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Abstract

This paper presents an overview of the EPSRC-funded
project Start Making Sense, which is investigating explain-
ability and trust maintenance in interactive and autonomous
systems. This project brings together experimental research
in cognitive science involving cooperative joint action with
the practical construction of automated planning tools to ap-
ply to the task of explanation generation. The project’s chal-
lenges are addressed through three concrete objectives: (i)
to study cooperative joint action in humans to identify the
emotional, affective, or cognitive factors that are essential for
successful human communication, (ii) to enhance epistemic
planning techniques with measures derived from the studies
for improved human-like explanation generation, and (iii) to
deploy and evaluate the resulting system with human partic-
ipants. We also describe initial work from the cognitive side
of the project aimed at exploring how ambiguity, uncertainty,
and certain types of biometric measurements impact instruc-
tion giving and explanation actions in scenarios with humans.
The insights from this work will be combined with epistemic
planning techniques to generate appropriate explanatory ac-
tions in similar instruction giving scenarios.

Introduction
A fundamental problem in the design of autonomous sys-
tems is that of action selection: based on the current state
of the world, what action should the system take in order to
achieve its goals? In the presence of humans, this problem
typically becomes more complex: the system may also need
to reason about the states, actions, and intentions of these
agents. In collaborative environments that involve human
communication, it is particularly important to identify, in-
terpret, and understand the multimodal affective signals that
humans employ, and which are often necessary for effective,
successful achievement of communicative goals.

For instance, consider a tourist on a guided walking tour
of a city. After reaching a place where they can see they are
almost back to the starting point, the tour guide says “Let’s
go up that hill,” pointing to a large hill. “We can get a good
view of the city from there.” However, on seeing the tired
expression on the tourist’s face, the guide adds “Or we can
stop at that cafe over there and take a break.” This scenario
has two important features. First, it demonstrates that people
like to be aware of their context and know what is going on.
This is especially true in situations where a decision may not

have been anticipated or expected. Here, an explanation may
be needed not only to justify a decision but also to establish
confidence in that choice: in other words, to trust it. Second,
being able to read the situation and adapt to the needs of the
moment is important when considering the possible actions
that could be taken in a given situation. Here, a decision may
need to be made dynamically. These two features capture the
idea of dynamic trust maintenance, which will be needed
for a broad range of the AI systems that are expected to be
deployed in the near future, e.g., automated vehicles, service
robots, or interactive voice-based assistants.

This paper presents an overview of the EPSRC-funded
project Start Making Sense: Cognitive and Affective Con-
fidence Measures for Explanation Generation Using Epis-
temic Planning,1 which is investigating the need for explain-
ability and trust maintenance in interactive and autonomous
systems. To do so, this project brings together experimen-
tal research in cognitive science involving cooperative joint
action with the practical construction of automated planning
tools, in particular epistemic planning techniques, to apply
to the task of explanation generation. This challenge is be-
ing addressed by tackling three key objectives: (i) to study
cooperative joint action in humans to identify the emotional,
affective, or cognitive factors that are essential for success-
ful human communicative goals; (ii) to enhance epistemic
planning techniques with measures derived from the cogni-
tive science studies; and (iii) to deploy and evaluate the ef-
fectiveness of the resulting system with human participants
in situations that require explanation.

Central to this work is the idea of understanding the af-
fective measures that humans use during activities like in-
struction giving, plan following, and explanation generation;
both when communication is successful but also when it
fails. The goal is to characterise these measures in a form
that enables them to be combined with tools based on epis-
temic planning, an approach that models the changing be-
liefs of the planner and other agents during the plan gener-
ation process. Affective measures will therefore help guide
the planner’s generation process, for instance as a special
type of domain control knowledge or heuristic state infor-
mation, enabling the planner to use this information not only
for task-based action selection, but also to plan appropriate

1http://start-making-sense.org/



actions for communicative goals such as explanation gener-
ation, possibly as a result of dynamic changes in the inter-
active context. As a result, this work is also situated in the
area of explainable planning, a subarea of the recent trend of
research in explainable AI.

In the remainder of the paper we outline our approach and
the project’s main objectives, directions, and goals.

Related Work
Recent developments in artificial intelligence and machine
learning research, such as deep learning, are seen to have
resulted in dramatic improvements in prediction and accu-
racy, but often at the expense of human interpretability. As
a result, there has been a rapid growth in research under the
general banner of explainable artificial intelligence (XAI),
typified by grant funding schemes like DARPA’s XAI pro-
gramme (DARPA 2016) or EPSRC’s Human-Like Comput-
ing Strategy Roadmap (EPSRC 2017), which seek to address
a core need in future systems and to respond to challenges
like the EU’s “Right to Explanation” initiative (Goodman
and Flaxman 2017). Understandably, much work has fo-
cused on the specific concerns around, e.g., deep learning,
rather than on the general need for human-like explanation.

This project instead builds on research in explainable
planning (XAIP) (Fox, Long, and Magazzeni 2017), a sub-
area of XAI and automated planning (Ghallab, Nau, and
Traverso 2004). While techniques like machine learning
make decisions based on mined data, automated planners
traditionally build plans of action by using symbolic causal
models combined with search techniques. XAIP seeks to ad-
dress the challenges of XAI—to build trust and transparency
when interacting with humans (see, e.g., (Miller 2017))—by
leveraging automated planning models and recognising the
role that humans play in the planning loop with respect to
systems deployed with such tools.

XAIP is fast becoming an established recent direction
in the planning community, with a first workshop dedi-
cated to this topic (Magazzeni et al. 2018) appearing at the
2018 International Conference on Automated Planning and
Scheduling (ICAPS).2 While some of the underlying ideas
concerning planning and explainability have a longer his-
tory (Sohrabi, Baier, and McIlraith 2011; Seegebarth et al.
2012), more recent approaches like (Chakraborti et al. 2017;
Sreedharan, Chakraborti, and Kambhampati 2017), have re-
sulted in new directions and new planning algorithms.

Approach
In contrast to most approaches in XAIP, our work combines
research from cognitive science on affective measures used
in human communication, together with recent techniques
in automated planning, notably epistemic planning. In this
section, we briefly highlight the key ideas from these two
areas and how they are being brought together.

Affective Measures in Human Communication
From the cognitive perspective, we build on the view that ef-
fective explanations arise from cooperative joint action and

2http://icaps18.icaps-conference.org/xaip/

efficiently satisfy the goals of human communication. For an
agent (human or artificial) involved in an interaction, infor-
mation exchanged needs to lead to acceptance, comfort, and
trust in their communication partner, if they are to success-
fully influence the interlocutor’s actions. However, the es-
tablishment of trust also depends on the shortcuts, heuristics,
and spontaneous choices that people make in interactions,
which are often based on emotional or affective factors. As
in affective computing more generally, an artificial agent
needs to: (i) detect the signals of its interlocutor’s affective
state; (ii) interpret and understand the meaning behind those
signals to infer conclusions; and (iii) be able to take appro-
priate actions which measurably influence that state.

While confidence and comfort can lead to trust in tech-
nologies (Nass and Brave 2005), there is evidence from in-
struction giving experiments like the HCRC Map Task (An-
derson et al. 1991)3 that have shown that speakers typically
under-explain until things go wrong. Paradoxically, success-
ful response to such a failure may build greater confidence
in listeners than a consistently verbose explanatory approach
which minimises failure rate; similarly, some explanation or
correction strategies can be disorienting or annoying (Foster
et al. 2009; Henderson, Matheson, and Oberlander 2012).
Thus, an important aspect of this project is to understand and
develop the capacity to diagnose and repair failures which
may be signalled only through brief facial expressions, head
movements, or altered body posture.

To this end, the project is conducting user studies with hu-
man participants to understand the affective measures that
are helpful for effective explanation. Initially, data from pre-
vious projects is being used, to study preferred styles in hu-
man explanation generation (Carletta et al. 2010) and error
detection (Hill and Keller 2014). We are also analysing re-
sults on facial expressions and eye-tracking from a current
project attempting to measure believability in political mes-
sages and what motivates people to agree with, and dissem-
inate, them (Cram 2017). The goal is to synthesise these ap-
proaches, adopting mixed methods to collect objective (bio-
metric) and subjective (probe questions) data from individ-
ual participants in new experiments. By capturing and an-
notating conventional linguistic dialogue with paralinguistic
signals (e.g., intonation, hesitation, gesture) and behavioural
signals (e.g., facial expressions), we expect to identify the
best predictors of moment-by-moment shifts in levels of ac-
ceptance, comfort and trust that then be used to help build
more intelligent artificial systems.

Initial Phase of the Empirical Cognitive Research
The first phase of empirical cognitive research on the project
aims to confirm the range of human social signals, affec-
tive responses, and behavioural patterns exhibited during
co-operative joint action in a shared audio-visual environ-
ment. As a starting point, an instruction giving and follow-
ing scenario is considered based on an enhanced version of
the HCRC Map Task (Anderson et al. 1991) paradigm, to
simulate navigation with instruction giving and following.
In the standard version of the Map Task, an instruction giver

3http://groups.inf.ed.ac.uk/maptask/



Figure 1: A sample instruction giver map from the enhanced
Map Task with an image of a human follower displayed.

Figure 2: A sample instruction giver map from the enhanced
Map Task with an artificial avatar follower displayed.

guides an instruction follower around a map using land-
marks. Importantly, the maps of the instruction giver and
follower are not aligned: landmarks may be in different lo-
cations or in some cases completely different landmarks are
present. The task therefore provides opportunities to study
how humans communicate and recover from problems in
such scenarios. In our enhanced version, we make one crit-
ical change: the interlocutors will be clearly visible to each
other. These experiments will be used to determine the in-
dicators of successful (or unsuccessful) communication pro-
duced during the dynamic process rather simply generating
a measure upon completion of the task. In other words, we
are proposing a system of continuous monitoring and mea-
surement suitable for agile prediction and adaptive planning.

In the first round of experiments, human participants will
observe another human comprehending and responding to
their directions in real-time (see Figure 1). Thus, the instruc-
tion giver can modify the dialogue based on behavioural
feedback and determine the level of success for themselves,
e.g. whether the instruction follower is looking at the correct
target, has a confused expression or exhibits some other cue.
The next set will examine whether human-like behaviour
is sufficient to produce the same results or whether every
aspect of the interaction needs to be human. To begin un-
derstanding this side of the interaction process the same ba-
sic paradigm will be adopted, only this time the instruction
follower will appear as an artificial avatar (see Figure 2).
Critically, however, the avatar is actually generated from the
responses of a human recorded by a video camera or web-
cam. Thus, while the responses may appear to be artificial,

action ask-location(?a : agent)
preconds: K(interact = ?a) &

!K(requestLoc(?a)) &
!K(otherAttentionRequests)

effects: add(Kf,requestLoc(?a)),
add(Kv,request(?a))

action give-directions(?a : agent, ?l : loc)
preconds: K(interact = ?a) &

K(requestLoc(?a)) &
Kv(request(?a)) &
K(request(?a) = ?l) &
!K(otherAttentionRequests)

effects: add(Kf,requestAnswered(?a))

Figure 3: Actions for a direction giving agent.

the underlying behaviour is genuinely human and presented
through what is essentially a motion-capture system. Ulti-
mately, synthetic stimuli which are generated from our com-
putational models and contingent on the evolving interac-
tion and dialogue will also be tested. These artificial agents
will need to portray authentic communication by combining
both the fundamental aspects of two-way interaction (com-
prehension and production): correctly interpreting and un-
derstanding observed human behaviour; as well as display-
ing appropriate human-like reactions.

Epistemic Planning
The main technical tool employed in this project is a re-
cent approach to automated planning (Ghallab, Nau, and
Traverso 2004), called epistemic planning (Bolander 2017),
which can be used for action selection in state-based, goal-
directed systems that operate in the presence of other agents
(human or artificial). Traditional automated planners focus
on solving the problem of finding an ordered sequence of
actions (a plan) that, when chained together, transform an
initial state into a state where a set of specified goal objec-
tives are achieved. Planning problems are usually described
in a symbolic form that specifies the objects, actions, states,
and goals that make up the planner’s operating environment.
A central goal of planning research is to build general pur-
pose or domain-independent planning systems that are able
to solve a range of planning problems in different domains,
rather than just a single problem in a particular domain.

Epistemic planning builds on standard automated plan-
ning approaches and attempts to model how the knowledge
and beliefs of agents evolve during the planning process.
In this project, plans are generated using PKS (Planning
with Knowledge and Sensing) (Petrick and Bacchus 2002;
2004), an early epistemic planning system.

For instance, Figure 3 shows an example of two actions
defined in PKS’s modelling language for a simple direction
giving agent. Here, ask-location models an information-
gathering action that asks another agent for a location they
are trying to reach, while give-directions describes an
action for supplying a response when such information is
provided. Actions are described by their preconditions (the
conditions that must be true for an action to be applied) and



Plan Description
greet(a1) Greet agent a1
ask-location(a1) Ask a1 for a location
ack-request(a1) Acknowledge a1’s request
give-directions(a1, Respond to a1’s request

request(a1))
bye(a1). End the interaction

Table 1: A plan for giving directions to an agent.

action ask(?x,?y,?p)
preconds: ¬K[?x]?p & K[?x]K[?y]?p
effects: add(Kf,K[?y]¬K[?x]?p)

action tell(?x,?y,?p)
preconds: K[?x]?p & K[?x]¬K[?y]?p
effects: add(Kf,K[?y]?p)

Figure 4: Actions with nested multiagent beliefs.

their effects (the changes the action makes), where refer-
ences like K(...) are queries of the planner’s beliefs. The
planner uses these actions to form plans by chaining together
ground actions instances to achieve the goals of the planning
problem. Table 1 shows a possible plan that could be gener-
ated by PKS for interacting with a human agent requesting
directions to a given location.

An important feature of most epistemic planners is their
ability to reason with multiagent beliefs: information about
other agents that is often nested (e.g., “agent A believes
agent B believes P”) (Fagin et al. 1995). This is a challeng-
ing problem for automated planners which must provide a
solution that is both expressive enough to model a variety of
problems while being efficient enough to be implemented in
a manner that does not negatively affect the plan generation
process. PKS does this by restricting the form of the rep-
resentation used by the planner and keeping the reasoning
language simple (Steedman and Petrick 2007). An example
of actions encoded in this way is given in Figure 4 (where
K[?x]p denotes the idea that “agent ?x knows p”).

Epistemic planners like PKS therefore provide us with
powerful tools for building systems that can perform ac-
tion selection with complex reasoning about other agents
and their beliefs. For instance, PKS has previously been
used for generating plans in task-based scenarios that re-
quire socially-appropriate human-robot interaction (Petrick
and Foster 2013), and that involve multiple humans.

Explanation Generation
The main technical contribution on this project is to use and
enhance an epistemic planner like PKS with intuitions from
the cognitive science studies to generate plans which inher-
ently contain more human-like explanations. The goal is to
not only generate interactive plans like in Table 1, but to also
generate the necessary plan explanations, if required, during
the epistemic planning process. Since epistemic planners are
capable of reasoning about the beliefs of other agents, we
can use the planner’s belief about a human agent’s knowl-

edge (or lack thereof) of different steps in a plan to auto-
matically drive the explanation generation process. (For in-
stance, if the give-directions action involves locations
that are believed to be unknown to the human, appropriate
explanation can be built into the plan.)

The key technical challenge here is to make the genera-
tion process fast while still producing high-quality plans. To
do this, the identified affective measures from the cognitive
science studies will serve as a type of heuristic to inform and
guide the plan generation process and appropriately rank the
generated plans. Part of this work therefore involves identi-
fying an effective set of measures that can be captured in the
planner’s representational language, to ensure that relevant
scenarios can be modelled with the planner.

Evaluation of the resulting system with human partici-
pants is also essential to establish that the resulting plans
achieve their expected behaviour. While we will perform
standard planning benchmark tests to establish the correct-
ness, quality, and efficiency of the resulting planning system,
we also aim is to keep the human in the loop throughout,
using situations like the tour guide or direction giving sce-
narios, to evaluate response detection and adaptive planning
techniques using Wizard-of-Oz and Ghost-in-the-Machine
experiments (Janarthanam et al. 2014; Loth et al. 2015).

Conclusions
Combining planning and human interaction, especially in
collaborative settings, presents several important challenges
that must be addressed due to the necessary presence of hu-
mans in the planning loop (Kambhampati and Talamadupula
2015): human activities must be taken into consideration,
plans must ensure humans and artificial systems are able
to work together effectively for efficient task completion,
and plan decisions and effects should be communicated in
a manner that improves trust and transparency. This project
aims to make contributions in all of these areas. Most im-
portantly, this project places understanding the human expe-
rience at the heart of its approach to building tools for ex-
plainable epistemic planning, and we have taken a first step
in this direction through a series of initial experiments based
on the HCRC Map Task paradigm. By basing our techni-
cal extensions on affective insights from human studies, and
evaluating the result of our tools on human participants, we
believe the resulting epistemic planning tools will lead to in-
teractive and autonomous systems that are better prepared
for and more acceptable to the expectations of humans.
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