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ABSTRACT

Currently the only techniques for sharing governance of a deep learning model
are homomorphic encryption and secure multiparty computation. Unfortunately
neither of these techniques is applicable to the training of large neural networks due
to their large computational and communication overheads. As a scalable technique
for shared model governance, we propose splitting deep learning model between
multiple parties. This paper empirically investigates the security guarantee of this
technique, which is introduced as the problem of model completion: Given the
entire training data set or an environment simulator, and a subset of the parameters
of a trained deep learning model, how much training is required to recover the
model’s original performance? We define a metric for evaluating the hardness
of the model completion problem and study it empirically in both supervised
learning on ImageNet and reinforcement learning on Atari and DeepMind Lab. Our
experiments show that (1) the model completion problem is harder in reinforcement
learning than in supervised learning because of the unavailability of the trained
agent’s trajectories, and (2) its hardness depends not primarily on the number
of parameters of the missing part, but more so on their type and location. Our
results suggest that model splitting might be a feasible technique for shared model
governance in some settings where training is very expensive.

1 INTRODUCTION

With an increasing number of deep learning models being deployed in production, questions regarding
data privacy and misuse are being raised (Brundage et al., 2018). The trend of training larger models
on more data (LeCun et al., 2015), training models becomes increasingly expensive. Especially in a
continual learning setting where models get trained over many months or years, they accrue a lot of
value and are thus increasingly susceptible to theft. This prompts for technical solutions to monitor
and enforce control over these models (Stoica et al., 2017). We are interested in the special case of
shared model governance: Can two or more parties jointly train a model such that each party has to
consent to every forward (inference) and backward pass (training) through the model?

Two popular methods for sharing model governance are homomorphic encryption (HE; Rivest et al.,
1978) and secure multi-party computation (MPC; Yao, 1982). The major downside of both techniques
is the large overhead incurred by every multiplication, both computationally, >1000x for HE (Lepoint
and Naehrig, 2014; Gilad-Bachrach et al., 2016), >24x for MPC (Keller et al., 2016; Dahl, 2017), in
addition to space (>1000x in case of HE) and communication (>16 bytes per 16 bit floating point
multiplication in case of MPC). Unfortunately, this makes HE and MPC inapplicable to the training of
large neural networks. As scalable alternative for sharing model governance with minimal overhead,
we propose the method of model splitting: distributing a deep learning model between multiple
parties such that each party holds a disjoint subset of the model’s parameters.

Concretely, imagine the following scenario for sharing model governance between two parties, called
Alice and Bob. Alice holds the model’s first layer and Bob holds the model’s remaining layers.
In each training step (1) Alice does a forward pass through the first layer, (2) sends the resulting
activations to Bob, (3) Bob completes the forward pass, computes the loss from the labels, and does a
backward pass to the first layer, (4) sends the resulting gradients to Alice, and (5) Alice finishes the
backward pass.
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Figure 1: Schematic illustration of the problem of model completion: Find the fastest retraining
procedure T ′ that recovers a loss that is at least as good as the loss from the original model (b).

How much security would Alice and Bob enjoy in this setting? To answer this question, we have to
consider the strongest realistic attack vector. In this work we assume that the adversary has access to
everything but the missing parameters held by the other party. How easy would it be for this adversary
to recover the missing part of the model? We introduce this as the problem of model completion:

Given the entire training data set or an environment simulator, and a subset of the parameters of a
trained model, how much training is required to recover the model’s original performance?

In this paper, we define the problem of model completion formally (Section 3.1), propose a metric to
measure the hardness of model completion (Section 3.2), and provide empirical results (Section 4
and Section 5) in both the supervised learning (SL) and in reinforcement learning (RL). For our SL
experiments we use the AlexNet convolutional network (Krizhevsky et al., 2012) and the ResNet50
residual network (He et al., 2015a) on ImageNet (Deng et al., 2009); for RL we use A3C (Mnih
et al., 2015) and Rainbow (Hessel et al., 2017) in the Atari domain (Bellemare et al., 2013) and
IMPALA (Espeholt et al., 2018) on DeepMind Lab (Beattie et al., 2016). After training the model,
we reinitialize one of the model’s layers and measure how much training is required to complete
it (see Figure 1).

Our key findings are: (1) Residual networks are easier to complete than nonresidual networks (Figure 3
and Figure 2). (2) For A3C lower layers are often harder to complete than upper layers (Figure 4).
(3) The absolute number of parameters has a minimal effect on the hardness of model completion.
(4) RL models are harder to complete than SL models. (5) When completing RL models access to the
right experience matters (Figure 5).

2 RELATED WORK

2.1 MODEL COMPLETION

The closest well-studied phenomenon to model completion is unsupervised pretraining, first intro-
duced by Hinton et al. (2006). In unsupervised pretraining a subset of the model, typically the lower
layers, is trained in a first pass with an unsupervised reconstruction loss (Erhan et al., 2010). The
aim is to learn useful high-level representations that make a second pass with a supervised loss more
computationally and sample efficient. This second pass could be thought as model completion.

In this paper we study vertical model completion where all parameters in one layer have to be
completed. Instead we could have studied horizontal model completion where some parameters have
to be completed in every layer. Horizontal model completion should be easy as suggested by the
effectiveness of dropout as a regularizer (Srivastava et al., 2014), which trains a model to be resilient
to horizontal parameter loss.

Pruning neural networks (LeCun et al., 1990) is in a sense the reverse operation to model comple-
tion. Changpinyo et al. (2017) prune individual connections and Molchanov et al. (2017) prune
entire feature maps using different techniques; their findings, lower layers are more important, are
compatible with ours. Frankle and Carbin (2018) present empirical evidence for the lottery ticket
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hypothesis: only a small subnetwork matters (the ‘lottery ticket’) and the rest can be pruned away
without loss of performance. The model completion problem for this lottery ticket (which is spread
over all layers) would be trivial by definition. All of these works only consider removing parts of the
model horizontally.

The model completion problem can also be viewed as transfer learning from one task to the same task,
while only sharing a subset of the parameters (Parisotto et al., 2015; Teh et al., 2017). Yosinski et al.
(2014) investigate which layers in a deep convolutional model contain general versus task-specific
representations; some of their experiments follow the same setup as we do here and their results are
in line with ours, but they do not measure the hardness of model completion task.

Finally, our work has some connections to distillation of deep models (Bucilua et al., 2006; Hinton
et al., 2015; Rusu et al., 2015; Berseth et al., 2018). Distillation can be understood as a ‘reverse’ of
model completion, where we want to find a smaller model with the same performance instead of
completing a smaller, partial model.

2.2 SHARED MODEL GOVERNANCE

The literature revolves around two techniques for sharing model governance: homomorphic encryp-
tion (HE; Rivest et al., 1978) and secure multi-party computation (MPC; Yao, 1982; Damgård et al.,
2012). Both HE and MPC have been successfully applied to machine learning on small datasets like
MNIST (Gilad-Bachrach et al., 2016; Mohassel and Zhan, 2017; Dahl, 2017; Wagh et al., 2018) and
the Wisconsin Breast Cancer Data set (Graepel et al., 2012).

HE is an encryption scheme that allows computation on encrypted numbers without decrypting them.
It thus enables a model to be trained by an untrusted third party in encrypted form. The encryption
key to these parameters can be cryptographically shared between several other parties who effectively
retain control over how the model is used.

Using MPC numbers can be shared across several parties such that each share individually contains
no information about these numbers. Nevertheless computational operations can be performed on the
shared numbers if every party performs operations on their share. The result of the computation can
be reconstructed by pooling the shares of the result.

While both HE and MPC fulfill a similar purpose, they face different tradeoffs for the additional
security benefits: HE incurs a large computational overhead (Lepoint and Naehrig, 2014) while
MPC incurs a much smaller computational overhead in exchange for a greater communication
overhead (Keller et al., 2016). Moreover, HE provides cryptographic security (reducing attacks to
break the cipher on well-studied hard problems such as the discrete logarithm) while MPC provides
perfect information-theoretic guarantees as long as the parties involved (3 or more) do not collude.

There are many applications where we would be happy to pay for the additional overhead because we
cannot train the model any other way, for example in the health sector where privacy and security
are critical. However, if we want to scale shared model governance to the training of large neural
networks, both HE and MPC are ruled out because of their prohibitive overhead. In contrast to HE
and MPC, sharing governance via model splitting incurs minimal computational and manageable
communication overhead. However, instead of strong security guarantees provided by HE and MPC,
the security guarantee is bounded from above by the hardness of the model completion problem we
study in this paper.

3 THE PROBLEM OF MODEL COMPLETION

Let fθ be a model parameterized by the vector θ. We consider two settings: supervised learning
and reinforcement learning. In our supervised learning experiments we evaluate the model fθ by its
performance on the test loss L(θ).

In reinforcement learning an agent interacts with an environment over a number of discrete time
steps (Sutton and Barto, 1998): In time step t, the agent takes an action at and receives an observation
ot+1 and a reward rt+1 ∈ R from the environment. We consider the episodic setting in which there
is a random final time step τ ≤ K for some constant K ∈ N, after which we restart with timestep
t = 1. The agent’s goal is to maximize the episodic return G :=

∑τ
t=1 rt. Its policy is a mapping
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from sequences of observations to a distribution over actions parameterized by the model fθ. To
unify notation for SL and RL, we equate L(θ) = Eat∼fθ(o1,...,ot−1)[−G] such that the loss function
for RL is the negative expected episodic return.

3.1 PROBLEM DEFINITION

To quantify training costs we measure the computational cost during (re)training. To simplify, we
assume that training proceeds over a number of discrete steps. A step can be computation of gradients
and parameter update for one minibatch in the case of supervised learning or one environment step in
the case of reinforcement learning. We assume that computational cost are constant for each step,
which is approximately true in our experiments. This allows us to measure training cost through the
number of training steps executed.

Let T denote the training procedure for the model fθ and let θ0, θ1, . . . be the sequence of parameter
vectors during training where θi denotes the parameters in training step i. Furthermore, let `∗ :=
min{L(θi) | i ≤ N} denote the best model performance during the training procedure T (not
necessarily the performance of the final weights). We define the training cost as the random variable
CT (`) := argmini∈N{L(θi) ≤ `}, the number of training steps until the loss falls below the given
threshold ` ∈ R. After we have trained the model fθ for N steps and thus end up with a set of trained
parameters θN with loss L(θN ), we split the parameters θN = [θ1N , θ

2
N ] into two disjoint subvectors

of parameters θ1N and θ2N . For example, θ2N could be all parameters of one of the model’s layers. The
model completion problem is, given the parameters θ1N but not θ2N , recovering a model that has loss
at most L(θN ). This is illustrated in Figure 1.

3.2 MEASURING THE HARDNESS OF MODEL COMPLETION

How hard is the model completion problem? To answer this question, we use the parameters
θ′0 := [θ′0

1, θ′0
2] where θ′0

1 := θ1N are the previously trained parameters and θ′0
2 are freshly initialized

parameters. We then execute a (second) retraining procedure T ′ ∈ T from a fixed set of available
retraining procedures T .1 The aim of this retraining procedure is to complete the model, and it may
be different from the initial training procedure T . We assume that T ∈ T since retraining the entire
model from scratch (reinitializing all parameters) is a valid way to complete the model.

Let θ′0, θ
′
1, . . . be the sequence of parameter vectors obtained from running the retraining procedure

T ′ ∈ T . Analogously to before, we define C ′T ′(`) := argmini∈N{L(θ′i) ≤ `} as the retraining cost
to get a model whose test loss is below the given threshold ` ∈ R. Note that by definition, for T ′ = T
we have that C ′T ′(`) is equal to CT (`) in expectation.

In addition to recovering a model with the best original performance `∗, we also consider partial
model completion by using some higher thresholds `∗α := α`∗ + (1− α)L(θ0) for α ∈ [0, 1]. These
higher thresholds `∗α correspond to the relative progress α from the test loss of the untrained model
parameters L(θ0) to the best test loss `∗. Note that `∗1 = `∗.

We define the hardness of model completion as the expected cost to complete the model as a fraction
of the original training cost for the fastest retraining procedure T ′ ∈ T available:

MC-hardnessT (α) := inf
T ′∈T

E
[
C ′T ′(`

∗
α)

CT (`∗α)

]
, (1)

where the expectation is taken over all random events in the training procedures T and T ′.

It is important to emphasize that the hardness of model completion is a relative measure, depending
on the original training cost CT (`∗α). This ensures that we can compare the hardness of model
completion across different tasks and different domains. In particular, for different values of α
we compare like with like: MC-hardnessT (α) is measured relative to how long it took to get the
loss below the threshold `∗α during training. Importantly, it is not relative to how long it took to
train the model to its best performance `∗. This means that naively counter-intuitive results such as
MC-hardnessT (0.8) being less than MC-hardnessT (0.5) are possible.

1T should not include unrealistic retraining procedures like setting the weights to θN in one step.
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Since CT (`) and CT ′(`) are nonnegative, MC-hardnessT (α) is nonnegative. Moreover, since T ∈ T
by assumption, we could retrain all model parameters from scratch (formally setting T ′ to T ). Thus
we have MC-hardnessT (α) ≤ 1, and therefore MC-hardness is bounded between 0 and 1.

3.3 RETRAINING PROCEDURES

Equation 1 denotes an infimum over available retraining procedures T . However, in practice there is
a vast number of possible retraining procedures we could use and we cannot enumerate and run all
of them. Instead, we take an empirical approach for estimating the hardness of model completion:
we investigate the following set of retraining strategies T to complete the model. All the retraining
strategies, if not noted otherwise, are built on top of the original training procedure T . Our best result
are only an upper bound on the hardness of model completion. It is likely that much faster retraining
procedures exist.

T1 Optimizing θ′0
1 and θ′0

2 jointly. We repeat the original training procedure T on the preserved
parameters θ′0

1 and reinitialized parameters θ′0
2. The objective function is optimized with respect to

all the trainable variables in the model. We might vary in hyperparameters such as learning rates or
loss weighting schemes compared to T , but keep hyperparameters that change the structure of the
model (e.g. size and number of layers) fixed.

T2 Optimizing θ′0
2, but not θ′0

1. Similarly to T1, in this retraining procedure we keep the previ-
ous model structure. However, we freeze the trained weights θ′0

1, and only train the reinitialized
parameters θ′0

2.

T3 Overparametrizing the missing layers. This builds on retraining procedure T1. Over-
parametrization is a common trick in computer vision, where a model is given a lot more parameters
than required, allowing for faster learning. This idea is supported by the ‘lottery ticket hypothe-
sis’ (Frankle and Carbin, 2018): a larger number of parameters increases the odds of a subpart of the
network having random initialization that is more conducive to optimization.

T4 Reinitializing parameters θ′0
2 using a different initialization scheme. Previous research shows

that parameter initialization schemes can have a big impact on convergence properties of deep neural
networks (Glorot and Bengio, 2010; Sutskever et al., 2013). In T1 our parameters are initialized
using a glorot uniform scheme. This retraining procedure is identical to T1 except that we reinitialize
θ′0

2 using one of the following weight initialization schemes: glorot normal (Glorot and Bengio,
2010), msra (He et al., 2015b) or caffe (Jia et al., 2014).

4 EXPERIMENTAL SETUP

Our main experimental results establish upper bounds on the hardness of model completion in the
context of several state of the art models for both supervised learning and reinforcement learning. In
all the experiments, we train a model to a desired performance level (this does not have to be state-
of-the-art performance), and then reinitialize a specific part of the network and start the retraining
procedure. Each experiment is run with 3 seeds, except IMPALA (5 seeds) and A3C (10 seeds).

Supervised learning. We train AlexNet (Krizhevsky et al., 2012) and ResNet50 (He et al., 2015a)
on the ImageNet dataset (Deng et al., 2009) to minimize cross-entropy loss. The test loss is the
top-1 error rate on the test set. AlexNet is an eight layer convolutional network consisting of five
convolutional layers with max-pooling, followed by two fully connected layers and a softmax output
layer. ResNet50 is a 50 layer convolutional residual network: The first convolutional layer with
max-pooling is followed by four sections, each with a number of ResNet blocks (consisting of two
convolutional layers with skip connections and batch normalization), followed by average pooling, a
fully connected layer and a softmax output layer. We apply retraining procedures T1 and T2 and use
a different learning rate schedule than in the original training procedure because it performs better
during retraining. All other hyperparameters are kept the same.
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Figure 2: Hardness of model completion for AlexNet on ImageNet under retraining procedure T1.
The x-axis shows experiments that retrain different parts of the model.

Reinforcement learning. We consider three different state of the art agents: A3C (Mnih et al.,
2016), Rainbow (Hessel et al., 2017) and the IMPALA reinforcement learning agent (Espeholt
et al., 2018). A3C comes from a family of actor-critic methods which combine value learning
and policy gradient approaches in order to reduce the variance of the gradients. Rainbow is an
extension of the standard DQN (Mnih et al., 2015) agent, which combines double Q-learning (van
Hasselt, 2010), dueling networks (Wang et al., 2016), distributional RL (Bellemare et al., 2017)
and noisy nets (Fortunato et al., 2017). Moreover, it is equipped with a replay buffer that stores the
previous million transitions of the form (ot, at, rt+1, ot+1), which is then sampled using a prioritized
weighting scheme based on temporal difference errors (Schaul et al., 2015). Finally, IMPALA is an
extension of A3C, which uses the standard actor-critic architecture with off-policy corrections in
order to scale effectively to a large scale distributed setup. We train IMPALA with population based
training (Jaderberg et al., 2017).

For A3C and Rainbow we use the Atari 2600 domain (Bellemare et al., 2013) and for IMPALA
DeepMind Lab (Beattie et al., 2016). In both cases, we treat the list of games/levels as a single
learning problem by averaging across games in Atari and training the agent on all level in parallel in
case of DeepMind Lab. In order to reduce the noise in the MC-hardness metric, caused by agents
being unable to learn the task and behaving randomly, we filter out the levels in which the original
trained agent performs poorly. We apply the retraining procedures T1, T2 on all the models, and
on A3C we apply additionally T3 and T4. All the hyperparameters are kept the same during the
training and retraining procedures.

Further details of the training and retraining procedures for all models can be found in Appendix A,
and the parameter counts of the layers are listed in Appendix B.

5 KEY FINDINGS

Our experimental results on the hardness of the model completion problem are reported in Figures 2–6.
These figures show on the x-axis different experiments with different layers being reinitialized (lower
to higher layers from left to right). We plot MC-hardnessT (α) as a bar plot with error bars showing
the standard deviation over multiple experiment runs with different seeds; the colors indicate different
values of α. The numbers are provided in Appendix C. In the following we discuss the results.

1. In the majority of cases, T1 is the best of our retraining procedures. From the retraining
procedures listed in Section 3.3 we use T1 and T2 in all experiments and find that T1 performs
substantially better in all settings except two: First, for A3C, starting from the third convolutional
layer, T2 has lower MC-hardness for all the threshold levels (Figure 4). Second, T2 performs well
on all the layers when retraining ResNet-50, for all α ≤ 0.9 (Figure 3); the difference is especially
visible at α = 0.9.

For A3C we use all four retraining procedures. The difference between T1 and T2 are shown in
Figure 4. For T3 we tried replacing the first convolutional layer with two convolutional layers using
a different kernel size, as well as replacing a fully connected layer with two fully connected layers of
varying sizes. The results were worse than using the same architecture and we were often unable
to retrieve 100% of the original performance. With T4 we do not see any statistically significant
difference in retraining time between the initialization schemes glorot normal, msra, and caffe.
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Figure 3: Hardness of model completion for ResNet50 on ImageNet under retraining procedure
T1 (top) and T2 (bottom). The x-axis shows experiments that retrain different parts of the model
where S corresponds to a ResNet section and B corresponds to a block in that section. S4 B1 -W is
the same as S4 B1 except that the skip connection does not get reinitialized.
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(a) Retraining procedure T1.
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(b) Retraining procedure T2.

Figure 4: A3C on Atari, trained for 50m steps. For each of 10 sseeds MC-hardness is averaged over
44 Atari games.
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Figure 5: Rainbow on Atari, trained for 5m steps and using retraining procedure T1. The replay
buffer is either reset before retraining (left) or kept intact (right). For each of 3 seeds MC-hardness is
averaged over 54 Atari games.
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Figure 6: IMPALA on DeepMind Lab with retraining procedure T1. Each of 5 seeds shows the
MC-hardness of a single agent jointly trained on 28 DeepMind Lab levels for a total of 1 billion steps.

2. Residual networks are easier to complete. Comparing our SL results in Figure 2 and Figure 3
for T1, the model hardness for threshold α = 0.5 and α = 0.8 is much lower for ResNet50 than for
AlexNet. However, to get the original model performance (α = 1), both models need about 40% of
the original training cost. As mentioned above, T2 works better than T1 on ResNet50 for α ≤ 0.9.

An intact skip connection helps retraining for α ≤ 0.9 and T1, but not T2, as illustrated in the
experiment S4 B1 -W (Figure 3). A noticeable outlier is S4 B1 at α = 0.9; it is unclear what causes
this effect, but it reproduced every time we ran this experiment.

Residual neural networks use skip connections across two or more layers (He et al., 2015a). This
causes the features in those layers to be additive with respect to the incoming features, rather than
replacing them as in non-residual networks. Thus lower-level and higher-level representations tend
to be more spread out across the network, rather than being confined to lower and higher layers,
respectively. This would explain why model completion in residual networks is more independent of
the location of the layer.

3. For A3C lower layers are often harder to complete than upper layers. Figure 4 shows that
for A3C the lower layers are harder to complete than the higher layers since for each value of α the
MC-hardness decreases from left to right. However, this effect is much smaller for Rainbow (Figure 5)
and AlexNet (Figure 2).

In nonresidual networks lower convolutional layers typically learn much simpler and more general
features that are more task independent (Yosinski et al., 2014). Moreover, noise perturbations of
lower layers have a significantly higher impact on the performance of deep learning models since
noise grows exponentially through the network layers (Raghu et al., 2016). Higher level activations
are functions of the lower level ones; if a lower layer is reset, all subsequent activations will be
invalidated. This could imply that the gradients on the higher layers are incorrect and thus slow down
training.

4. The absolute number of parameters has a minimal effect on the hardness of model comple-
tion. If information content is spread uniformly across the model, then model completion should
be a linear function in the number of parameters that we remove. However, the number of parameters
in deep models usually vary greatly between layers; the lower-level convolutional layers have 2–3
orders of magnitude fewer parameters than the higher level fully connected layers and LSTMs (see
Appendix B).

In order to test this explicitly, we performed an experiment on AlexNet both increasing and decreasing
the total number of feature maps and fully connected units in every layer by 50%, resulting in
approximately an order of magnitude difference in terms of parameters between the two models. We
found that there is no significant difference in MC-hardness across all threshold levels.

5. RL models are harder to complete than SL models. Across all of our experiments, the model
completion of individual layers for threshold α = 1 in SL (Figure 2 and Figure 3) is easier than the
model completion in RL (Figure 4, Figure 5, and Figure 6). In many cases the same holds from lower
thresholds as well.
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By resetting one layer of the model we lose access to the agent’s ability to generate useful experience
from interaction with the environment. As we retrain the model, the agent has to re-explore the
environment to gather the right experience again, which takes extra training time. While this effect
is also present during the training procedure T , it is possible that resetting one layer makes the
exploration problem harder than acting from a randomly initialized network.

6. When completing RL models access to the right experience matters. To understand this
effect better, we allow the retraining procedure access to Rainbow’s replay buffer. At the start of
retraining this replay buffer is filled with experience from the fully trained policy. Figure 5 shows
that the model completion hardness becomes much easier with access to this replay buffer: the three
left bar plots are lower than the three right.

This result is supported by the benefits of kickstarting (Schmitt et al., 2018), where a newly trained
agent gets access to an expert agent’s policy. Moreover, this is consistent with findings by Hester
et al. (2018), who show performance benefits by adding expert trajectories to the replay buffer.

6 DISCUSSION

Our results shed some initial glimpse on the model completion problem and its hardness. Our
findings include: residual networks are easier to complete than non-residual networks, lower layers
are often harder to complete than higher layers, and RL models are harder to complete than SL
models. Nevertheless several question remain unanswered: Why is the difference in MC-hardness
less pronounced between lower and higher layers in Rainbow and AlexNet than in A3C? Why is the
absolute number of parameters insubstantial? Are there retraining procedures that are faster than T1?

Furthermore, our definition of hardness of the model completion problem creates an opportunity to
modulate the hardness of model completion. For example, we could devise model architectures with
the explicit objective that model completion be easy (to encourage robustness) or hard (to increase
security when sharing governance through model splitting). Importantly, since Equation 1 can be
evaluated automatically, we can readily combine this with architecture search (Zoph and Le, 2017).

Our experiments show that when we want to recover 100% of the original performance, model
completion may be quite costly: ∼ 40% of the original training costs in many settings; lower
performance levels often retrain significantly faster. In scenarios where a model gets trained over
many months or years, 40% of the cost may be prohibitively expensive. However, this number also
has to be taken with a grain of salt because there are many possible retraining procedures that we did
not try. The security properties of model splitting as a method for shared governance require further
investigation: in addition to more effective retraining procedures, an attacker may also have access
to previous activations or be able to inject their own training data. Yet our experiments suggest that
model splitting could be a promising method for shared governance. In contrast to MPC and HE it
has a substantial advantage because it is cost-competitiveness with normal training and inference.

REFERENCES

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. DeepMind Lab. arXiv preprint arXiv:1612.03801, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, 2017.

Glen Berseth, Cheng Xie, Paul Cernek, and Michiel Van de Panne. Progressive reinforcement
learning with distillation for multi-skilled motion control. arXiv preprint arXiv:1802.04765, 2018.

Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben Garfinkel, Allan
Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Filar, Hyrum Anderson, Heather Roff, Gregory C

9



Under review as a conference paper at ICLR 2019

Allen, Jacob Steinhardt, Carrick Flynn, Seán Ó hÉigeartaigh, Simon Beard, Haydn Belfield,
Sebastian Farquhar, Clare Lyle, Rebecca Crootof, Owain Evans, Michael Page, Joanna Bryson,
Roman Yampolskiy, and Dario Amodei. The malicious use of artificial intelligence: Forecasting,
prevention, and mitigation. arXiv preprint arXiv:1802.07228, 2018.

Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In International
Conference on Knowledge Discovery and Data Mining, pages 535–541. ACM, 2006.

Soravit Changpinyo, Mark Sandler, and Andrey Zhmoginov. The power of sparsity in convolutional
neural networks. arXiv preprint arXiv:1702.06257, 2017.

Morten Dahl. Private image analysis with MPC, 2017. https://mortendahl.github.io/
2017/09/19/private-image-analysis-with-mpc/.

Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Advances in Cryptology, pages 643–662, 2012.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition, pages
248–255, 2009.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IMPALA:
Scalable distributed deep-RL with importance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561, 2018.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alex Graves,
Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane Legg.
Noisy networks for exploration. arXiv preprint arXiv:1706.10295, 2017.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural networks.
arXiv preprint arXiv:1803.03635, 2018.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and John Wernsing.
CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In
International Conference on Machine Learning, pages 201–210, 2016.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In International Conference on Artificial Intelligence & Statistics, pages 249–256, 2010.

Thore Graepel, Kristin Lauter, and Michael Naehrig. ML confidential: Machine learning on encrypted
data. In International Conference on Information Security and Cryptology, pages 1–21, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on ImageNet classification. In International Conference on Computer
Vision, pages 1026–1034, 2015b.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew
Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z Leibo, and Audrunas
Gruslys. Deep Q-learning from demonstrations. In Association for the Advancement of Artificial
Intelligence, 2018.

10

https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/
https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/


Under review as a conference paper at ICLR 2019

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and Koray
Kavukcuoglu. Population based training of neural networks. arXiv preprint arXiv:1711.09846,
2017.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio
Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature embedding. In
International Conference on Multimedia, pages 675–678, 2014.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In Conference on Computer and Communications Security,
pages 830–842, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification with deep convolu-
tional neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105,
2012.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pages 598–605, 1990.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436, 2015.

Tancrede Lepoint and Michael Naehrig. A comparison of the homomorphic encryption schemes FV
and YASHE. In International Conference on Cryptology in Africa, pages 318–335, 2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

Payman Mohassel and Yupeng Zhan. SecureML: A system for scalable privacy-preserving machine
learning. In IEEE Symposium on Security and Privacy, pages 19–38, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In International Conference on Learning Repre-
sentations, 2017.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. arXiv preprint arXiv:1606.05336, 2016.

Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, 4(11):169–180, 1978.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
International Conference on Learning Representations, 2015.

11



Under review as a conference paper at ICLR 2019

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, and Ali Eslami.
Kickstarting deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Ion Stoica, Dawn Song, Raluca Ada Popa, David Patterson, Michael W Mahoney, Randy Katz,
Anthony D Joseph, Michael Jordan, Joseph M Hellerstein, Joseph E Gonzalez, Ken Goldberg, Ali
Ghodsi, David Culler, and Pieter Abbeel. A Berkeley view of systems challenges for AI. arXiv
preprint arXiv:1712.05855, 2017.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International Conference on Machine Learning, pages 1139–
1147, 2013.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT press, 1998.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In Advances in
Neural Information Processing Systems, pages 4499–4509, 2017.

Hado van Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems 23,
pages 2613–2621, 2010.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. SecureNN: Efficient and private neural network
training. preprint eprint.iacr.org/2018/442, 2018.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and Nando de Freitas.
Dueling network architectures for deep reinforcement learning. In Proceedings of The 33rd
International Conference on Machine Learning, pages 1995–2003, 2016.

Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science, pages
160–164, 1982.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in Neural Information Processing Systems, pages 3320–3328, 2014.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017.

12



Under review as a conference paper at ICLR 2019

Learning rate Training batches Retraining batches
5e− 2 0 0
5e− 3 60e3 30e3
5e− 4 90e3 45e3
5e− 5 105e3 72.5e3

Table 1: AlexNet: Learning schedule for training and retraining procedures.

Learning rate Training batches Retraining batches
1e− 1 0 /
1e− 2 30e3 0
1e− 3 45e3 20e3

Table 2: ResNet50: Learning schedule for training and retraining procedures.

A EXPERIMENTAL DETAILS

AlexNet We train this model for 120e3 batches, with batch size of 256. We apply batch normaliza-
tion on the convolutional layers and `2-regularization of 1e-4. Optimization is done using Momentum
SGD with momentum of 0.9 and the learning rate schedule which is shown in Table 1. Note that the
learning schedule during retraining is 50% faster than during training (for T1 and T2).

For both retraining procedures T1 and T2, we perform reset for each of the first 5 convolutional
layers and the following 2 fully connected layers. Table 3 shows the number of trainable parameters
for each of the layers.

ResNet50 We perform all training and retraining procedures for 60e3 batches, with batch size of
64 and `2-regularization of 1e-4. Optimization is done using Momentum SGD with momentum of
0.9 and the learning rate schedule shown in Table 2.

For our experiments, we reinitialize the very first convolutional layer, as well as the first ResNet
block for each of the four subsequent network sections. In the ‘S4 B1 -W’ experiment, we leave out
resetting the learned skip connection. Finally, we also reset the last fully connected layer containing
logits.

A3C Each agent is trained on a single Atari level for 5e7 environment steps, over 10 seeds. We use
the standard Atari architecture consisting of 3 convolutional layers, 1 fully connected layer and 2
fully connected ‘heads’ for policy and value function. The number of parameters for each of those
layers is shown in Table 5. For optimization, we use RMSProp optimizer with ε = 0.1, decay of 0.99
and α = 6e-4 that is linearly annealed to 0. For all the other hyperparameters we refer to Mnih et al.
(2016). Finally, while calculating reported statistics we removed the following Atari levels, due to
poor behaviour of the trained agent: Montezuma’s Revenge, Venture, Solaris, Enduro, Battle Zone,
Gravitar, Kangaroo, Skiing, Krull, Video pinball, Freeway, Centipede, and Robotank.

Rainbow Each agent is trained on a single Atari level for 20e6 environment frames, over 3 seeds.
Due to agent behaving randomly, we remove the following Atari games from our MC-hardness
calculations: Montezuma’s Revenge, Venture, and Solaris. For our experiments, we use the same
network architecture and hyperparameters as reported in Hessel et al. (2017) and target the first 3
convolutional layers. Table 6 has the total number of parameters for each of the 3 layers.

IMPALA We train a single agent over a suite of 28 DeepMind Lab levels for a total of 1 billion steps
over all the environments, over 5 seeds. During training we apply population based training (PBT;
Jaderberg et al., 2017) with population of size 12, in order to evolve the entropy cost, learning
rate and ε for RMSProp. For language modelling a separated LSTM channel is used. In the
results we report, we removed two DeepMind Lab levels due to poor behavior of the trained agent:
‘language_execute_random_task’ and ‘psychlab_visual_search’. All the other hyperparameters are
retained from Espeholt et al. (2018). For our experiments, we reinitialize the first convolutional layer
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Figure 7: Hardness of model completion for AlexNet on ImageNet under retraining procedure T2.
The x-axis shows experiments that retrain different parts of the model.

in each of the 3 ResNet sections, as well as the final fully connected layer and the weights of the
LSTM. The absolute number of parameters for each of the aforementioned layers is available in
Table 7.

B PARAMETER COUNTS

Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Linear 1 Linear 2 Logits Total

Standard 34,944 614,654 885,120 1,327,488 884,992 1,052,672 16,781,312 4,096,000 25,677,182

Large 52,416 1,382,784 1,991,232 2,986,560 1,991,000 2,365,440 37,754,880 6,144,000 54,668,312

Small 17,472 153,728 221,376 331,968 221,312 264,192 4,196,352 2,048,000 7,454,400

Table 3: AlexNet, number of parameters per layer. Compared to the ‘Standard’ version, ‘Small’
represents a network with 50% less feature maps and fully connected neurons, whereas ‘Large’
represents a model with 50% more feature maps and fully connected neurons.

Conv1 S1 B1 S2 B1 S3 B1 S4 B1 S4 B1 -W Logits
ResNet50 9,536 75,008 379,392 1,512,448 6,039,552 3,938,304 2,048,000

Table 4: ResNet50, number of parameters per layer.

Conv 1 Conv 2 Conv 3 Linear Policy head Value head Total

A3C 8,192 32,768 36,864 1,179,648 9,216 512 1,267,200

Table 5: A3C, number of parameters per layer.

Conv 1 Conv 2 Conv 3 Total
Rainbow 8,192 32,768 36,864 1,267,712

Table 6: Rainbow, number of parameters per layer.

14



Under review as a conference paper at ICLR 2019

S1 Conv 1 S2 Conv 1 S3 Conv 1 Linear LSTM
IMPALA 432 4,608 9,216 3,538,944 526,336

Table 7: IMPALA reinforcement learning agent, number of parameters per layer.
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C EXPERIMENTAL DATA

C.1 ALEXNET

MC-hardness(α = 1.0)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.39 0.59 0.35 0.38 1.00
T2 1.00 1.00 0.00 1.00 1.00

Conv 2 T1 0.44 0.42 0.04 0.38 0.45
T2 1.00 1.00 0.00 1.00 1.00

Conv 3 T1 0.40 0.40 0.01 0.38 0.41
T2 1.00 1.00 0.00 1.00 1.00

Conv 4 T1 0.41 0.41 0.02 0.39 0.42
T2 1.00 1.00 0.00 1.00 1.00

Conv 5 T1 0.39 0.39 0.01 0.39 0.40
T2 1.00 1.00 0.00 1.00 1.00

Linear 1 T1 0.39 0.40 0.02 0.39 0.42
T2 1.00 1.00 0.00 1.00 1.00

Linear 2 T1 0.41 0.41 0.03 0.38 0.44
T2 1.00 1.00 0.00 1.00 1.00

MC-hardness(α = 0.9)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.5 0.5 0.0 0.5 0.5
T2 1.0 1.0 0.0 1.0 1.0

Conv 2 T1 0.5 0.5 0.0 0.5 0.5
T2 1.0 1.0 0.0 1.0 1.0

Conv 3 T1 0.5 0.5 0.0 0.5 0.5
T2 1.0 1.0 0.0 1.0 1.0

Conv 4 T1 0.5 0.5 0.0 0.5 0.5
T2 1.0 1.0 0.0 1.0 1.0

Conv 5 T1 0.5 0.5 0.0 0.5 0.5
T2 1.0 1.0 0.0 1.0 1.0

Linear 1 T1 0.5 0.5 0.0 0.5 0.5
T2 1.0 1.0 0.0 1.0 1.0

Linear 2 T1 0.5 0.5 0.0 0.5 0.5
T2 1.0 1.0 0.0 1.0 1.0
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MC-hardness(α = 0.8)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.20 0.21 0.03 0.18 0.24
T2 1.00 1.00 0.00 1.00 1.00

Conv 2 T1 0.17 0.16 0.01 0.15 0.17
T2 1.00 1.00 0.00 1.00 1.00

Conv 3 T1 0.13 0.13 0.01 0.12 0.15
T2 1.00 1.00 0.00 1.00 1.00

Conv 4 T1 0.11 0.11 0.01 0.10 0.13
T2 1.00 1.00 0.00 1.00 1.00

Conv 5 T1 0.08 0.08 0.00 0.08 0.08
T2 1.00 1.00 0.00 1.00 1.00

Linear 1 T1 0.19 0.19 0.01 0.19 0.20
T2 1.00 1.00 0.00 1.00 1.00

Linear 2 T1 0.22 0.23 0.02 0.21 0.25
T2 1.00 1.00 0.00 1.00 1.00

MC-hardness(α = 0.5)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.18 0.18 0.01 0.17 0.19
T2 1.00 1.00 0.00 1.00 1.00

Conv 2 T1 0.13 0.14 0.02 0.12 0.16
T2 0.24 0.24 0.01 0.22 0.24

Conv 3 T1 0.08 0.07 0.01 0.07 0.08
T2 0.20 0.21 0.04 0.18 0.25

Conv 4 T1 0.08 0.09 0.02 0.08 0.12
T2 0.26 0.27 0.05 0.23 0.32

Conv 5 T1 0.06 0.06 0.00 0.06 0.06
T2 0.41 0.47 0.28 0.23 0.78

Linear 1 T1 0.08 0.08 0.01 0.08 0.09
T2 0.70 0.64 0.19 0.43 0.79

Linear 2 T1 0.07 0.07 0.01 0.06 0.08
T2 0.37 0.57 0.37 0.34 1.00

C.2 RESNET50

MC-hardness(α = 1.0)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.35 0.35 0.00 0.35 0.35
T2 1.00 1.00 0.00 1.00 1.00

S1 B1 T1 0.35 0.35 0.00 0.34 0.35
T2 1.00 1.00 0.00 1.00 1.00

S2 B1 T1 0.35 0.35 0.01 0.34 0.37
T2 1.00 1.00 0.00 1.00 1.00

S3 B1 T1 0.34 0.34 0.00 0.34 0.35
T2 1.00 1.00 0.00 1.00 1.00

S4 B1 T1 0.36 0.37 0.01 0.36 0.38
T2 1.00 1.00 0.00 1.00 1.00

S4 B1 -W T1 0.36 0.36 0.00 0.35 0.36
T2 1.00 1.00 0.00 1.00 1.00

Logits T1 0.35 0.35 0.01 0.35 0.37
T2 1.00 1.00 0.00 1.00 1.00
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MC-hardness(α = 0.9)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.04 0.04 0.01 0.03 0.05
T2 0.02 0.02 0.00 0.02 0.02

S1 B1 T1 0.07 0.08 0.01 0.07 0.09
T2 0.08 0.10 0.03 0.07 0.14

S1 B2 T1 0.07 0.08 0.01 0.07 0.09
T2 0.05 0.06 0.01 0.05 0.06

S1 B3 T1 0.13 0.12 0.02 0.10 0.14
T2 0.11 0.11 0.01 0.10 0.12

S1 B4 T1 0.39 0.40 0.01 0.39 0.42
T2 0.15 0.15 0.02 0.12 0.16

S1 B4 -W T1 0.18 0.19 0.03 0.17 0.22
T2 0.09 0.09 0.01 0.08 0.09

Logits T1 0.20 0.20 0.04 0.16 0.24
T2 0.10 0.10 0.00 0.09 0.10

MC-hardness(α = 0.8)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.02 0.02 0.00 0.01 0.02
T2 0.01 0.01 0.00 0.01 0.01

S1 B1 T1 0.06 0.06 0.00 0.06 0.06
T2 0.07 0.08 0.01 0.07 0.09

S1 B2 T1 0.05 0.05 0.00 0.05 0.05
T2 0.05 0.04 0.00 0.04 0.05

S1 B3 T1 0.08 0.08 0.01 0.08 0.09
T2 0.08 0.07 0.00 0.07 0.08

S1 B4 T1 0.10 0.09 0.00 0.09 0.10
T2 0.08 0.08 0.00 0.08 0.09

S1 B4 -W T1 0.06 0.05 0.01 0.05 0.06
T2 0.06 0.06 0.01 0.06 0.07

Logits T1 0.05 0.05 0.00 0.05 0.05
T2 0.04 0.04 0.00 0.04 0.04

MC-hardness(α = 0.5)
Median Mean SD Min Max

Layer Retraining procedure

Conv 1 T1 0.02 0.02 0.00 0.02 0.02
T2 0.02 0.02 0.00 0.02 0.02

S1 B1 T1 0.07 0.08 0.01 0.07 0.09
T2 0.10 0.10 0.01 0.09 0.10

S1 B2 T1 0.06 0.06 0.00 0.06 0.06
T2 0.06 0.06 0.00 0.05 0.06

S1 B3 T1 0.09 0.09 0.01 0.08 0.10
T2 0.09 0.09 0.01 0.08 0.11

S1 B4 T1 0.09 0.09 0.00 0.09 0.09
T2 0.10 0.10 0.00 0.10 0.10

S1 B4 -W T1 0.06 0.06 0.01 0.05 0.07
T2 0.08 0.08 0.00 0.08 0.08

Logits T1 0.03 0.03 0.00 0.03 0.03
T2 0.03 0.03 0.00 0.03 0.03
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C.3 A3C

C.3.1 RETRAINING PROCEDURE T1

MC-hardness(α = 1.0)
Median Mean SD Min Max

Layer

Conv 1 0.92 0.94 0.03 0.91 1.00
Conv 2 0.65 0.65 0.04 0.60 0.72
Conv 3 0.39 0.40 0.04 0.35 0.45
Linear 1 0.33 0.34 0.03 0.29 0.39
P 0.29 0.29 0.03 0.25 0.35
V 0.11 0.11 0.03 0.06 0.16

MC-hardness(α = 0.8)
Median Mean SD Min Max

Layer

Conv 1 1.00 1.00 0.00 1.00 1.00
Conv 2 0.66 0.66 0.06 0.57 0.76
Conv 3 0.28 0.29 0.05 0.19 0.35
Linear 1 0.20 0.21 0.03 0.18 0.27
P 0.22 0.23 0.04 0.18 0.29
V 0.05 0.05 0.01 0.04 0.06

MC-hardness(α = 0.5)
Median Mean SD Min Max

Layer

Conv 1 1.00 1.00 0.00 1.00 1.00
Conv 2 0.57 0.58 0.10 0.43 0.77
Conv 3 0.18 0.19 0.08 0.12 0.34
Linear 1 0.11 0.13 0.05 0.09 0.24
P 0.16 0.16 0.03 0.10 0.21
V 0.07 0.07 0.01 0.06 0.09

C.3.2 RETRAINING PROCEDURE T2

MC-hardness(α = 1.0)
Median Mean SD Min Max

Layer

Conv 1 0.66 0.68 0.05 0.62 0.76
Conv 2 0.47 0.48 0.04 0.43 0.57
Conv 3 0.42 0.42 0.03 0.36 0.47
Linear 1 0.42 0.43 0.03 0.39 0.52
P 0.39 0.39 0.02 0.34 0.43
V 0.25 0.26 0.04 0.21 0.35
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MC-hardness(α = 0.8)
Median Mean SD Min Max

Layer

Conv 1 0.57 0.60 0.09 0.51 0.78
Conv 2 0.36 0.37 0.05 0.31 0.46
Conv 3 0.27 0.28 0.02 0.25 0.32
Linear 1 0.29 0.29 0.02 0.23 0.32
P 0.26 0.26 0.03 0.21 0.34
V 0.07 0.07 0.01 0.05 0.09

MC-hardness(α = 0.5)
Median Mean SD Min Max

Layer

Conv 1 0.42 0.45 0.11 0.32 0.69
Conv 2 0.23 0.23 0.04 0.17 0.29
Conv 3 0.14 0.14 0.02 0.12 0.18
Linear 1 0.13 0.13 0.02 0.11 0.16
P 0.14 0.14 0.03 0.09 0.19
V 0.06 0.07 0.02 0.06 0.12

C.4 RAINBOW

MC-hardness(α = 1.0)
Median Mean SD Min Max

Layer Retraining procedure Reset Buffer

Conv 1
T1

False 0.52 0.51 0.02 0.48 0.53
True 0.71 0.71 0.02 0.69 0.73

T2
False 0.90 0.89 0.03 0.86 0.91
True 1.00 1.00 0.00 1.00 1.00

Conv 2
T1

False 0.39 0.38 0.03 0.34 0.41
True 0.70 0.70 0.05 0.64 0.75

T2
False 0.63 0.66 0.06 0.63 0.74
True 1.00 1.00 0.00 1.00 1.00

Conv 3
T1

False 0.39 0.40 0.04 0.37 0.44
True 0.70 0.71 0.05 0.67 0.76

T2
False 0.59 0.59 0.03 0.55 0.61
True 0.88 0.87 0.03 0.83 0.89

MC-hardness(α = 0.8)
Median Mean SD Min Max

Layer Retraining procedure Reset Buffer

Conv 1
T1

False 0.35 0.35 0.01 0.34 0.36
True 0.66 0.66 0.03 0.63 0.69

T2
False 0.93 0.94 0.04 0.90 0.99
True 1.00 1.00 0.00 1.00 1.00

Conv 2
T1

False 0.26 0.26 0.03 0.23 0.28
True 0.59 0.59 0.03 0.57 0.62

T2
False 0.56 0.60 0.11 0.52 0.73
True 1.00 1.00 0.00 1.00 1.00

Conv 3
T1

False 0.29 0.28 0.04 0.24 0.32
True 0.61 0.59 0.05 0.54 0.63

T2
False 0.47 0.46 0.02 0.43 0.48
True 0.92 0.94 0.05 0.90 1.00
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MC-hardness(α = 0.5)
Median Mean SD Min Max

Layer Retraining procedure Reset Buffer

Conv 1
T1

False 0.34 0.33 0.02 0.31 0.35
True 0.58 0.58 0.01 0.58 0.59

T2
False 1.00 1.00 0.00 1.00 1.00
True 1.00 1.00 0.00 1.00 1.00

Conv 2
T1

False 0.25 0.26 0.04 0.23 0.31
True 0.49 0.52 0.05 0.48 0.58

T2
False 0.64 0.65 0.10 0.56 0.76
True 1.00 1.00 0.00 1.00 1.00

Conv 3
T1

False 0.28 0.26 0.03 0.23 0.28
True 0.53 0.54 0.02 0.52 0.57

T2
False 0.50 0.51 0.02 0.50 0.53
True 1.00 1.00 0.00 1.00 1.00

C.5 IMPALA REINFORCEMENT LEARNING AGENT

MC-hardness(α = 1.0)
Median Mean SD Min Max

Layer Retraining procedure

S1 Conv 1 T1 0.44 0.46 0.09 0.38 0.59
T2 0.65 0.70 0.20 0.50 1.00

S2 Conv 1 T1 0.41 0.51 0.24 0.26 0.84
T2 0.65 0.63 0.26 0.37 1.00

S3 Conv 1 T1 0.51 0.48 0.15 0.22 0.60
T2 0.51 0.50 0.25 0.15 0.86

Linear T1 0.49 0.52 0.06 0.48 0.60
T2 0.67 0.71 0.18 0.53 0.91

LSTM T1 0.39 0.39 0.04 0.34 0.46
T2 0.41 0.48 0.16 0.34 0.73

MC-hardness(α = 0.9)
Median Mean SD Min Max

Layer Retraining procedure

S1 Conv 1 T1 0.41 0.40 0.09 0.25 0.47
T2 0.66 0.71 0.20 0.47 1.00

S2 Conv 1 T1 0.50 0.51 0.21 0.29 0.83
T2 0.70 0.66 0.26 0.31 1.00

S3 Conv 1 T1 0.58 0.54 0.16 0.27 0.66
T2 0.55 0.55 0.26 0.13 0.78

Linear T1 0.51 0.53 0.09 0.42 0.63
T2 0.53 0.61 0.20 0.36 0.83

LSTM T1 0.33 0.35 0.09 0.24 0.48
T2 0.48 0.42 0.13 0.23 0.54
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MC-hardness(α = 0.5)
Median Mean SD Min Max

Layer Retraining procedure

S1 Conv 1 T1 0.44 0.46 0.13 0.30 0.66
T2 0.63 0.69 0.18 0.56 1.00

S2 Conv 1 T1 0.62 0.55 0.15 0.38 0.70
T2 0.74 0.76 0.25 0.41 1.00

S3 Conv 1 T1 0.61 0.59 0.19 0.34 0.81
T2 0.77 0.67 0.32 0.16 1.00

Linear T1 0.41 0.47 0.10 0.40 0.59
T2 0.57 0.65 0.22 0.45 0.92

LSTM T1 0.28 0.30 0.08 0.25 0.44
T2 0.49 0.43 0.16 0.24 0.62
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