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ABSTRACT

In order for machine learning to be deployed and trusted in many applications, it
is crucial to be able to reliably explain why the machine learning algorithm makes
certain predictions. For example, if an algorithm classifies a given pathology im-
age to be a malignant tumor, then the doctor may need to know which parts of the
image led the algorithm to this classification. How to interpret black-box predic-
tors is thus an important and active area of research. A fundamental question is:
how much can we trust the interpretation itself? In this paper, we show that inter-
pretation of deep learning predictions is extremely fragile in the following sense:
two perceptively indistinguishable inputs with the same predicted label can be as-
signed very different interpretations. We systematically characterize the fragility
of the interpretations generated by several widely-used feature-importance inter-
pretation methods (saliency maps, integrated gradient, and DeepLIFT) on Ima-
geNet and CIFAR-10. Our experiments show that even small random perturbation
can change the feature importance and new systematic perturbations can lead to
dramatically different interpretations without changing the label. We extend these
results to show that interpretations based on exemplars (e.g. influence functions)
are similarly fragile. Our analysis of the geometry of the Hessian matrix gives
insight on why fragility could be a fundamental challenge to the current interpre-
tation approaches.

1 INTRODUCTION

Predictions made by machine learning algorithms play an important role in our everyday lives and
can affect decisions in technology, medicine, and even the legal system (Rich, 2015; Obermeyer &
Emanuel, 2016). As the algorithms become increasingly complex, explanations for why an algo-
rithm makes certain decisions are ever more crucial. For example, if an AI system predicts a given
pathology image to be malignant, then the doctor would want to know what features in the image
led the algorithm to this classification. Similarly, if an algorithm predicts an individual to be a credit
risk, then the lender (and the borrower) might want to know why. Therefore having interpretations
for why certain predictions are made is critical for establishing trust and transparency between the
users and the algorithm (Lipton, 2016).

Having an interpretation is not enough, however. The explanation itself must be robust in order to
establish human trust. Take the pathology predictor; an interpretation method might suggest that a
particular section in an image is important for the malignant classification (e.g. that section could
have high scores in saliency map). The clinician might then focus on that section for investigation,
treatment or even look for similar features in other patients. It would be highly disconcerting if
in an extremely similar image, visually indistinguishable from the original and also classified as
malignant, a very different section is interpreted as being salient for the prediction. Thus, even if the
predictor is robust (both images are correctly labeled as malignant), that the interpretation is fragile
would still be highly problematic in deployment.

Our contributions. The fragility of prediction in deep neural networks against adversarial attacks
is an active area of research (Goodfellow et al., 2014; Kurakin et al., 2016; Papernot et al., 2016;
Moosavi-Dezfooli et al., 2016). In that setting, fragility is exhibited when two perceptively indistin-
guishable images are assigned different labels by the neural network. In this paper, we extend the
definition of fragility to neural network interpretation. More precisely, we define the interpretation
of neural network to be fragile if perceptively indistinguishable images that have the same predic-
tion label by the neural network are given substantially different interpretations. We systematically
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Figure 1: The fragility of feature-importance maps. We generate feature-importance scores, also
called saliency maps, using three popular interpretation methods: simple gradient (a), DeepLIFT
(b) and integrated gradient (c). The top row shows the the original images and their saliency maps
and the bottom row shows the perturbed images (using the center attack with ε = 8, as described
in Section 3) and the corresponding saliency maps. In all three images, the predicted label has not
changed due to perturbation; in fact the network’s (SqueezeNet) confidence in the prediction has
actually increased. However, the saliency maps of the perturbed images are meaningless.

investigate two classes of interpretation methods: methods that assign importance scores to each
feature (this includes simple gradient (Simonyan et al., 2013), DeepLift (Shrikumar et al., 2017),
and integrated gradient (Sundararajan et al., 2017)), as well as a method that assigns importances to
each training example: influence functions (Koh & Liang, 2017). For both classes of interpretations,
we show that targeted perturbations can lead to dramatically different interpretations (Fig. 1).

Our findings highlight the fragility of interpretations of neural networks, which has not been care-
fully considered in literature. Fragility directly limits how much we can trust and learn from the
interpretations. It also raises a significant new security concern. Especially in medical or economic
applications, users often take the interpretation of a prediction as containing causal insight (“this
image is a malignant tumor likely because of the section with a high saliency score”). An adver-
sary could minutely manipulate the input to draw attention away from relevant features or onto
his/her desired features. Such attacks might be especially hard to detect as the actual labels have not
changed.

While we focus on image data here because most of the interpretation methods have been motivated
by images, the fragility of neural network interpretation could be a much broader problem. Fig. 2
illustrates the intuition that when the decision boundary in the input feature space is complex, as is
the case with deep nets, a small perturbation in the input can push the example into a region with
very different loss contours. Because the feature importance is closely related to the gradient which
is perpendicular to the loss contours, the importance scores can also be dramatically different. We
provide additional analysis of this in Section 5.

2 INTERPRETATION METHODS FOR NEURAL NETWORK PREDICTIONS

2.1 FEATURE-IMPORTANCE INTERPRETATION

This first class of methods explains predictions in terms of the relative importance of features in a
test input sample. Given the sample xt ∈ Rd and the network’s prediction l, we define the score
of the predicted class Sl(xt) to be the value of the l-th output neuron right before the softmax
operation. We take l to be the class with the max score; i.e. the predicted class. Feature-importance
methods seek to find the dimensions of input data point that most strongly affect the score, and in
doing so, these methods assign an absolute saliency score to each input feature. Here we normalize
the scores for each image by the sum of the saliency scores across the features. This ensures that
any perturbations that we design change not the absolute feature saliencies (which may still preserve
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Figure 2: Intuition for why interpretation is fragile. Consider a test example xt ∈ R2 (black
dot) that is slightly perturbed to a new position xt + δ in input space (gray dot). The contours
and decision boundary corresponding to a loss function (L) for a two-class classification task are
also shown, allowing one to see the direction of the gradient of the loss with respect to the input
space. Neural networks with many parameters have decision boundaries that are roughly piecewise
linear with many transitions. We illustrate that points near the transitions are especially fragile to
interpretability-based analysis. A small perturbation to the input changes the direction of∇xL from
being in the direction of x1 to being in the direction of x2, directly affecting feature-importance
analyses. Similarly, a small perturbation to the test image changes which training image, when
up-weighted, has the largest influence on L, directly affecting exemplar-based analysis.

the ranking of different features), but their relative values. We summarize three different methods to
calculate the normalized saliency score, denoted byR(xt).

Simple gradient method Introduced in Baehrens et al. (2010) and applied to deep neural net-
works in Simonyan et al. (2013), the simple gradient method applies a local linear approximation
of the model to detect the sensitivity of the score to perturbing each of the input dimensions. Given
input xt ∈ Rd, the score is defined as:

R(xt)j =|∇xSl(xt)j |/
d∑
i=1

|∇xSl(xt)i|. (1)

Integrated gradients A significant drawback of the simple gradient method is the saturation prob-
lem discussed by Shrikumar et al. (2017); Sundararajan et al. (2017). Consequently, Sundararajan
et al. (2017) introduced the integrated gradients method where the gradients of the score with respect
to M scaled versions of the input are summed and then multiplied by the input. Letting x0 be the
reference point and ∆xt = xt − x0, the feature importance vector is calculated by:

R(xt) =

∣∣∣∣∣∆xtM

M∑
k=1

∇xSl
(
k

M
∆xt + x0

)∣∣∣∣∣ , (2)

which is then normalized for our analysis. Here the absolute value is taken for each dimension.

DeepLIFT DeepLIFT is an improved version of layer-wise relevance propagation (LRP) method
(Bach et al., 2015). LRP methods decompose the score Sl(xt) backwards through the neural net-
work. In each step, the score from the last layer is propagated to the previous layer, with the score
being divided proportionally to magnitude of the activations of the neurons in the previous layer.
The scores are propagated to the input layer, and the result is a relevance score assigned to each of
the input dimensions. DeepLIFT (Shrikumar et al., 2017) defines a reference point in the input space
and propagates relevance scores proportionally to the changes in the neuronal activations from the
reference. We use DeepLIFT with the Rescale rule; see Shrikumar et al. (2017) for details.

2.2 EXEMPLAR-BASED METHODS: INFLUENCE FUNCTIONS

A complementary approach to interpreting the results of a neural network is to explain the prediction
of the network in terms of its training examples, {(xi, yi)}. Specifically, we can ask: which training
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examples, if up-weighted or down-weighted during training time, would have the biggest effect on
the loss of the test example (xt, yt)? Koh & Liang (2017) proposed a method to calculate this value,
called the influence, defined by the following equation:

I(zi, zt) = −∇θL(zt, θ̂)
>H−1

θ̂
∇θL(zi, θ̂), (3)

where zi
def
= (xi, yi) and zt is defined analogously. L(z, θ̂) is the loss of the network with parameters

set to θ̂ for the (training or test) data point z. Hθ̂

def
= 1

n

∑n
i=1∇2

θL(zi, θ̂) is the empirical Hessian of
the network calculated over the training examples. The training examples with the highest influence
are understood as explaining why a network made a particular prediction for a test example.

2.3 METRICS FOR INTERPRETATION SIMILARITY

We consider two natural metrics for quantifying the similarity between interpretations for two differ-
ent images. As shown in Fig. 3, these metrics can be used to evaluate the effectiveness of a targeted
attack on interpretability.

• Spearman’s rank order correlation: Because interpretation methods rank all of the fea-
tures or training examples in order of importance, it is natural to use the rank correlation
(Spearman, 1904) to compare the similarity between interpretations.
• Top-k intersection: In many settings, only the most important features or interpretations

are of interest. In these settings, we can compute the size of the intersection of the k most
important features before and after perturbation.

3 RANDOM AND SYSTEMATIC PERTURBATIONS

Problem statement For a given fixed neural network N and input data point xt, the fea-
ture importance and influence function methods that we have described produce an interpretation
I(xt; N ). For feature importance, I(xt; N ) is a vector of feature scores; for influence function
I(xt; N ) is a vector of scores for training examples. We would like to devise efficient perturbations
to change the interpretability of a test image. Yet, the perturbations should be visually imperceptible
and should not change the label of the prediction. Formally, we define the problem as:

arg max
δ

D (I(xt; N ), I(xt + δ; N ))

subject to: ||δ||∞ ≤ ε,Prediction(xt + δ; N ) = Prediction(xt; N )

where D(·) measures the change in interpretation (e.g. how many of the top-k pixels are no longer
the top-k pixels of the saliency map after the perturbation) and ε > 0 constrains the norm of the
perturbation. In this paper, we carry out three kinds of input perturbations.

Random sign perturbation As a baseline, we generate random perturbations in which each pixel
is randomly perturbed by ±ε. This is used to measure robustness against untargeted perturbations.

Iterative attacks against feature-importance methods In Algorithm 1 we define two adversarial
attacks against feature-importance methods, each of which consists of taking a series of steps in the
direction that maximizes a differentiable dissimilarity function between the original and perturbed
interpretation. (1) The top-k attack seeks to perturb the saliency map by decreasing the relative
importance of the k most important features of the original image. (2) When the input data are
images, the center of mass of the saliency map often captures the user’s attention. The mass-center
attack is designed to result in the maximum spatial displacement of the center of mass of the saliency
scores. Both of these attacks can be applied to any of the three feature-importance methods.

Gradient sign attack against influence functions We can obtain effective adversarial images for
influence functions without resorting to interative procedures. We linearize (3) around the values of
the current inputs and parameters. If we further constrain the L∞ norm of the perturbation to ε, we
obtain an optimal single-step perturbation:

δ = εsign(∇xt
I(zi, zt)) = −εsign(∇xt

∇θL(zt, θ̂)
>H−1

θ̂
∇θL(zi, θ̂)︸ ︷︷ ︸

independent of xt

). (4)
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Algorithm 1 Iterative Feature-Importance Attacks
Input: test image xt, maximum norm of perturbation ε, normalized feature importance func-
tionR(·), number of iterations P , step size α
Define a dissimilarity function D to measure the change between interpretations of two images:

D(xt,x) =


−
∑
i∈B

R(x)i for top-k attack

||C(x)−C(xt)||2 for mass-center attack,

whereB is the set of the k largest dimensionsa ofR(xt), andC(·) is the center of saliency massb.

Initialize x0 = xt
for p ∈ {1, . . . , P} do

Perturb the test image in the direction of signed gradientc of the dissimilarity function:

xp = xp−1 + α · sign(∇xD(xt,x
p−1))

If needed, clip the perturbed input to satisfy the norm constraint: ||xp − xt||∞ ≤ ε
end for
Among {x1, . . . ,xP }, return the element with the largest value for the dissimilarity function and
the same prediction as the original test image.

aThe goal is to damp the saliency scores of the k features originally identified as the most important.
bThe center of mass is defined for a W ×H image as:

C(x)
def
=

∑
i∈{1,...,W}

∑
j∈{1,...,H}

R(x)i,j [i, j]
T

cIn some networks, such as those with ReLUs, this gradient is always 0. To attack interpretability in such
networks, we replace the ReLU activations with their smooth approximation (softplus) when calculating the
gradient and generate the perturbed image using this approximation. The perturbed images that result are
effective adversarial attacks against the original ReLU network, as discussed in Section 4.

The attack we use consists of applying the negative of the perturbation in (4) to decrease the influence
of the 3 most influential training images of the original test image1. Of course, this affects the
influence of all of the other training images as well.

We follow the same setup for computing the influence function as was done by the authors of Koh
& Liang (2017). Because the influence is only calculated with respect to the parameters that change
during training, we calculate the gradients only with respect to parameters in the final layer of our
network (InceptionNet, see Section 4). This makes it feasible for us to compute (4) exactly, but it
gives us the perturbation of the input into the final layer, not the first layer. So, we use standard
back-propagation to calculate the corresponding gradient for the input test image. We then take the
sign of this gradient as the perturbation and clip the image to produce the adversarial test image.

4 EXPERIMENTS & RESULTS

Data sets and models To evaluate the robustness of feature-importance methods, we used two
image classification data sets: ILSVRC2012 (ImageNet classification challenge data set) (Rus-
sakovsky et al., 2015) and CIFAR-10 (Krizhevsky, 2009). For the ImageNet classification data set,
we used a pre-trained SqueezeNet2 model introduced by Iandola et al. (2016). For the CIFAR-10
data set we trained our own convolutional network, whose architecture is presented in Appendix A.

1In other words, we generate the perturbation given by: −εsign(
∑3
i=1∇xt∇θL(zt, θ̂)>H−1

θ̂
∇θL(z(i), θ̂)),

where z(i) is the ith most influential training image of the original test image.
2https://github.com/rcmalli/keras-squeezenet

5



Under review as a conference paper at ICLR 2018

For both data sets, the results are examined using simple gradient, integrated gradients, and
DeepLIFT feature importance methods. For DeepLIFT, we used the pixel-wise and the channel-
wise mean images as the CIFAR-10 and ImageNet reference points respectively. For the integrated
gradients method, the same references were used with parameter M=100. We ran all iterative attack
algorithms for P = 300 iterations with step size α = 0.5.

To evaluate the robustness of influence functions, we followed a similar experimental setup to that
of the original authors: we trained an InceptionNet v3 with all but the last layer frozen (the weights
were pre-trained on ImageNet and obtained from Keras3). The last layer was trained on a binary
flower classification task (roses vs. sunflowers), using a data set consisting of 1,000 training im-
ages4. This data set was chosen because it consisted of images that the network had not seen during
pre-training on ImageNet. The network achieved a validation accuracy of 97.5% on this task.

Results for feature-importance methods From the ImageNet test set, 512 correctly-classified
images were randomly sampled for evaluation purposes. Examples of the mass-center attack against
three feature importance methods were presented in Fig. 1. Further representative examples of
different attacks on additional images are found in Appendix B.

Fig. 3 is a representative example to illustrate how the decrease in rank order correlation and top-
1000 intersection relate to visual changes in the saliency maps. More examples of different methods
are pictured in Appendix C.

Original Image Rank Corr:0. 80
Top-1000 Intrsct:0. 42

Rank Corr:0. 61
Top-1000 Intrsct: 0.15

Rank Corr: 0.37
Top-1000 Intrsct: 0.01

Rank Corr: 0.25
Top-1000 Intrsct: 0

Rank Corr: 0.80
Top-1000 Intrsct: 0.42

Original Image Rank Corr: 0.61
Top-1000 Intrsct: 0.15

Rank Corr: 0.37
Top-1000 Intrsct: 0.01

Rank Corr: 0.25
Top-1000 Intrsct: 0

Figure 3: Evaluation metrics vs subjective change We generate snapshots of the perturbed image
and its simple gradient saliency maps along with iterations of mass-center attack to visualize the
gradual change in saliency map with its corresponding the rank-correlation and top-1000 intersection
metrics.

In Fig. 4, we present results aggregated over all 512 images. We compare different attack methods
using top-1000 intersection and rank correlation methods. In all the images, the attacks does not
change the original predicted label of the image. Random sign perturbation already causes signifi-
cant changes in both top-1000 intersection and rank order correlation. For example, with L∞ = 8,
on average, there is less than 30% overlap in the top 1000 most salient pixels between the original
and the randomly perturbed images across all three of interpretation methods. This suggests that the
saliency of individual or small groups of pixels can be extremely fragile to the input and should be
interpreted with caution. With targeted perturbations, we observe more dramatic fragility. Even with
a perturbation of L∞ = 2, the interpretations change significantly. Both iterative attack algorithms
have similar effects on feature importance of test images when measured on the basis of rank cor-
relation or top-1000 intersection. In Appendix D, we show an additional metric: the displacement
of the center of mass between the original and perturbed saliency maps. Empirically, we find this
metric to correspond most strongly with intuitive perceptions of the similarity between two saliency
maps. Not surprisingly, we found that the center attack method was more effective than the top-k
attack at moving the center of mass of the saliency maps. Comparing the fragility of neural network
interpretation among the three different methods, we found that the integrated gradients method was

3https://keras.io/applications/
4adapted from: https://www.tensorflow.org/tutorials/image retraining
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Figure 4: Comparison of adversarial attack algorithms on feature-importance methods. Across
512 correctly-classified ImageNet images, we find that the top-k and center attacks perform similarly
in top-1000 intersection and rank correlation measures, and are far more effective than the random
sign perturbation at demonstrating the fragility of interpretability, as characterized through top-1000
intersection (top) as well as rank order correlation (bottom). This is true for (a) the simple gradient
method, (b) DeepLift, and (c) the integrated gradients method.

the most robust to both random and adversarial attacks. Similar results for CIFAR-10 can be found
in Appendix D.

Results for influence functions We evaluate the robustness of influence functions on a test data set
consisting of 200 images of roses and sunflowers. Fig. 5 shows a representative test image to which
we have applied the gradient sign attack. Although the prediction of the image does not change,
the most influential training examples selected according to (3), as explanation for the prediction,
change entirely from images of sunflowers and yellow petals that resemble the input image to those
of red and pink roses that do not. Additional examples can be found in Appendix E.

In Fig. 6, we compare the random perturbations and gradient sign attacks across all of the test
images. We find that the gradient sign-based attacks are significantly more effective at decreasing
the rank correlation of the influence of the training images, as well as distorting the top-5 influential
images. For example, on average, with a targeted perturbation of magnitude ε = 8, only 2 of the
top 5 most influential training images remain as the top 5 most influential images after the visually
imperceptible perturbation. The influences of the training images before and after an adversarial
attack are essentially uncorrelated. However, we find that even random attacks can have a non-
negligible effect on influence functions, on average reducing the rank correlation to 0.8 (ε ≈ 10).

5 HESSIAN ANALYSIS

In this section, we try to understand the source of interpretation fragility. The question is whether
fragility a consequence of the complex non-linearities of a deep network or a characteristic present
even in high-dimensional linear models, as is the case for adversarial examples for prediction (Good-
fellow et al., 2014). To gain more insight into the fragility of gradient based interpretations, let
S(x;W ) denote the score function of interest; x ∈ Rd is an input vector and W is the weights of
the neural network, which is fixed since the network has finished training. We are interested in the
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Figure 5: Gradient sign attack on influence functions. An imperceptible perturbation to a test
image can significantly affect exemplar-based interpretability. The original test image is that of a
sunflower that is classified correctly in a rose vs. sunflower classification task. The top 3 training
images identified by influence functions are shown in the top row. Using the gradient sign attack, we
perturb the test image (with ε = 8) to produce the leftmost image in the second row. Although the
image is even more confidently predicted as a sunflower, influence functions suggest very different
training images by means of explanation: instead of the sunflowers and yellow petals that resemble
the input image, the most influential images are pink/red roses. The plot on the right shows the in-
fluence of each training image before and after perturbation. The 3 most influential images (targeted
by the attack) have decreased in influence, but the influences of other images have also changed.
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Figure 6: Comparison of random and targeted perturbations on influence functions. Here, we
show the averaged results of applying random (green) and gradient sign-based (orange) perturbations
to 200 test images on the flower classification task. While random attacks affect interpretability, the
effect is small and generally doesn’t affect the most influential images. On the other hard, a targeted
attack can significantly affect (a) the rank correlation and (b) even change the make-up of the 5 most
influential images. Even at the maximal level of noise, the changes to the perturbed images were
visually imperceptible, and prediction confidence was not significantly changed (the mean change
was < 1% for random attacks and < 5% for targeted attacks at the highest level of noise).

Hessian H whose entries are Hi,j = ∂S
∂xi∂xj

. The reason is that the first order approximation of
gradient for some input perturbation direction δ ∈ Rd is: ∇xS(x+ δ)−∇xS(x) ≈ Hδ.

First, consider a linear model whose score for an input x is S = w>x. Here, ∇xS = w and
∇2
xS = 0; the feature-importance vector w is robust, because it is completely independent of x.

Thus, some non-linearity is required for interpretation fragility. A simple network that is susceptible
to adversarial attacks on interpretations consists of a set of weights connecting the input to a single
neuron followed by a non-linearity (e.g. softmax): S = g(w>x).

We can calculate the change in saliency map due to a small perturbation in x → x + δ. The
first-order approximation for the change in saliency map will be equal to : H · δ = ∇2

xS · δ. In
particular, the saliency of the ith feature changes by (∇2

xS · δ)i and furthermore, the relative change
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is (∇2
xS · δ)i/(∇xS)i. For the simple network, this relative change is:

(ww>δg′′(w>x))i
(wg′(w>x))i

=
wiw

>δg′′(w>x)

wig′(w>x)
=
w>δg′′(w>x)

g′(w>x)
, (5)

where we have used g′(·) and g′′(·) to refer to the first and second derivatives of g(·). Note that
g′(w>x) and g′′(w>x) do not scale with the dimensionality of x because in general, independent
from the dimensionality, x andw are `2-normalized or have fixed `2-norm due to data preprocessing
and weight decay regularization. However, if we choose δ = εsign(w), then the relative change in
the saliency grows with the dimension, since it is proportional to the `1-norm ofw. When the input
is high-dimensional—which is the case with images—the relative effect of the perturbation can be
substantial. Note also that this perturbation is exactly the sign of the first right singular vector of
the Hessian ∇2

xS, which is appropriate since that is the vector that has the maximum effect on the
gradient of S. A similar analysis can be carried out for influence functions (see Appendix F).

For this simple network, the direction of adversarial attack on interpretability, sign(w) is the same
as the adversarial attack on prediction. This means that we cannot perturb interpretability indepen-
dently of prediction. For more complex networks, this is not the case and in Appendix G we show
this analytically for a simple case of a two-layer network. As an empirical test, in Fig. 7(a), we
plot the distribution of the angle between ∇xS and v1 (the first right singular vector of H which is
the most fragile direction of feature importance) for 1000 CIFAR10 images (Details of the network
in Appendix A). In Fig. 7(b), we plot the equivalent distribution for influence functions, computed
across all 200 test images. The result confirms that the steepest direction of change in interpretation
and prediction are generally orthogonal, justifying how the perturbations can change the interpreta-
tion without changing the prediction.
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Figure 7: Orthogonality of Prediction
and Interpretation Fragile Directions (a)
The histogram of the angle between the
steepest direction of change in feature im-
portance and the steepest score change di-
rection. (b) The distribution of the angle
between the gradient of the loss function
and the steepest direction of change of in-
fluence of the most influential image.

6 DISCUSSION

Related works To the best of our knowledge, the notion of adversarial examples has not previ-
ously been studied in the context of interpretation of neural networks. Adversarial attacks to the
input that changes the prediction of a network have been actively studied. Szegedy et al. (2013)
demonstrated that it is relatively easy to fool neural networks into making very different predictions
for test images that are visually very similar to each other. Goodfellow et al. (2014) introduced the
Fast Gradient Sign Method (FGSM) as a one-step prediction attack. This was followed by more
effective iterative attacks (Kurakin et al., 2016) seeking to change the prediction of network by a
small perturbation. Different metrics for quantifying the size of the perturbation have been used.
Moosavi-Dezfooli et al. (2016); Szegedy et al. (2013) used `2; Papernot et al. (2016) considered the
number of perturbed pixels (`0); and Goodfellow et al. (2014) suggest using `∞, because this tightly
controls how much individual feature can change. We followed the popular practice and evaluate
with `∞.

Interpretation of neural network predictions is also an active research area. Post-hoc interpretabil-
ity (Lipton, 2016) is one family of methods that seek to ”explain” the prediction without talking
about the details of black-box model’s hidden mechanisms. These included tools to explain predic-
tions by networks in terms of the features of the test example (Simonyan et al., 2013; Shrikumar
et al., 2017; Sundararajan et al., 2017; Zhou et al., 2016), as well as in terms of contribution of train-
ing examples to the prediction at test time (Koh & Liang, 2017). These interpretations have gained
increasing popularity, as they confer a degree of insight to human users of what the neural network
might be doing (Lipton, 2016).
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Conclusion This paper demonstrates that interpretation of neural networks can be fragile in the
specific sense that two similar inputs with the same predicted label can be given very different inter-
pretations. We develop new perturbations to illustrate this fragility and propose evaluation metrics
as well as insights on why fragility occurs. Fragility of neural network interpretation is orthogonal to
fragility of the prediction—we demonstrate how perturbations can substantially change the interpre-
tation without changing the predicted label. The two types of fragility do arise from similar factors,
as we discuss in Section 5. Our focus is on the interpretation method, rather than on the original
network, and as such we do not explore how interpretable is the original predictor. There is a sep-
arately line of research that tries to design simpler and more interpretable prediction models (Ba &
Caruana, 2014).

Our main message is that robustness of the interpretation of a prediction is an important and chal-
lenging problem, especially as in many applications (e.g. many biomedical and social settings) users
are as interested in the interpretation as in the prediction itself. Our results raise concerns on how
interpretations of neural networks are sensitive to noise and can be manipulated. Especially in set-
tings where the importance of individual or a small subset of features are interpreted, we show that
these importance scores can be sensitive to even random perturbation. More dramatic manipulations
of interpretations can be achieved with our targeted perturbations, which raise security concerns.
We do not suggest that interpretations are meaningless, just as adversarial attacks on predictions do
not imply that neural networks are useless. Interpretation methods do need to be used and evaluated
with caution while applied to neural networks, as they can be fooled into identifying features that
would not be considered salient by human perception.

Our results demonstrate that the interpretations (e.g. saliency maps) are vulnerable to perturbations,
but this does not imply that the interpretation methods are broken by the perturbations. This is a
subtle but important distinction. Methods such as saliency measure the infinitesimal sensitivity of
the neural network at a particular input x. After a perturbation, the input has changed to x̃ = x+ δ,
and the salency now measures the sensitivity at the perturbed input. The saliency correctly captures
the infinitesimal sensitivity at the two inputs; it’s doing what it is supposed to do. The fact that
the two resulting saliency maps are very different is fundamentally due to the network itself being
fragile to such perturbations, as we illustrate with Fig. 2.

While we focus on image data (ImageNet and CIFAR-10), because these are the standard bench-
marks for popular interpretation tools, this fragility issue can be wide-spread in biomedical, eco-
nomic and other settings where neural networks are increasingly used. Understanding interpretation
fragility in these applications and develop more robust methods are important agendas of research.
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APPENDICES

A DESCRIPTION OF THE CIFAR-10 CLASSIFICATION NETWORK

We trained the following structure using ADAM optimizer (Kingma & Ba, 2014) with default
parameters. The resulting test accuracy using ReLU activation was 73%. For the experiment in
Fig, 7(a), we replaced ReLU activation with Softplus and retrained the network (with the ReLU
network weights as initial weights). The resulting accuracy was 73%.

Network Layers

3× 3 conv. 96 ReLU
3× 3 conv. 96 ReLU
3× 3 conv. 96 Relu

Stride 2
3× 3 conv. 192 ReLU
3× 3 conv. 192 ReLU
3× 3 conv. 192 Relu

Stride 2
1024 hidden sized feed forward

B ADDITIONAL EXAMPLES OF FEATURE IMPORTANCE PERTURBATIONS

Here we provide three more examples from ImageNet. For each example, all three methods of
feature importance are attacked by random sign noise and our two targeted adversarial algorithms.

Figure 8: All of the images are classified as a airedale.
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Figure 9: All of the images are classified as a damselfly.

Figure 10: All of the images are classified as a lighter.
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C OBJECTIVE METRICS AND SUBJECTIVE CHANGE IN FEATURE
IMPORTANCE MAPS
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Figure 11: Evaluation metrics vs subjective change in saliency maps To have a better sense of
how rank order correlation and top-1000 intersection metrics are related to changes in saliency maps,
snapshots of the iterations of mass-center attack are depicted.
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D MEASURING CENTER OF MASS MOVEMENT
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Figure 12: Center-shift results for three feature importance methods on ImageNet: As dis-
cussed in the paper, among our three measurements, center-shift measure was the most correlated
measure with the subjective perception of change in saliency maps. The results in Appendix B also
show that the center attack which resulted in largest average center-shift, also results in the most
significant subjective change in saliency maps. Random sign perturbations, on the other side, did
not substantially change the global shape of the saliency maps, though local pockets of saliency
are sensitive. Just like rank correlation and top-1000 intersection measures, the integrated gradients
method is the most robust method against adversarial attacks in the center-shift measure .
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RESULTS FOR ADVERSARIAL ATTACKS AGAINST CIFAR-10 FEATURE
IMPORTANCE METHODS

0 1 2 4 8
L  norm of perturbation

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

To
p-

10
0 

in
te

rs
ec

tio
n

Simple Gradient
Top-k attack
Center attack
Random Sign Perturbation

0 1 2 4 8
L  norm of perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
an

k 
or

de
r c

or
re

la
tio

n

Top-k attack
Center attack
Random Sign Perturbation

0 1 2 4 8
L  norm of perturbation

0

1

2

3

4

5

6

C
en

te
r-

sh
ift

 (p
ix

el
s)

Top-k attack
Center attack
Random Sign Perturbation

(a)

0 1 2 4 8
L  norm of perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

10
0 

in
te

rs
ec

tio
n

DeepLIFT

Top-k attack
Center attack
Random Sign Perturbation

0 1 2 4 8
L  norm of perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
an

k 
or

de
r c

or
re

la
tio

n

Top-k attack
Center attack
Random Sign Perturbation

0 1 2 4 8
L  norm of perturbation

1

2

3

4

5

6

C
en

te
r-

sh
ift

 (p
ix

el
s)

Top-k attack
Center attack
Random Sign Perturbation

(b)

0 1 2 4 8
L  norm of perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

To
p-

10
0 

in
te

rs
ec

tio
n

Integrated Gradients

Top-k attack
Center attack
Random Sign Perturbation

0 1 2 4 8
L  norm of perturbation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
an

k 
or

de
r c

or
re

la
tio

n

Top-k attack
Center attack
Random Sign Perturbation

0 1 2 4 8
L  norm of perturbation

0

1

2

3

4

5

6

C
en

te
r-

sh
ift

 (p
ix

el
s)

Top-k attack
Center attack
Random Sign Perturbation

(c)

Figure 13: Results for adversarial attacks against CIFAR10 feature importance methods: For
CIFAR10 the mass-center attack and top-k attack with k=100 achieve similar results for rank cor-
relation and top-100 intersection measurements and both are stronger than random perturbations.
Mass-center attack moves the center of mass more than two other perturbations. Among different
feature importance methods, integrated gradients is more robust than the two other methods. Addi-
tionally, results for CIFAR10 show that images in this data set are more robust against adversarial
attack compared to ImageNet images which agrees with our analysis that higher dimensional inputs
are tend to be more fragile.

E ADDITIONAL EXAMPLES OF ADVERSARIAL ATTACKS ON INFLUENCE
FUNCTIONS

In this appendix, we provide additional examples of the fragility of influence functions, analogous
to Fig. 5.

16



Under review as a conference paper at ICLR 2018

'Rose': 97.5% conf. Influence: 0.08 Influence: 0.11 Influence: 0.8

'Rose': 99.9% conf. Influence: 0.04 Influence: 0.04 Influence: 0.05

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Original Influence

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Pe
rtu

rb
ed

 In
flu

en
ce

Rs =  0.17

(a)

'Rose': 99.5% conf. Influence: 0.1 Influence: 0.15 Influence: 0.74

'Rose': 98.1% conf. Influence: 0.12 Influence: 0.18 Influence: 0.47

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Original Influence

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Pe
rtu

rb
ed

 In
flu

en
ce

Rs =  -0.98

(b)

Figure 14: Further examples of gradient-sign attacks on influence functions. (a) Here we see a
representative example of the most influential training images before and after a perturbation to the
test image. The most influential image before the attack is one of the least influential afterwards.
Overall, the influences of the training images before and after the attack are uncorrelated. (b) In this
example, the perturbation has remarkably caused the training images to almost completely reverse
in influence. Training images that had the most positive effect on prediction now have the most
negative effects and the other way round.

F DIMENSIONALITY-BASED EXPLANATION FOR FRAGILITY OF INFLUENCE
FUNCTIONS

Here, we demonstrate that increasing the dimension of the input of a simple neural network increases
the fragility of that network with respect to influence functions, analogous to the calculations carried
out for importance-feature methods in Section 5. Recall that the influence of a training image zi =
(xi, yi) on a test image z = (x, y) is given by:

I(zi, z) = −∇θL(z, θ̂)>︸ ︷︷ ︸
dependent onx

H−1
θ̂
∇θL(zi, θ̂)︸ ︷︷ ︸

independent ofx

. (6)

We restrict our attention to the term in (6) that is dependent on x, and denote it by J def
= ∇θL.

J represents the infinitesimal effect of each of the parameters in the network on the loss function
evaluated at the test image.

Now, let us calculate the change in this term due to a small perturbation in x → x + δ. The first-
order approximation for the change in J is equal to: ∇xJ · δ = ∇θ∇xL · δ. In particular, for
the ith parameter, Ji changes by (∇θ∇xL · δ)i and furthermore, the relative change is (∇θ∇xL ·
δ)i/(∇θL)i . For the simple network defined in Section 5, this evaluates to (replacing θ with w for
consistency of notation):
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(xw>δg′′(w>x))i
(xg′(w>x))i

=
xiw

>δg′′(w>x)

xig′(w>x)
=
w>δg′′(w>x)

g′(w>x)
, (7)

where for simplicity, we have taken the loss to be L = |y − g(w>x)|, making the derivatives easier
to calculate. Furthermore, we have used g′(·) and g′′(·) to refer to the first and second derivatives of
g(·). Note that g′(w>x) and g′′(w>x) do not scale with the dimensionality of x because x and w
are generalized L2-normalized due to data preprocessing and weight decay regularization.

However, if we choose δ = εsign(w), then the relative change in the saliency grows with the
dimension, since it is proportional to the L1-norm of w.

G ORTHOGONALITY OF STEEPEST DIRECTIONS OF CHANGE IN SCORE AND
FEATURE IMPORTANCE FUNCTIONS IN A SIMPLE TWO-LAYER NETWORK

Consider a two layer neural network with activation function g(·), input x ∈ Rd, hidden vector
u ∈ Rh , and score function S), we have:

S = v · u =

h∑
j=1

vjuj

u = g(WTx)→ uj = wj .x

where wj = ||wj ||2ŵj . We have:

∇xS =

h∑
j=1

vj∇xuj =

h∑
j=1

vjg
′
(wj .x)wj

∇2
xS =

h∑
j=1

vj∇2
xuj =

h∑
j=1

vjg
′′
(wj .x)wT

j wj

Now for an input sample x perturbation δ, for the change in feature importance:

∇xS(x+ δ)−∇xS(x) ≈ ∇2
xS · δ

which is equal to:
h∑
j=1

vjg
′′
(wj .x)(wj · δ)wj

We further assume that the input is high-dimensional so that h < d and for i 6= j we havewj ·wi =
0. For maximizing the `2 norm of saliency difference we have the following perturbation direction:

δm = argmax||δ||=1||∇xS(x+ δ)−∇xS(x)|| = ŵk

where:
k = argmax|vjg

′′
(wj .x)| × ||wk||22

comparing which to the direction of feature importance:

∇xS(x)

||∇xS(x)||2
=

h∑
i=1

vjg
′
(wi · x)||wi||2

(
∑h
j=1 vjg

′(wj · x)||wj ||2)2
ŵi

we conclude that the two directions are not parallel unless g
′
(.) = g

′′
(.) which is not the case for

many activation functions like Softplus, Sigmoid, etc.
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H DESIGNING INTERPRETABILITY-ROBUST NETWORKS

The analyses and experiments in this paper have demonstrated that small perturbations in the input
layers of deep neural networks can have large changes in the interpretations. This is analogous to
classical adversarial examples, whereby small perturbations in the input produce large changes in
the prediction. In that setting, it has been proposed that the Lipschitz constant of the network be
constrained during training to limit the effect of adversarial perturbations (Szegedy et al., 2013).
This has found some empirical success (Cisse et al., 2017).

Here, we propose an analogous method to upper-bound the change in interpretability of a neural
network as a result of perturbations to the input. Specifically, consider a network with K layers,
which takes as input a data point we denote as y0. The output of the ith layer is given by yi+1 =

fi(yi) for i = 0, 1 . . .K − 1. We define S def
= fK−1(fK−2(. . . f0(y0) . . .)) to be the output (e.g.

score for the correct class) of our network, and we are interested in designing a network whose
gradient S′ = ∇y0S is relatively insensitive to perturbations in the input, as this corresponds to a
network whose feature importances are robust.

A natural quantity to consider is the Lipschitz constant of S′ with respect to y0. By the chain rule,
the Lipschitz constant of S′ is

L(S′) = L(
δyk
δyk−1

) . . .L(
δy1
δy0

) (8)

Now consider the function fi(·), which maps yi to yi+1. In the simple case of the fully-connected
network, which we consider here, fi(yi) = gi(Wiyi), where gi is a non-linearity and Wi are the
trained weights for that layer. Thus, the Lipschitz constant of the ith partial derivative in (8) is the
Lipschitz constant of

δfi
δyi−1

= Wig
′
i(Wiyi−1),

which is upper-bounded by ||Wi||2 · L(g′i(·)), where ||W || denotes the operator norm of W (its
largest singular value)5. This suggests that a conservative upper ceiling for (8) is

L(S′) ≤
K−1∏
i=0

||Wi||2L(g′i(·)) (9)

Because the Lipschitz constant of the non-linearities g′i(·) are fixed, this result suggests that a reg-
ularization based on the operator norms of the weights Wi may allow us to train networks that are
robust to attacks on feature importance. The calculations in this Appendix section is meant to be
suggestive rather than conclusive, since in practice the Lipschitz bounds are rarely tight.

5this bound follows from the fact that the Lipschitz constant of the composition of two functions is the
product of their Lipschitz constants, and the Lipschitz constant of the product of two functions is also the
product of their Lipschitz constants.
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