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Abstract

Manually separating glands is a hard, time-consuming and
expensive task where the final result between multiple expert
pathologists can vary massively. Developing an automated
method can therefore save time, valuable resources, and lives.
In this paper we propose a novel deep convolutional neural
network architecture for the task of gland instance segmenta-
tion, achieving state of the art results on the MICCAI GlaS
dataset. We employed a data augmentation strategy centered
around random transformation sampling as a way to model
the gland uncertainty at test time, increasing the final de-
tection and segmentation accuracy. Furthermore, we utilized
overlapping glandular contour regions to predict areas where
two distinct objects are in close proximity to each other. We
additionally implemented the previous state of the art in gland
instance segmentation, MILD-Net, and failed to reproduce
their reported results.

1 Introduction
Segmenting individual glands is an important part in histo-
pathology in relation to adenocarcinomal cancer, since if
part of a gland is cancerous, the whole gland should be clas-
sified as cancerous. This problem is especially hard because
a gland’s appearance differs depending on its shape, size,
how the organic material was cut, what organ it comes from,
as well as the histological grade of the gland. As a result, the
labeling of two different expert pathologists can differ heav-
ily. This has created an incentive to develop an automated
method to classify individual glands.

Recent advancements in deep learning have lead to the
creation of models capable of semantic segmentation of ob-
jects in images, classifying every pixel in an image given
a set of class labels (see FCN (Long, Shelhamer, and Dar-
rell 2014), U-Net (Ronneberger, Fischer, and Brox 2015),
and DeepLabV3 (Chen et al. 2017)). Instance segmenta-
tion models, as opposed to a semantic segmentation mod-
els, were developed to semantically segment an image while
also being able to detect and distinguish between two or
more objects of the same semantic class. (see figure 1). This
adds further complexity to the already challenging detection
problem.
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Figure 1: An example illustrating gland segmentation of an
(a) H&E image using (b) semantic segmentation and (c) in-
stance segmentation.

The objective of this paper was to improve the results of
current gland instance segmentation models, aswell as to re-
producing the previous state of the art which is not publi-
cally available. We propose a novel model which utilizes
heavy data augmentation, smart ground truth targets and ran-
dom transformation sampling. We implemented our model,
as well as the previous state of the art, using PyTorch (Paszke
et al. 2017).

2 Related Work
2.1 DCAN
DCAN (Chen et al. 2016) was the model which reached first
place in the MICCAI 2015 Gland Segmentation Challenge
(Sirinukunwattana et al. 2016). It used an FCN-style (Long,
Shelhamer, and Darrell 2014) model architecture featuring
two separate modules to predict the binary gland segmen-
tation map and contour map simultaneously. The network
was trained end to end through backpropagation by mini-
mizing the sum of the softmax cross entropy loss, an aux-
iliary loss and L2 regularization. At test time the predicted
gland contours were removed from the segmentation mask
to separate inidividual gland instances, thus increasing de-
tection results while decreasing segmentation accuracy. The
model also employed transfer learning by pretraining on the
Pascal VOC (Everingham et al. 2015) dataset.



2.2 Xu et al. 2016a
Xu et al. 2016a built on the work of DCAN by improving the
contour detection with multi-scale deep supervision. Due to
the information loss caused by the downsampling layers in
the FCN structure, their proposed network uses a hierarchi-
cal structure using features from each layer in the network at
multiple scales. This helped improve the predicted glandular
boundaries.

2.3 Xu et al. 2016b
Instead of only predicting a segmentation and contour mask,
Xu et al. 2016b added a third network head consisting of
a Faster RCNN object detector (Ren et al. 2015) predict-
ing bounding boxes. The final model combines its three net-
work heads into a single network, predicting a binary gland
segmentation mask, a binary gland contour mask, and a set
of bounding boxes specifying the four coordinates of every
predicted object. All three heads are used to create one final
instance segmentation map.

2.4 MILD-Net
MILD-Net (Graham et al. 2018) presented a minimal infor-
mation loss dilated network which utilized downsampling
the input image and incorporation of its features in deeper
layers of the network as a method of minimizing the infor-
mation loss caused by maxpooling. Furthermore, atrous spa-
tial pyramid pooling (ASPP) (Chen et al. 2017) was used to-
gether with dilated residual convolutions in an attempt to in-
crease segmentation accuracy for glands of different shapes
and sizes.

The authors proposed random transformation sampling as
a method to generate an instance-wise uncertainty score for
each gland. Random transformations of the input image are
sampled at test time to create a distribution of predictions.
The mean and variance of the predictions are then processed
and are used to model the uncertainty of each gland. As a
post-processing step, glands with high variance are removed
and classified as a negative model prediction. MILD-Net
currently reports state of the art results on gland instance
segmentation.

3 Method
3.1 Dataset
For the task of gland instance segmentation, the MICCAI
2015 Gland Segmentation (GlaS) Challenge dataset was
used. It consists of 164 small image pathes, majority of
which are of sizes 522 × 775 pixels, from Haematoxylin
and Eosin (H&E) stained slides. The dataset is split into
three sets, one training set consisting of 84 images, and two
test sets: testA and testB containing 60 and 20 images re-
spectively. The H&E images are labeled by expert pathol-
ogists and contain an approximate 1:1 split of benign and
malignant glands. A model is evaluated across three criteria
judging detection performance, segmentation accuracy, and
shape similarity through F1-score, object Dice and Haus-
dorff distance respectively.

Formally, a detected object instance is classified as a true
positive (TP ) if the predicted glandular object intersects

with at least 50% of a ground truth object. The gland is con-
sidered a false positive (FN ) if the intersection over union
is below 50%. Any glands not detected are classified as false
negatives (FN ). Formally, F1-score (F1) is defined as:

F1 =
2× Precision×Recall
Precision+Recall

(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Let G and P be sets of instance-specific ground truth gland
and predicted gland segmentation maps respectively. Addi-
tionally, let Ĝ be the set of ground truth glands where ele-
ment j maximally overlaps Pj , and P̂ be the set of predicted
glands where element i maximally overlaps Gi. When there
are no overlapping objects, the gland with the smallest Haus-
dorff distance is picked. The object wide Hausdorff distance
(Hobj) and object-wide Dice score (Dobj) is defined as:

Hobj(G,P ) =
1

2
(

|P |∑
i=1

αiH(Si, Ĝi) +

|G|∑
j=1

βjH(Gi, Ŝi))

(4)

Dobj(G,P ) =
1

2
(

|P |∑
i=1

αiD(Si, Ĝi) +

|G|∑
j=1

βjD(Gi, Ŝi))

(5)
where

H(G,P ) = max (sup
x∈G

inf
y∈P
||x− y||, sup

y∈P
inf
x∈G
||x− y||)

(6)

D(G,P ) =
2|G ∩ P |
|G|+ |P |

(7)

αi =
|Pi|∑|P |
j=1 |Pj |

(8)

βj =
|Gj |∑|G|
k=1 |Gk|

(9)

3.2 Models
We propose a novel deep convolutional neural network ar-
chitecture which outputs three independent feature maps.
The model uses uses a deep U-Net (Ronneberger, Fischer,
and Brox 2015) style architecture with a ResNet-50 (He
et al. 2015) encoder and decoder with skip connections to
make use of lower level features and to reduce vanishing
gradients. The conv1 to conv5 x blocks are used from the
ResNet-50 and are pretrained on ImageNet. Following the
work on DeepLabV3 (Chen et al. 2017), the networks infor-
mation loss is minimized by not downsampling more than a
factor of 8 in the whole network. This is done by changing
the stride of the conv4 x and conv5 x blocks in the encoder
to be equal to one. Additionally, we employ Atrous Spatial
Pyramid Pooling (ASPP) to increase segmentation accuracy
with dilated convolutions (see figure 2).



Figure 2: The model features an encoder-decoder architecture, downsampling and upsampling the input image by a factor of
8 over the course of the forward pass. The red blocks symbolize pretrained layers from ResNet-50 (He et al. 2015), where the
stride of the conv4 x and the conv5 x blocks were changed to be equal to 1. ASPP denotes Atrous Spatial Pyramid Pooling.
Every convolution is preceeded by batch normalization (Ioffe and Szegedy 2015). Bilinear interpolation is used as upsampling.

The network utilizes three independent heads at the end of
the network to generate three separate feature maps predict-
ing the binary gland segmentation mask, the binary contour
mask of the edges of the glands, and a third mask of over-
lapping contour regions where there’s a high probability that
two glands are close in proximity.

Figure 3: A figure illustrating a training example and ground
truth including the (a) H&E image, (b) segmentation map,
(c) contour map, and (d) overlapping contour regions.

The contour ground truth targets are generated by mor-
phologically dilating each separate gland instance and sub-
tracting the areas overlapping with the original segmenta-
tion mask. The final ground truth contour mask is formed by
merging all gland contours (see figure 3). This way the pre-
dicted gland contours will minimally overlap with the gland
segmentation map at test time. The model’s final head pre-
dicts a feature map where two or more gland instance’s con-
tour regions overlap. The overlapping contour regions are re-
moved from the segmentation mask during post-processing
to increase gland instancing accuracy without decreasing
segmentation performance.

For each network head the binary cross entropy (BCE)
loss is computed with their respective ground truth labels,
denoted by Ls for the gland segmentation mask, Lc for the
contour mask, and Lo for the overlapping contour region
mask. The network is trained by minimizing the total loss
Ltotal, which is the sum of the binary cross entropy losses
plus weighted L2-regularization. The constant λ was set to
1e−3:

Ltotal = Ls + Lc + Lo + γ||W ||22 (10)

BCE = −y log ŷ − (1− y) log(1− ŷ) (11)

The second model used was our implementation of the pre-
vious state of the art: MILD-Net. Many technical details



needed to fully reproduce MILD-Net were omitted from
their paper, including but not limited to: no post-processing
steps, no instancing algorithms, and an undefined auxiliary
loss. As a results, we tested multiple methods and used hy-
perparameter tuning on the MILD-Net model for it to be able
to be a fair fair comparison. We trained the MILD-Net model
with the exact same architecture and loss function LMILD

as reported in their paper, with a total loss consisting of the
segmentation loss Ls, the contour loss Lc and the auxiliary
loss La. Softmax cross entropy was employed for Ls and
Lc. The undefined auxiliary loss was interpreted as upsam-
pling four feature maps from the middle of the network by a
factor of 8 and computing the log loss with the contour and
segmentation labels. The auxiliary loss was weighted by the
variable w which was reduced by a factor of 10 after every
8th epoch, as the original paper states.

LMILD = Ls + Lc + wLa + γ||W ||22 (12)

Momentum and Adam optimizers were used to train the
networks. A batch size of 3 was used for all experiments.
The training time and learning rate varied depending on the
amount of data augmentation and network architecture. We
trained our best performing proposed model for 5000 itera-
tions using a momentum of 0.9 and a learning rate of 1e−2,
decreasing it by a factor of 10 after 3000 and 4500 iterations.

3.3 Data Augmentation
Because of the small size of the dataset, machine learning
models overfit the training data after just 3 epochs. This
makes data augmentation the most important component
when constructing a machine learning algorithm, consider-
ably more impactful than the model architecture, and is often
an overlooked detail in technical papers. To stress the impor-
tance of data augmentation, we made experiments showing
that extensive data augmentation is required to obtain com-
petitive results on the dataset.

Data augmentation techniques used in this paper are vi-
sualized in figure 4 and include random image crops, elastic
warping, arbitrary θ ∈ [0, 360) degree rotations, gaussian,
mean, and median blurs, unsharp masking, horizontal and
vertical flipping, brightness shifting, contrast shifting, satu-
ration shifting, hue shifting, uniform random noise, and ran-
dom line of symmetry mirroring.

For each training example in a mini-batch, a 352 × 352
image patch is sampled, rotated by θ ∈ [0, 360) degrees,
and warped elastically. Random line of symmetry augmen-
tation entails drawing a random straight vertical, horizontal
or vertical line across the image, and mirroring the image
across the marked line of symmetry. Color jitter in the form
of brightness, contrast, saturation, and hue shifting is later
applied. One of the four different blurs is then randomly
picked and applied to the image. Finally, random pixel noise
is added to the training example, chosen uniformly in the
range [−x, x], x ∈ [15, 30].

3.4 Random Transformation Sampling
Random Transformation Sampling (RTS) (Graham et al.
2018) was employed at test time to increase the accuracy

Figure 4: A visualization of the different types of data aug-
mentation used (zoom in to view). They include (a) random
cropping, (b) uniform noise, (c) elastic warping, (d) bright-
ness shifting, (e) contrast shifting, (f) hue shifting, (g) sat-
uration shifting, (h) mirroring, (i) line of symmetry, (j) ro-
tation, (k) unsharp filtering, (l) gaussian blurring, (m) mean
blurring, and (n) median blurring

Data Augmentation Combined Test AB Set
F1 Dice Hausdorff

Crop (Baseline) 0.786 0.804 115.55
Mirroring 0.804 0.847 112.11

Brightness Shifting 0.802 0.855 112.32
Contrast Shifting 0.793 0.833 114.84

Saturation Shifting 0.788 0.836 114.28
Hue Shifting 0.794 0.845 113.54

Uniform Noise 0.802 0.853 112.29
Gaussian Blur 0.815 0.851 111.90

Mean Blur 0.814 0.849 111.00
Median Blur 0.807 0.840 115.17

Unsharp Mask 0.802 0.840 114.35
Arbitrary Rotation 0.834 0.861 105.92

Elastic Warping 0.820 0.860 109.75
Line of Symmetry 0.800 0.831 111.10
All Augmentations 0.892 0.876 77.40

Table 1: Data augmentation. A table showing the perfor-
mance of a single type of data augmentation used when
training the proposed model.



of the models. RTS entails sampling n random transforma-
tions {f1, f2, ..., fn−1, fn}, and applying them to the input
image at test time to generate a distribution of predictions. In
our experiments random 90 degree rotations, horizontal mir-
roring, vertical mirroring, gaussian, mean, and median blur-
ring, unsharp masking, brightness, contrast, hue, and satura-
tion shifting, and uniform noise was used. The mean µ and
variance σ2 of the predictions can then be computed:

µ =
1

n

n∑
i=1

fi(X,W ) (13)

σ2 =
1

n

n∑
i=1

(fi(X,W )− µ)2 (14)

Here X is the input image and W are the network weights.
This allows the model to compute where it is uncertain in its
prediction. Let P be a set of predicted gland instances. The
gland uncertainty score τk for instance k is defined as the
expected variance of the instance Pk. Here N is the size of
the predicted gland:

τk =
1

N

∑
x,y∈Pk

σ2
x,y (15)

Glands with an uncertainty score below a threshold t are re-
moved in a fully automated production environment, or can
be passed on to a pathologist for further evaluation when
used in conjunction with medical experts.

3.5 Post-processing
Heavy post-processing, similar to data augmentation, was
found to be necessary for good results. An H&E image was
first processed by the convolutional neural network with
50 RTS samples to predict the segmentation, contour and
overlap binary maps. Morphological erosion and dilation,
also known as morphological opening, was used to remove
noise. The mean contour overlap regions were then sub-
tracted from the newly modified segmentation map, and was
finally thresholded with constant h = 0.55 to create the final
binary segmentation map.

Connected component analysis was applied to make gland
instances. As a final post-processing step, instances of sizes
352 pixels and instances with uncertainty greater than t =
0.08 were removed.

4 Experiments and Results
The first experiments which were conducted studied the ef-
fects of data augmentation on the model. For these experi-
ments we used our proposed network architecture. A base-
line was established using only random image crops. Every
other type of data augmentation augments the cropped im-
age. RTS was not employed and results show the mean of
three independently trained models for each data augmenta-
tion technique. Performance was measured on the combined
testAB set. Results are shown in table 1.

An ablation study was carried out with our proposed
model as a baseline. We removed one variable at a time and
observed its effect on the final result. These variables include

Figure 5: Graphs of the F1-score, object Dice, and object
Hausdorff as a function of uncertainty threshold).

ASPP, increasing the downsampling (strides) in the encoder
and upsampling decoder, using no ImageNet pretraining, us-
ing transposed convolutions instead of bilinear interpolation,
and not using RTS. We also include our results from the re-
produced MILD-Net. Table 2 presents the ablation study re-
sults.

The ablation study confirms that RTS, ASPP, limited input
downsampling, transfer learning and bilinear interpolation
are all critical components which increase the performance
of the model. While ImageNet pretraining only slightly in-
creases accuracy, the training time decreased from 20 000 to
5 000 iterations. Varying the gland uncertainty threshold t
used in RTS also affects accuracy. In figure 5 we illustrate
the F1-score, object Dice, and object Hausdorff as a function
of the uncertainty threshold t. Best results were observed at
t = 0.08.



Model Test A Test B
F1 Dice Hausdorff F1 Dice Hausdorff

Baseline (RTS) 0.916 0.900 58.32 0.821 0.861 87.27
No ASPP 0.890 0.888 66.28 0.745 0.811 123.89

Stride=2 for conv4 x and conv5 x 0.852 0.847 75.15 0.702 0.0.731 130.58
No ImageNet pretraining 0.907 0.895 60.37 0.816 0.841 98.83

Transposed Conv 0.875 0.867 70.89 0.728 0.725 127.56
No RTS 0.910 0.900 58.52 0.788 0.819 109.85

Reproduced MILD-Net 0.808 0.853 59.87 0.628 0.760 136.97

Table 2: Ablation study results. A table presenting the results of the ablation study. All variables are kept constant except a
single architectural design decision. Variables tested include ASPP, RTS, ImageNet transfer learning, network downsampling
depth, and convolutional upsampling. Our reproduced MILD-Net is also shown. The best results are in bold.

Model Test A Test B
F1 Dice Hausdorff F1 Dice Hausdorff

Proposed 0.916 0.900 58.32 0.821 0.861 87.27
Reproduced MILD-Net 0.808 0.853 59.87 0.628 0.760 136.97

MILD-Net 0.914 0.913 41.54 0.844 0.836 105.89
Xu et al. 2016b 0.893 0.908 44.13 0.843 0.833 116.82

MIMO-Net 0.913 0.906 49.15 0.724 0.785 133.98
Xu et al. 2016a 0.858 0.888 54.20 0.771 0.815 129.93

DCAN 0.912 0.897 45.42 0.716 0.781 160.35
ExB1 0.891 0.882 57.41 0.703 0.786 145.58

Freidburg2 0.870 0.876 57.09 0.695 0.786 148.47
CVML 0.652 0.644 155.43 0.541 0.654 176.24

LIB 0.777 0.781 112.71 0.306 0.617 190.45
vision4GlaS 0.635 0.737 107.49 0.527 0.610 210.10

Table 3: GlaS comparison. A comparison of the F1-score, object Dice, object Hausdorff distance for previous state of the art
models (Sirinukunwattana et al. 2016) on the testA and testB splits of the GlaS dataset. The best result in a single category is
marked in bold.

We were unable to reproduce the reported results of
MILD-Net, suggesting that the details which were omitted
from their paper were critical for cutting edge model perfor-
mance. Our experiments showed that when keeping all vari-
ables constant except the model architecture, our network
architecture outperformed MILD-Net. The results from the
gland uncertainty modeling with our proposed model widely
differs from what MILD-Net presented. While RTS uncer-
tainty sampling did increase the accuracy of our model, it
did not drastically improve our results, compared to the ma-
jor increases in accuracy which MILD-Net presented by us-
ing very low gland uncertainty thresholds.

Additionally, while both our and MILD-Net’s formula-
tion of RTS and uncertainty thresholding is equivalent, our
reported gland uncertainty scores differ by two orders of
magnitude. Since each pixel segmentation is bounded by the
range [0, 1], the maximal pixel variance, and thus gland un-
certainty τk, is upper-bounded by 0.25. MILD-Net reports
gland uncertainties in the approximate range [0, 9], suggest-
ing that their implementation of RTS is different from the
formal formulation of RTS presented in this paper. This dif-
ference might be the cause of the performance differences
between our proposed model and the previous state of the
art.

Our best performing model beat the current state of the art
in gland instance segmentation in F1-score on test set A, and
object Dice and object Hausdorff on test set B. Qualitative
results of our proposed model can be viewed in figure 6,
including the statistical measures computed through RTS.

5 Conclusion
We proposed a novel automated state of the art gland in-
stance segmentation model to reduce the amount of time
and resources needed for expert pathologists to annotate his-
tological images, crucial for the detection of cancer. Our
model utilized overlapping contour regions for precise de-
tection of glandular boundaries. Additionally, we employed
Random Transformation Sampling as a method to model
instance specific gland uncertainty at test time, increasing
the final detection and segmentation accuracy. This allows
glands with an uncertainty score below a threshold to be re-
moved in a fully automated production environment, or to be
passed on to a pathologist for further evaluation when used
in conjunction with human experts. We additionally imple-
mented the previous state of the art in gland instance seg-
mentation, MILD-Net, and failed to reproduce their reported
results.



Figure 6: A figure showing predictions of our proposed model used on four different test examples. The image includes the
H&E slide crop, the ground truth instances, the predicted instances, the mean segmentation mask, the mean contour mask, the
mean overlapping contour regions, and the variance of the segmentation mask.



References
Chen, H.; Qi, X.; Yu, L.; and Heng, P.-A. 2016. Dcan: Deep
contour-aware networks for accurate gland segmentation.
Chen, L.; Papandreou, G.; Schroff, F.; and Adam, H. 2017.
Rethinking atrous convolution for semantic image segmen-
tation. CoRR abs/1706.05587.
Everingham, M.; Eslami, S. M. A.; Van Gool, L.; Williams,
C. K. I.; Winn, J.; and Zisserman, A. 2015. The pascal vi-
sual object classes challenge: A retrospective. International
Journal of Computer Vision 111(1):98–136.
Graham, S.; Chen, H.; Dou, Q.; Heng, P.-A.; and Rajpoot, N.
2018. Mild-net: Minimal information loss dilated network
for gland instance segmentation in colon histology images.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep residual
learning for image recognition. CoRR abs/1512.03385.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. In Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume
37, ICML’15, 448–456. JMLR.org.
Long, J.; Shelhamer, E.; and Darrell, T. 2014. Fully
convolutional networks for semantic segmentation. CoRR
abs/1411.4038.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch.
Ren, S.; He, K.; Girshick, R. B.; and Sun, J. 2015. Faster
R-CNN: towards real-time object detection with region pro-
posal networks. CoRR abs/1506.01497.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net:
Convolutional networks for biomedical image segmentation.
CoRR abs/1505.04597.
Sirinukunwattana, K.; Pluim, J. P. W.; Chen, H.; Qi, X.;
Heng, P.-A.; Guo, Y. B.; Wang, L. Y.; Matuszewski, B. J.;
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