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Abstract

To reduce runtime and resource utilization of Deep Neural Networks (DNNs) on
customized hardware, LightNN has been proposed by constraining the weights
of DNNs to be a sum of a limited number (denoted as k € {1,2}) of powers
of 2. LightNNs can therefore replace the multiplication between activations and
weights with a shift operation or two shifts and an add operation. To provide a
more continuous Pareto-optimal curve of accuracy and runtime so that hardware
designers can have more flexible options of DNN configurations, one can customize
the k for each convolutional filter. In this paper, we formulate the selection of & to be
differentiable, and train the model weights and per-filter k in an end-to-end fashion.
Since flexible-k LightNNs (FLightNNs) fully utilize the hardware resources on
Field Programmable Gate Arrays (FPGAs), our experimental results show that
FLightNN can achieve 2x speedup on FPGAs when compared to LightNN-2,
with only 0.1% accuracy degradation. In addition, compared to a 4-bit fixed-point
quantization, FLightNN can achieve slightly higher accuracy and 1.4 x speedup,
due to its lightweight shift operations.

1 Introduction

Emerging vision, speech and natural language applications have widely adopted deep learning models
and, as a result, have achieved state-of-the-art accuracy [6, 17, 4]. Furthermore, recent industrial effort
has focused on implementing the models on mobile devices [1]. However, real-time applications
based on these deep models may incur unacceptably large latencies and can easily drain the battery on
energy-limited devices. For example, smartphones can only run the AlexNet-based object detection
for one hour [16]]. Therefore, prior research has proposed model compression techniques including
pruning and quantization to satisfy the stringent energy and latency requirements [[10, [12} 13} |14]].

As one of the recently proposed quantization approaches, LightNN [7]]
constrains the weights of DNNs to be a sum of k powers of 2, and
therefore can use shift and add operations to replace the multipli-
cations between activations and weights. For LightNN-lE], all the
multiplications of the DNNs will be replaced by a shift operation,
while for LightNN-2, two shifts and an add replace the multiplica- © LightNN-2

tion. Since shift operations are much more lightweight on customized W‘)‘ LightNN-1
hardware (e.g., FPGA or ASIC), LightNNs can achieve faster speed

and lower energy consumption, and generally maintains accuracy for Testrror
over-parameterized models [7]. Although LightNNs provide better
energy-efficiency, they lack the flexibility to provide fine-grained en-
ergy/delay and accuracy curve. As explained in Fig.|[l| the energy
efficiency for these models also exhibits gaps, making the Pareto-
optimal curve of accuracy and energy discrete. However, a continuous
accuracy and energy/delay trade-off is an important feature for vendors to target different market
segments (e.g., IoT devices, edge devices, and mobile devices).
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Figure 1: A discrete Pareto-
optimal curve for LightNN
models.

'"LightNN-k indicates LightNN whose weights are quantized to be the sum of k powers of 2.
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To provide a more flexible Pareto curve for the LightNN framework, we propose to equip each convo-
lutional filter with the freedom to use a different number of shift-and-add operations to approximate
multiplications. Specifically, we introduce a set of free variables k = {ky,...,kr} where each
dimension represents the number of shift-and-add for the corresponding convolutional filter. As a
result, a more contiguous Pareto curve can be achieved. For example, if we constrain k € {1,2} %,
then the delay and energy consumption of the new model will sit between LightNN-1 (k = {1}¥)
and LightNN-2 (k = {2}¥). Formally, we are solving miny, i £(w, k), where £ is the loss function
and w is the weights. However, the commonly adopted stochastic gradient descent (SGD) does not
apply in this case since £ is non-differentiable w.r.t. k. In this paper, we propose a differentiable
training algorithm which enables end-to-end optimization with standard SGD. The resulting network
is dubbed FLightNN for its flexible k values.

2 Differentiable Training for FLightNN

In this section, we first define the quantization function, and then introduce the end-to-end training
algorithm for FLightNN, equipped with a regularization loss to penalize large k values.

2.1 Quantization function

We first denote the i filter of the network as w; and the quantization function for the filter w; as
Q. (w;|t), where k = max; k is the maximum number of shifts used for this network, and vector t
is a latent variable that controls the approximation (e.g., some threshold values). Also, we denote the
residual resulting from the approximation as r; , = w; — Qg (w;|t). Then, we formally define the
quantization function as follows:

Ou(wilt) { 0, ifk=0
W = — .
¥ SR LI jll2> ) R(r ), if k> 1

where R(z) = sign(z) x 2[°9UzD] rounds the input variable to a nearest power of 2, and [.] is a
rounding-to-integer function. To interpret the thresholds t, ty determines whether this filter is pruned
out, and t; determines whether one shift is enough, etc. Then, the number of shifts for the ¢-th filter
isk; = 25;3 1(||r; ;||2> t;). Therefore, choosing k; per filter is equivalent to finding optimal
thresholds t.

2.2 Differentiable training

Instead of picking the threshods ¢ by hand, we consider them as trainable parameters. Therefore, the
loss function £(w, t) is a function of both weights and thresholds. Similar to prior work on DNN
quantization [[19} 5], we use the straight-through estimator (STE) [2] to compute g—“ﬁ. By defining

owd oL _ oL ow! _ or
T = 1 where w! = Qy(w;|t) is the quantized w;; therefore, we have Bw. = wl ows = owl

which becomes a differentiable expression.

ow
» g, » Werelax the indicator function g(z,t;) = L(z > t;)

to a sigmoid function [9], o(.), when computing gradients, i.e., §(z,t;) = o(z — t;). In addition,

To compute the gradient for thresholds, i.e.

we use STE to compute the gradient for R(x). Thus, the gradient 8w: can be computed by:
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where % and a“ tare 0 for | < j; otherwise, they can be computed with the result of %ﬁw.
it =10=7).

2.3 Regularization

To encourage smaller k; for the filters, we also add regularization loss: Lycq (W) =
SR i=0 )\ >;lIri j||2 where A; performs as a handle to balance accuracy and model sparsity. This
regularlzatlon loss is the sum of several group Lasso losses, since they can introduce structural

sparsity [15]. The first item Ao Y_,||rioll2= Ao >_;||W3||2 is used to prune the whole filters out,
while the other items (j > 0) regularize the residuals.



3 Experimental Results

We conduct experiments on both large and small CNNss for CIFAR-10 datasets. The configuration for
Network-1 is: (2 x 128C3) — M P2 — (2 x 256C3) — M P2 — (2 x 512C3) — 10C3 — G P, where
2 x 128C'3 means two convolutional layers each with 128 3 x 3 filters; MP2 means max pooling with
a 2x2 kernel; GP means global pooling. Network-2 reduces the number of filters per convolutional
layer (except the last layer) of Network-1 by a factor of 8. For both networks, each convolutional
layer is followed by a batch normalization layer and a Leaky ReLU activation function [13]. We use
the Adam optimizer [[L1] to train the network. The learning rate starts at 5e-3, and decrease by 0.1
every 80 epochs. All the models are trained for 200 epochs. For FLightNN, we initialize the threshods
t to 0, and set the largest shifts k as 2. For all, except the 32-bit full-precision model, we use 8-bit
fixed-point quantization for the activations. By varying A, we can have different accuracy-runtime
trade-offs for FLightNN. The results are shown in Table [1] where for each network we train two
FLightNNs with different ©. We also implement and synthesize the models on Xilinx ZC706 FPGA,
and measure the runtime of batched inference. In Table|l} the per-image runtime and speedup for the
largest convolutional layer is reported. The accuracy-runtime trade-offs are also shown in Fig. 2]

Table 1: Accuracy and FPGA runtime for CIFAR-10. xWyA indicates x bits for weights and y bits
for activations. The speedup compared to the full-precision model is shown in the last column.

ID | Param. Model Accuracy (%) | Storage (MB) | Runtime (ms) | Speedup
Full-precision 92.85 18.5 769.2 Ix
LightNN-2gy1784 92.72 4.6 98.3 7.8%
1 4.6M | LightNN-1484 91.93 2.3 25.5 30.2%
Fixed-pointyyys 4 92.23 2.3 50.6 15.2x%
FLightNN-2 92.59 2.3 25.5 30.2%
FLightNN-2 92.62 3.3 36.7 21.0x
Full-precision 86.36 0.31 3.16 1x
LightNN-2g784 86.17 0.08 0.45 7.0x
2 | 0.08M LightNN-14ws4 84.82 0.04 0.22 14.4 <
’ Fixed-pointyyg 4 85.09 0.04 0.30 10.5x%
FLightNN-2 85.70 0.04 0.21 15.0%
FLightNN-2 85.91 0.06 0.25 12.6 %
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Figure 2: Accuracy and runtime for (a) Network-1 and (b) Network-2 with different quantized models
on CIFAR-10.

As shown in Table |l{and Fig. |2} FLightNN shows the advantage of flexible accuracy-speed trade-
offs. For both networks, FLightNNs can achieve the accuracy close to LightNN-2, but have much
higher speedup. Also, FlightNNs have higher accuracy and a lower speedup than LightNN-1. Thus,
FLightNNs provide continuous trade-off curves for accuracy and speed. Compared to the fixed-point
quantization, FLightNN can achieve higher accuracy, and up to 1.4x speedup. This is because the
multiplication is replaced by shift operators, which require much fewer resources on FPGA than
multipliers. Therefore, the computation for FLightNN can be unrolled more times than that of
fixed-point DNNs. By comparing the first FLightNN-2 of Network-2 with LightNN-1, we find that
FLightNN-2 can achieve higher accuracy even with the same storage as LightNN-1. This is because
initially FLightNN-2 quantizes all the filters with two shifts (since t is initialized as 0), and gradually
adds constraints to the filters. This gradual quantization may be better than training a network with
only one shift from scratch, as LightNN-1 does. The benefit of gradual quantization has also been
observed by prior work [[18, 8] which shows that gradually imposing quantization constraints can
achieve better accuracy than directly quantizing with a strict constraint.
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