-
fied scenario, responds to the reachable query in Figure
2, the adversary is able to observe the output of the chan-
nel. This observation allows the adversary to rule out entire
sections of the space of possible locations.

If the result of the query is True, then the adversary
can infer that the location of S is within a circle of ra-
dius r, where r is the distance that the ship can travel at
max_speed with deadline amount of time. Inversely, if
the result of the query is False, then the adversary could
infer that the ship must be outside of the same circle. Ob-
serving False is the circumstance illustrated in Figure 3b.

The important point is to see that regardless of the result
of the query, the adversary may be able to infer rule out sub-
sets of possible values for the private data.

The probability the adversary has of guessing the ship’s
position after seeing the channel output (the posterior vul-
nerability, Vpost) is simply

Vpost =
1

number of possible locations in the posterior

Further Queries Because cooperation is the goal, it is
likely that the coordinator of our simple scenario will need
to query S multiple times. This is particularly true if the ini-
tial query’s result was False. The coordinator may query

S with reachable(d2), where d2 is a new, longer, dead-
line. If the result is then True then the adversary is able to
infer that S resides within the ring formed by two overlap-
ping circles: an inner circle with radius r, described above,
and a wider circle with radius r2, where r2 is the distance
that S is able to travel at max speed in time d2. This circum-
stance is illustrated in Figure 3c.

Worst-Case Simple Scenario If we add another port, P2,
to the simple scenario above, but keep all other details the
same, it may be possible for S’s location to be determined
within a very small tolerance. If the result of reachable
is True for both P and P2, then (using the same process as
above) the adversary would intersect the appropriate circles.
The smaller the intersection, the more the adversary knows
about the ship’s position.

Analysis of the Aid Distribution Scenario
The simplified scenario above only has one piece of private
data: the ship’s position. As a reminder, Figure 1b shows
the private data in the full HADR scenario. In this section
we present some results from an analysis over a model of
the full scenario, using a single ship (Ship #9) as a running
example.

Prior Vulnerability As discussed above, an adversary has
some notion of the possible values that a secret can take on
even before running any computations over that secret data.
This is referred to as the Prior. When analyzing a system, the
analyst must choose appropriate ranges for the private data
in question. For some variables this may be straightforward
(e.g., the ocean sector in question when deciding on a prior
for a ship’s location), for others it may depend on domain
knowledge (e.g., the appropriate range for naval ship drafts).

We can visualize the prior vulnerability over location eas-
ily. Figure 5 shows several aspects of the HADR scenario.
The boundaries of the map in the image are the boundaries
of the prior belief over ship position. It is important to re-
mind ourselves that the choice of prior (part of which is de-
termined by the geographic area under consideration) affects
the vulnerability metric significantly. Increasing the area de-
creases the prior vulnerability, while decreasing the area in-
creases the prior vulnerability. Because the prior models the
adversary’s view of the world, it should be constructed care-
fully.

Predictive Vulnerability for Steps A+B In resource-
constrained systems, it is useful to be able to predict how
much of a given resource would be used if a certain action
were to be executed. Private data can similarly be viewed
as a form of resource for which predictive analysis can be
applied to assess the impact of planned or possible actions.

The ability to predict the future vulnerability can be im-
plemented in several ways, the practicality and efficiency
of different methods depends heavily on the constraints of
the system, imposed by the state-space and the adversarial
model.3

3In the QIF literature, this ability is knowns as Static Leakage
Analysis (Smith 2009; Alvim et al. 2012).



(a) The initial prior belief: no reason to be-
lieve the ship is in one location over any
other.

(b) Posterior belief after observing a
False: The ship must be outside the dis-
tance of the reachable query.

(c) If a subsequent query for a further
distance returns True the ship must be
within the newly formed ring.

Figure 3: The effects of observing query results on a prior belief over the simplified scenario.

In our system we have chosen an approximate method that
enables an analyst to calculate a histogram over the possi-
ble vulnerability outcomes without any access to the private
data. This method uses Monte Carlo simulation to run our
analysis over randomly sampled points from the space of
possible private data values.

Figure 4: Predictive Vulnerability of Steps A+B

Figure 4 shows the results of a Monte Carlo simulation
of the predictive vulnerability of running Steps A+B (using
13788 samples4). The vertical dotted line shows the median
value (6.847603e−6%) of all the samples. This method of
approximation provides analysts with various options. In a
scenario where the preservation of privacy is paramount, the
analyst may focus on the right-hand side of the figure, where
the potential vulnerability is higher, 0.03039514%, though
still unlikely.

This method also adapts well to use cases where an ana-
lyst may have access to some of the private data. For exam-
ple, an analyst for one of the coalition partner nations might
have access to that nation’s private data, but not the private
data of the ports. Using this same method of sampling from
the space of (unknown) private data, such an analyst would
be able to approximate the future vulnerability of their data
if they were to respond to a query.

Posterior Vulnerability for Steps A+B Once a step is
taken, we can calculate the posterior vulnerability of the
private data. Unlike the predictive analysis in the previous

4The sampling procedure is time based, hence the seemingly
arbitrary number of samples.

section, this analysis is ‘exact’ in that the real vulnerability
cannot be more than what the analysis reports.

Ship #9 Position 6.847603e−6%

In this case, the posterior vulnerability coincides with the
median of the predictive vulnerability. This is not too sur-
prising as the median was also the most likely value by a
significant margin.

Predictive Vulnerability for Step C Figure 6 shows the
Monte Carlo simulation for vulnerability of a ship after Step
C is completed.5 The median predicted value in this in-
stance, 6.644298e−4%, is two orders of magnitude higher
than the vulnerability after Steps A+B alone. This makes in-
tuitive sense as much more information is revealed after Step
C that can be used to infer a ship’s private data. Unsurpris-
ingly, the maximum sampled predictive vulnerability is also
substantially higher: 0.2012072%.

Posterior Vulnerability for Steps C As with the posterior
vulnerability for Steps A+B, the posterior vulnerability for
Step C is based on a sound analysis using the real results of
the workflow step, and are not simulated as in the predictive
vulnerability.

Ship #9 Position 2.049806e−4%

In the case of Step C, the posterior vulnerability for
Ship #9 is lower than the median of the predictive result
(6.644298e−4%). From an analyst’s perspective, this could
mean that Ship #9 has revealed even less about its private
data than the ‘average’ ship would in this scenario.

Why Step D doesn’t leak Step D has no meaningful con-
sequences on the vulnerability of the private data for any
stakeholder in the HADR scenario if the result of Step C has
been observed by the adversary. The reason for this is that
Step D’s algorithm can be computed completely from the
results of previous steps in the workflow, i.e. it does not re-
quire the values of the private data directly. Interestingly, this
point reinforces an important aspect of QIF analysis: even
though Step C’s result was computed with private data, the
vulnerability metrics from the QIF analysis of Step C take

5Note that the range of the x-axis has changed in order to better
display the data.



Figure 5: The posterior belief over the position of Ship #9 in the HADR scenario after cooperating in all steps.
(Map cartography and tiles c© OpenStreetMap contributors.)

Figure 6: Predictive Vulnerability of Step C

into account any possible use of the result. Therefore addi-
tional computation over the results of Step C (or any prior
step) does not affect the vulnerability of private data.

Privacy-aware Workflow Adaptation
The vulnerability assessment computed by the QIF capabil-
ity provides insights to data owners as to the security of pri-
vate information that they wish to protect. We exploit these
insights within our workflow manager to adapt the schedul-
ing process in order to ensure adherence to privacy objec-
tives. More specifically, we use the QIF capability in two
ways: in a predictive mode to estimate the amount of leakage
associated with potentially performing a particular query or
task and in a posterior mode to track actual leakage based
on the specific values that a query or task returns.

When executing a particular task our workflow manager
invokes the predictive mode to estimate leakage. If the esti-
mate of aggregate leakage for designated private data does
not exceed set thresholds, then the workflow proceeds and
the posterior leakage analysis is invoked to determine ac-

tual leakage values. If the estimate does exceed the thresh-
old then the workflow is either terminated or (if possible)
modified via a remediation strategy to keep leakage below
the threshold.

The idea behind a remediation strategy is to modify the
problem or state in ways that will likely reduce impacts on
private data. For example, our aid delivery problem requires
computing the reachability of a port by a given deadline.
Knowing that a given ship can reach the port by that dead-
line reveals information about the combination of ship posi-
tion and maximum speed. One simple remediation strategy
is to postpone the deadline, which will reveal less informa-
tion about the position and speed values (e.g., the fact that a
ship can reach a port by a given deadline reveals something
about the lower bound for its max-speed; a later deadline in-
troduces greater uncertainty as to what that speed might be
by decreasing that lower bound). Our Lumen-based adaptive
workflow engine includes such remediation strategies to en-
able adaptivity based on QIF predictive analyses.

Privacy thresholds are implemented using an existing pol-
icy framework within Lumen that was developed previously
to enable users to impose boundaries on the behaviors of
autonomous agents (Myers and Morley 2003). The privacy
policies have the general form:

Keep below <percentage>
the probability of knowing
<private-data> within <tolerance>

Below we show two examples used in the system, one for
the Aid Provider nation and one for the Aid Recipient nation.

Aid Provider Sample Policy:

“Keep below 10 % the probability of knowing the loca-
tion of my ships within 50 NMs”

Aid Recipient Sample Policy:

https://www.openstreetmap.org/copyright


Figure 7: Comparison of initial (prior) and post-task (poste-
rior) vulnerability assessments

“Keep below 20 % the probability of knowing the port
harbor depth within 40 feet”

Figure 7 shows sample vulnerability assessments for two
types of private data (max-speed, location) for a select set
of ships belonging to an individual Aid Provider nation. The
top image shows the initial vulnerabilities of the data, prior
to performing any computations; the bottom image shows
the vunlerabilities after workflow completion. The display
shows the QIF-derived vulnerability level as a colored bar
representing the adversary’s likelihood of guessing the pri-
vate data within the specified tolerance. The vertical line bi-
secting the display for each piece of private data marks the
policy-prescribed threshold of acceptability for the vulner-
ability. We note that the initial vulnerabilities for the ship
locations are non-zero but so small as to not be perceptible
in the image.

Future Work
Here, we consider two avenues for future work.

Analogs can be drawn between our use of the QIF analy-
sis to predict and track vunlerabilities of private data within
the scheduling workflow and prior work on estimating re-
source usage in workflows (Morley, Myers, and Yorke-
Smith 2006). Although we currently consider individual ac-
tions incrementally as the workflow executes, we envision
performing predictive vulnerability assessments of entire
workflows prior to execution, to enable informed choices
about alternative approaches before any information usage
has occurred. Generating useful assessments will require
predictive QIF techniques that consider cases beyond worst-
case leakage, whose inherent pessimism can make them
of limited value for certain vulnerability assessment tasks.
Longer term, such analyses could also potentially open the
door to using first-principles planning techniques to synthe-
size privacy-aware workflows on an as needed basis that are
tailored to the specifics of a given task and privacy require-
ments.

The scalability of QIF techniques can be an issue for sys-
tems where there are complex relationships between sets of
variables. Some work has been done on attaining scalability
by enhancing static analysis techniques with approximations
that speed up analysis with probabilistic bounds on certainty
(Sweet et al. 2018). However, there is still further work re-
quired before the QIF analysis of arbitrary channels could
scale to use cases such as the end-to-end HADR scenario
considered in this paper. In particular, the methods described
in this paper utilize bespoke analyses for the channels un-
der consideration, providing a more scalable approach at the
cost of generality. One future direction may be to design Do-
main Specific Languages that enable description of a sce-
nario and its analysis in tandem.

Conclusion
A key challenge facing coalitions is how to collaborate with-
out releasing information that could jeopardize national (or
organizational) interests. In this paper, we consider this chal-
lenge for a realistic scheduling problem tied to aid deliv-
ery. Our work makes several contributions. First, we show
how state-of-the-art secure multi-party computation can be
used to safeguard private information with an overall dis-
tributed scheduling solution to the aid delivery problem. A
second contribution relates to the use of quantitative infor-
mation flow (QIF): even with secure multi-party computa-
tion, scheduling outputs can reveal information about coali-
tion members’ private data. We show how QIF can be ap-
plied to assess the vulnerability of providate data for both
prospective (i.e., where results are not known) and actual
(i.e., where results are known) computations. As a third
contribution, these assessments can be used to adapt the
scheduling algorithm to ensure it remains within accepted
vulnerability thresholds established by data owners.
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