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ABSTRACT

We focus on the problem of black-box adversarial attacks, where the aim is to
generate adversarial examples using information limited to loss function evalu-
ations of input-output pairs. We use Bayesian optimization (BO) to specifically
cater to scenarios involving low query budgets to develop query efficient adversar-
ial attacks. We alleviate the issues surrounding BO in regards to optimizing high
dimensional deep learning models by effective dimension upsampling techniques.
Our proposed approach achieves performance comparable to the state of the art
black-box adversarial attacks albeit with a much lower average query count. In
particular, in low query budget regimes, our proposed method reduces the query
count up to 80% with respect to the state of the art methods.

1 INTRODUCTION

Neural networks are now well-known to be vulnerable to adversarial examples: additive perturba-
tions that, when applied to the input, change the network’s output classification (Goodfellow et al.,
2014). Work investigating this lack of robustness to adversarial examples often takes the form of
a back-and-forth between newly proposed adversarial attacks, methods for quickly and efficiently
crafting adversarial examples, and corresponding defenses that modify the classifier at either train-
ing or test time to improve robustness. The most successful adversarial attacks use gradient-based
optimization methods (Goodfellow et al., 2014; Madry et al., 2017), which require complete knowl-
edge of the architecture and parameters of the target network; this assumption is referred to as the
white-box attack setting. Conversely, the more realistic black-box setting requires an attacker to find
an adversarial perturbation without such knowledge: information about the network can be obtained
only through querying the target network, i.e., supplying an input to the network and receiving the
corresponding output.

In real-world scenarios, it is extremely improbable for an attacker to have unlimited bandwidth to
query a target classifier. In evaluation of black box attacks, this constraint is usually formalized via
the introduction of a query budget: a maximum number of queries allowed to the model per input,
after which an attack is considered to be unsuccessful. Several recent papers have proposed attacks
specifically to operate in this query-limited context (Ilyas et al., 2019; 2018; Chen et al., 2017;
Tu et al., 2019; Moon et al., 2019); nevertheless, these papers typically consider query budgets on
the order of 10,000 or 100,000. This leaves open questions as to whether black-box attacks can
successfully attack a deep network based classifier in severely query limited settings, e.g., with a
query budget of 100-200. In such a query limited regime, it is natural for an attacker to use the
entire query budget, so we ask the pertinent question: In a constrained query limited setting, can
one design query efficient yet successful black box adversarial attacks?

This work proposes a black-box attack method grounded in Bayesian optimization (Jones et al.,
1998; Frazier, 2018), which has recently emerged as a state of the art black-box optimization tech-
nique in settings where minimizing the number of queries is of paramount importance. Straight-
forward application of Bayesian optimization to the problem of finding adversarial examples is not
feasible: the input dimension of even a small neural network-based image classifier is orders of
magnitude larger than the standard use case for Bayesian optimization. Rather, we show that we can
bridge this gap by performing Bayesian optimization in a reduced-dimension setting and upsampling
to obtain our final perturbation. We explore several upsampling techniques and find that a relatively
simple nearest-neighbor upsampling method allows us to sufficiently reduce the optimization prob-
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lem dimension such that Bayesian optimization can find adversarial perturbations with more success
than existing black-box attacks in query-constrained settings.

We compare the efficacy of our adversarial attack with a set of experiments attacking three of the
most commonly used pretrained ImageNet (Deng et al., 2009) classifiers: ResNet50 (He et al.,
2015), Inception-v3 (Szegedy et al., 2015), and VGG16-bn (Simonyan & Zisserman, 2014). Results
from these experiments show that with very small query budgets (under 200 queries), the proposed
method BAYES-ATTACK achieves success rates comparable to or exceeding existing methods, and
does so with far smaller average and median query counts. Further experiments are performed on
the MNIST dataset to compare how various upsampling techniques affect the attack accuracy of our
method. Given these results we argue that, despite being a simple approach (indeed, largely because
it is such a simple and standard approach for black-box optimization), Bayesian Optimization should
be a standard baseline for any black-box adversarial attack task in the future, especially in the small
query budget regime.

2 RELATED WORK

Within the black-box setting, adversarial attacks can be further categorized by the exact nature of the
information received from a query. The most closely related work to our approach are score-based
attacks, where queries to the network return the entire output layer of the network, either as logits or
probabilities. Within this category, existing approaches draw from a variety of optimization fields
and techniques. One popular approach in this area is to attack with zeroth-order methods via some
method of derivative-free gradient estimation, as in methods proposed in Ilyas et al. (2019), which
uses time-dependent and data-dependent priors to improve the estimate, as well as Ilyas et al. (2018),
which replaces the gradient direction found using natural evolution strategies (NES). Other methods
search for the best perturbation outside of this paradigm; Moon et al. (2019) cast the problem of
finding an adversarial perturbation as a discrete optimization problem and use local search methods
to solve. These works all search for adversarial perturbations within a search space with a hard
constraint on perturbation size; other work (Chen et al., 2017; Tu et al., 2019) incorporates a soft
version of this constraint and performs coordinate descent to decrease the perturbation size while
keeping the perturbed image misclassified. The latter of these methods incorporates an autoencoder-
based upsampling method with which we compare in Section 5.3.1.

One may instead assume that only part of the information from the network’s output layer is received
as the result of a query. This can take the form of only receiving the output of the top k predicted
classes (Ilyas et al., 2018), but more often the restrictive decision-based setting is considered. Here,
queries yield only the predicted class, with no probability information. The most successful work
in this area is in Cheng et al. (2018), which reformulates the problem as a search for the direction
of the nearest decision boundary and solves using a random gradient-free method, and in Brendel
et al. (2017) and Chen et al. (2019), both of which use random walks along the decision boundary to
perform an attack. The latter work significantly improves over the former with respect to query effi-
ciency, but the number of queries required to produce adversarial examples with small perturbations
in this setting remains in the tens of thousands.

A separate class of transfer-based attacks train a second, fully-observable substitute network, attack
this network with white-box methods, and transfer these attacks to the original target network. These
may fall into one of the preceding categories or exist outside of the distinction: in Papernot et al.
(2016), the substitute model is built with score-based queries to the target network, whereas Liu et al.
(2016) trains an ensemble of models without directly querying the network at all. These methods
come with their own drawbacks: they require training a substitute model, which may be costly or
time-consuming, and overall attack success tends to be lower than that of gradient-based methods.

Finally, there has been some recent interest in leveraging Bayesian optimization for constructing
adversarial perturbations. Bayesian optimization (BO) has played a supporting role in several meth-
ods. For example, Zhao et al. (2019) use BO to solve the δ-step of an alternating direction of method
multipliers (ADMM) approach, Co et al. (2018) search within a set of procedural noise perturba-
tions using BO and Gopakumar et al. (2018) use BO to find maximal distortion error by optimizing
perturbations defined using 3 parameters. On the other hand, prior work in which Bayesian op-
timization plays a central role performs experiments only in relatively low-dimensional problems,
highlighting the main challenge of its application: Suya et al. (2017) examines an attack on a spam
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email classifier with 57 input features, and in Co (2017) image classifiers are attacked but notably
do not scale beyond MNIST classifiers. In contrast to these past works, the main contribution of
this paper is to show that Bayesian Optimization presents a scalable, query-efficient approach for
large-scale black-box adversarial attacks, when combined with upsampling procedures.

3 PROBLEM FORMULATION

The following notation and definitions will be used throughout the remainder of the paper. Let F be
the target neural network. We assume that F : Rd → [0, 1]K is a K-class image classifier that takes
normalized inputs: each dimension of an input x ∈ Rd represents a single pixel and is bounded
between 0 and 1, y ∈ {1, · · ·K} denotes the original label, and the corresponding output F (x) is a
K-dimensional vector representing a probability distribution over classes.

Rigorous evaluation of an adversarial attack requires careful definition of a threat model: a set of
formal assumptions about the goals, knowledge, and capabilities of an attacker (Carlini & Wagner,
2017). We assume that, given a correctly classified input image x, the goal of the attacker is to find
a perturbation δ such that x + δ is misclassified, i.e., arg maxk F (x + δ) 6= arg maxk F (x). We
operate in the score-based black-box setting, where we have no knowledge of the internal workings
of the network, and a query to the network F yields the entire corresponding K-dimensional out-
put. To enforce the notion that the adversarial perturbation should be small, we take the common
approach of requiring that ‖δ‖p be smaller than a given threshold ε in some `p norm, where ε varies
depending on the classifier. This work considers the `∞ norm, but our attack can easily be adapted
to other norms. Finally, we denote the query budget with t; if an adversarial example is not found
after t queries to the target network, the attack fails.

As in most work, we pose the attack as a constrained optimization problem. We use an objective
function suggested by Carlini & Wagner (2017) and used in Tu et al. (2019); Chen et al. (2017):

max
δ

f(x, y, δ) subject to ‖δ‖p ≤ ε and (x + δ) ∈ [0, 1]d, (1)

where f(x, y, δ) =
{

max
k 6=y

log[F (x + δ)]k − log[F (x + δ)]y
}
.

Most importantly, the input x+ δ to f is an adversarial example for F if and only if f(x, y, δ) > 0.

We briefly note that the above threat model and objective function were chosen for simplicity and
for ease of directly comparing with other black box attacks, but the attack method we propose is
compatible with many other threat models. For example, we may change the goals of the attacker or
measure δ in `1 or `2 norms instead of `∞ with appropriate modifications to the objective function
and constraints in equation 1.

4 MODEL FRAMEWORK

In this section, we present the proposed black-box attack method. We begin with a brief descrip-
tion of Bayesian optimization (Jones et al., 1998) followed by its application to generate black-box
adversarial examples. Finally, we describe our method for attacking a classifier trained with high-
dimensional inputs (e.g. ImageNet) in a query-efficient manner.

4.1 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a method for black box optimization particularly suited to problems
with low dimension and expensive queries. Bayesian Optimization consists of two main compo-
nents: a Bayesian statistical model and an acquisition function. The Bayesian statistical model, also
referred to as the surrogate model, is used for approximating the objective function: it provides a
Bayesian posterior probability distribution that describes potential values for the objective function
at any candidate point. This posterior distribution is updated each time we query the objective func-
tion at a new point. The most common surrogate model for Bayesian optimization are Gaussian
processes (GPs) (Rasmussen & Williams, 2005), which define a prior over functions that are cheap
to evaluate and are updated as and when new information from queries becomes available. We
model the objective function h using a GP with prior distribution N (µ0,Σ0) with constant mean
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function µ0 and Matern kernel (Shahriari et al., 2016; Snoek et al., 2012) as the covariance function
Σ0, which is defined as:

Σ0(x,x′) = θ20 exp(−
√

5r)

(
1 +
√

5r +
5

3
r2
)
,

r2 =

d′∑
i=1

(xi − x′i)2

θ2i

where d′ is the dimension of input and {θi}d
′

i=0 and µ0 are hyperparameters. We select hyperparam-
eters that maximize the posterior of the observations under a prior (Shahriari et al., 2016; Frazier,
2018).

The second component, the acquisition function A, assigns a value to each point that represents
the utility of querying the model at this point given the surrogate model. We sample the objective
function h at xn = arg maxxA(x|D1:n−1) where D1:n−1 comprises of n− 1 samples drawn from
h so far. Although this itself may be a hard (non-convex) optimization problem to solve, in practice
we use a standard approach and approximately optimize this objective using the LBFGS algorithm.
There are several popular choices of acquisition function; we use expected improvement (EI) (Jones
et al., 1998), which is defined as

EIn(x) = En [max (h(x)− h∗n, 0)] , (2)

where En[·] = E[·|D1:n−1] denotes the expectation taken over the posterior distribution given eval-
uations of h at x1, · · · ,xn−1, and h∗n is the best value observed so far.

Bayesian optimization framework as shown in Algorithm 2 runs these two steps iteratively for the
given budget of function evaluations. It updates the posterior probability distribution on the ob-
jective function using all the available data. Then, it finds the next sampling point by optimizing
the acquisition function over the current posterior distribution of GP. The objective function h is
evaluated at this chosen point and the whole process repeats.

In theory, we may apply Bayesian optimization directly to the optimization problem in equation 1
to obtain an adversarial example, stopping once we find a point where the the objective function
rises above 0. In practice, Bayesian optimization’s speed and overall performance fall dramatically
as the input dimension of the problem increases. This makes running Bayesian optimization over
high dimensional inputs such as ImageNet (input dimension 3 × 299 × 299 = 268203) practically
infeasible; we therefore require a method for reducing the dimension of this optimization problem.

4.2 BAYES-ATTACK: GENERATING ADVERSARIAL EXAMPLES USING BAYESIAN
OPTIMIZATION

Images tend to exhibit spatial local similarity i.e. pixels that are close to each other tend to be
similar. Ilyas et al. (2019) showed that this similarity also extends to gradients and used this to
reduce query complexity. Our method uses this data dependent prior to reduce the search dimension
of the perturbation. We show that the adversarial perturbations also exhibit spatial local similarity
and we do not need to learn the adversarial perturbation conforming to the actual dimensions of
the image. Instead, we learn the perturbation in a much lower dimension. We obtain our final
adversarial perturbation by interpolating the learned, low-dimension perturbation to the original
input dimension.

We define the objective function for running the Bayesian optimization in low dimension in Algo-
rithm 1. We let Πp

B(0,ε) be the projection onto the `∞ ball of radius ε centered at origin. Our method
finds a low dimension perturbation and upsamples to obtain the adversarial perturbation. Since this
upsampled image may not lie inside the ball of radius ε centered at the origin, we project back to
ensure ‖δ‖∞ remains bounded by ε. With the perturbation δ in hand, we compute the objective
function of the original optimization problem defined in equation 1.

We describe the complete algorithm our complete framework in Algorithm 2 where x0 ∈ Rd and
y0 ∈ {1, . . . ,K} denote the original input image and label respectively. The goal is to learn an
adversarial perturbation δ ∈ Rd′ in much lower dimension, i.e., d′ << d. We begin with a small
dataset D = {(δ1, v1), · · · , (δn0 , vn0)} where each δn is a d′ dimensional vector sampled from a
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Algorithm 1 Objective Function

1: procedure OBJ-FUNC(x0, y0, δ)
2: // ε is the given perturbation
3: δ′ ← Upsample(δ) . Upsampling low dimension perturbation to input dimension
4: δ′ ← Πp

B(0,ε)(δ
′) . Projecting perturbation on `p-ball around x0

5: v ← f(x0, y0, δ
′) . Quering the model

6: return v

Algorithm 2 Adversarial Attack using Bayesian Optimization

1: procedure BAYES-ATTACK(x0, y0)
2: D = {(δ1, v1), · · · , (δn0 , vn0)} . Quering randomly chosen n0 points.
3: Update the GP on D . Updating posterior distribution using available points
4: t← n0 . Updating number of queries till now
5: while t ≤ T do
6: δt ← arg maxδ A(δ | D) . Optimizing the acquisition function over the GP
7: vt ← OBJ-FUNC(x0, y0, δ) . Querying the model
8: t← t+ 1
9: if vt ≤ 0 then

10: D ← D ∪ (δt, vt) and update the GP . Updating posterior distribution
11: else
12: return δt . Adversarial attack successful
13: return δt . Adversarial attack unsuccessful

given distribution and vn is the function evaluation at δn i.e vn = OBJ-FUNC(x0, y0, δn). We itera-
tively update the posterior distribution of the GP using all available data and query new perturbations
obtained by maximizing the acquisition function over the current posterior distribution of GP until
we find an adversarial perturbation or run out of query budget. The Bayesian optimization iterations
run in low dimension d′ but for querying the model we upsample, project and then add the pertur-
bation to the original image as shown in Algorithm 1 to get the perturbed image to conform to the
input space of the model. To generate a successful adversarial perturbation, it is necessary and suf-
ficient to have vt > 0, as described in Section 3. We call our attack successful with t queries to the
model if the Bayesian optimization loop exits after t iterations (line 12 in Algorithm 2), otherwise it
is unsuccessful. Finally, we note that the final adversarial image can be obtained by upsampling the
learned perturbation and adding to the original image as shown in Figure 1.

In this work, we focus on `∞-norm perturbations, where projection is defined as:

Π∞B(x0,ε)
(x) = min {max{x0 − ε,x},x0 + ε} , (3)

where ε is the given perturbation bound. The upsampling method can be linear or non-linear. In
this work, we conduct experiments using nearest neighbor upsampling. A variational autoencoder
(Kingma & Welling, 2014) or vanilla autoencoder could also be trained to map the low dimension
perturbation to the original input space. We compare these different upsampling schemes in Sec-
tion 5.3.1. The initial choice of the dataset D to form a prior can be done using standard normal
distribution, uniform distribution or even in a deterministic manner (e.g. with Sobol sequences).

5 EXPERIMENTS

Our experiments focus on the untargeted attack setting where the goal is to perturb the original image
originally classified correctly by the classification model to cause misclassification. We primarily
consider performance of BAYES-ATTACK on ImageNet classifiers and compare its performance to
other black-box attacks in terms of success rate over a given query budget. We also perform ablation
studies on the MNIST dataset (Lecun et al., 1998) by examining different upsampling techniques
and varying the latent dimension d′ of the optimization problem.

We define success rate as the ratio of the number of images successfully perturbed for a given query
budget to the total number of input images. In all experiments, images that are already misclassified
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Upsampling x 0.1 +

Adversarial perturbation Original Image
Label: white wolf

Final adversarial image
Label: shower curtain

Low-dimension perturbation

Figure 1: An illustration of a black-box adversarial attack performed by the proposed method
BAYES-ATTACK on RESNET50 trained on ImageNet. Images from the left: first figure shows the
learnt perturbation in low dimension d′ = 972(3 × 18 × 18); second figure is the final adversarial
perturbation (3 × 224 × 224) obtained by using nearest neighbor upsampling; third figure is the
original image (note that the input size for RESNET50 is 3× 224× 224) which is initially classified
as white/arctic wolf; last image is the final adversarial image obtained by adding the adversarial per-
turbation to the original image. RESNET50 classifies the final adversarial image as shower curtain
with high probability.

by the target network are excluded from the test set; only images that are initially classified with
the correct label are attacked. For each method of attack and each target network, we compute
the average and median number of queries used to attack among images that were successfully
perturbed.

5.1 EMPIRICAL PROTOCOLS

We treat the latent dimension d′ used for running the Bayesian optimization loop as a hyperparam-
eter. For MNIST, we tune the latent dimension d′ over {16, 64, 100, 256, 784}. Note that 784 is the
original input dimension for MNIST. While for ImageNet, we search for latent dimension d′ and
shape over the range {48(3×4×4), 49(1×7×7), 100(1×10×10), 108(3×6×6), 400(1×20×
20), 432(3×12×12), 576(1×24×24), 588(3×14×14), 961(1×31×31), 972(3×18×18)}. For
ImageNet, the latent shapes with first dimension as 1 indicate that the same perturbation is added to
all three channels while the ones with 3 indicate that the perturbation across channels are different.
In case of ImageNet, we found that for ResNet50 and VGG16-bn different perturbation across chan-
nels work much better than adding the same perturbation across channels. While for Inception-v3,
both seem to work equally well.

We initialize the GP with n0 = 5 samples sampled from a standard normal distribution. For all
the experiments in next section, we use expected improvement as the acquisition function. We also
examined other acquisition functions (posterior mean, probability of improvement, upper confidence
bound) and observed that our method works equally well with other acquisition functions. We
independently tune the hyper-parameters on a small validation set and exclude it from our final test
set. We used BoTorch1 packages for implementation.

5.2 EXPERIMENTS ON IMAGENET

We compare the performance of the proposed method BAYES-ATTACK against NES (Ilyas et al.,
2018), BANDITS-TD (Ilyas et al., 2019) and PARSIMONIOUS (Moon et al., 2019), which is the
current state of the art among score-based black-box attacks within the `∞ threat model. On Ima-
geNet, we attack the pretrained2 ResNet50 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and
VGG16-bn (Simonyan & Zisserman, 2014). We use 10,000 randomly selected images (normalized
to [0, 1]) from the ImageNet validation set that were initially correctly classified.

We set the `∞ perturbation bound ε to 0.05 and evaluate the performance of all the methods for low
query budgets. We use the implementation3 and hyperparameters provided by Ilyas et al. (2019) for

1https://botorch.org/
2Pretrained models available at https://pytorch.org/docs/stable/torchvision/models
3https://github.com/MadryLab/blackbox-bandits
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(c) VGG16-BN

Figure 2: Performance comparison for `∞ untargeted attacks on ImageNet classifiers. BAYES-
ATTACK consistently performs better for low query budgets (≤ 200). Note that for NES, model
queries are performed in batches of 100 as specified in Ilyas et al. (2018).

Table 1: Results for `∞ untargeted attacks on ImageNet classifiers with a query budget of 200

CLASSIFIER METHOD
SUCCESS AVERAGE MEDIAN

RATE QUERY QUERY

RESNET50

NES 15.20% 152 200
BANDITS-TD 56.59% 44 20

PARSIMONIOUS 72.26% 79 73
BAYES-ATTACK 74.16% 17 6

INCEPTION-V3

NES 20.27% 152 200
BANDITS-TD 66.44% 40 16

PARSIMONIOUS 70.75% 80 73
BAYES-ATTACK 81.60% 13 6

VGG16-BN

NES 16.41% 152 200
BANDITS-TD 62.10% 45 20

PARSIMONIOUS 60.16% 84 74
BAYES-ATTACK 62.95% 22 6

NES and BANDITS-TD. Similarly for PARSIMONIOUS, we use the implementation4 and hyperpa-
rameters given by Moon et al. (2019).

Figure 2 compares the performance of the proposed method BAYES-ATTACK against the set of base-
line methods in terms of success rate at different query budgets. We can see that BAYES-ATTACK
consistently performs better than baseline methods for query budgets < 200. Even for query bud-
gets> 200, BAYES-ATTACK achieves better success rates than BANDITS-TD and NES on ResNet50
and VGG16-bn. Finally, we note that for higher query budgets (> 1000), both PARSIMONIOUS and
BANDITS-TD method perform better than BAYES-ATTACK.

To compare the success rate and average/median query, we select a point on the plots shown in
Figure 2. Table 1 compares the performance of all the methods in terms of success rate, average and
median query for a query budget of 200. We can see that BAYES-ATTACK achieves higher success
rate with 80% less average queries as compared to the next best PARSIMONIOUS method. Thus,
we argue that although the Bayesian Optimization adversarial attack approach is to some extent
a “standard” application of traditional Bayesian Optimization methods, the performance over the
existing state of the art makes it a compelling approach particularly for the very low query setting.
We also compare the average `2 distortion of the generated adversarial perturbations in Appendix B.

4https://github.com/snu-mllab/parsimonious-blackbox-attack
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(a) Performance comparison with different upsam-
pling schemes.
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(b) Performance comparison with different latent di-
mension.

Figure 3: `∞ untargeted attacks on MNIST. dim: latent dimension used to run the Bayesian opti-
mization, NN: Nearest neighbor interpolation, BiC: Bicubic interpolation, BiL: Bilinear interpola-
tion, AE: autoencoder-based decoder, VAE: VAE-based generator (or decoder)

5.3 EXPERIMENTS ON MNIST

For MNIST, we use the pretrained network (used in Carlini & Wagner (2017)) with 4 convolu-
tional layers, 2 max-pooling layers and 2 fully-connected layers which achieves 99.5% accuracy on
MNIST test set. We conduct `∞ untargeted adversarial attacks with perturbation bound ε = 0.2 on a
randomly sampled 1000 images from the test set. All the experiments performed on MNIST follow
the same protocols.

5.3.1 UPSAMPLING METHODS

The proposed method requires an upsampling technique for mapping the perturbation learnt in the
latent dimension to the original input dimension. In this section, we examine different linear and
non-linear upsampling schemes and compare their performance on MNIST. The approaches we con-
sider here can be divided into two broad groups: Encoder-Decoder based methods and Interpolation
methods. For interpolation-based methods, we consider nearest-neighbor, bilinear and bicubic in-
terpolation.

For encoder-decoder based approaches, we train a variational autoencoder (Kingma & Welling,
2014; Rezende et al., 2014) by maximizing a variational lower bound on the log marginal likelihood.
We also consider a simple autoencoder trained by minimizing the mean squared loss between the
generated image and the original image. For both the approaches, we run the Bayesian optimization
loop in latent space and use the pretrained decoder (or generator) for mapping the latent vector into
image space. For these approaches, rather than searching for adversarial perturbation δ in the latent
space, we learn the adversarial image x + δ directly using the Bayesian optimization.

Figure 3a compares the performance of different upsampling methods. We can see that Nearest
Neighbor (NN) interpolation and VAE-based decoder perform better than rest of the upsampling
schemes. However, the NN interpolation achieves similar performance to the VAE-based method
but without the need of a large training dataset which is required for accurately training a VAE-
based decoder.

5.3.2 LATENT DIMENSION SENSITIVITY ANALYSIS

We perform a sensitivity analysis on the latent dimension hyperparameter d′ used for running the
Bayesian optimization. We vary the latent dimension over the range d′ ∈ {9, 16, 64, 100, 256, 784}.
Figure 3b shows the performance of nearest neighbor interpolation method for different latent di-
mension. We observe that lower latent dimensions achieve better success rates than the original
input dimension d′ = 784 for MNIST. This could be because with increase in search dimension,
Bayesian optimization needs more queries to find successful perturbation. We also note that for the
case of latent dimension d′ = 9, BAYES-ATTACK achieves lower success rates which could mean
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that it is hard to find adversarial perturbations in such low dimension. We show the convergence
plots of BAYES-ATTACK on ImageNet and MNIST in Appendix A.

6 CONCLUSIONS

We considered the problem of black-box adversarial attacks in settings involving constrained query
budgets. We employed Bayesian optimization based method to construct a query efficient attack
strategy. The proposed method searches for an adversarial perturbation in low dimensional latent
space using Bayesian optimization and then maps the perturbation to the original input space using
the nearest neighbor upsampling scheme. We successfully demonstrated the efficacy of our method
in attacking multiple deep learning architectures for high dimensional inputs. Our work opens av-
enues regarding applying BO for adversarial attacks in high dimensional settings.
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Lin. On the design of black-box adversarial examples by leveraging gradient-free optimization
and operator splitting method. ArXiv, abs/1907.11684, 2019.

10



Under review as a conference paper at ICLR 2020

A CONVERGENCE OF BAYESIAN OPTIMIZATION

In this section, we show the convergence of Bayesian Optimization (BO) in terms of objective
value versus the number of queries. Note that we have framed our objective of finding adversarial
perturbation to be a maximization problem and we stop the iteration loop of BO once the objective
value reaches a positive value. A positive objective value corresponds to a successful adversarial
perturbation as described in Section 3.

Figure 4 shows the convergence of objective function in the BAYES-ATTACK on RESNET50 trained
on ImageNet as described in Section 5.2. We run the BO in 972 dimensions (3 × 18 × 18) and
upsample the perturbation to the original input dimension of 150, 528(3×224×224). The plot shows
ten randomly chosen images from the validation set, with different colors representing different
images.
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Figure 4: Convergence graphs on RESNET50 trained on ImageNet

We also show the convergence of the BO on MNIST by varying the latent dimension. Specifically,
we compare the convergence with latent dimension 16(4 × 4) and the original input dimension
784(28× 28). The plot is shown in Figure 5. Each color represents a test image, while dashed lines
and solid lines represent runs of BO using 16 and 784 dimensions, respectively. As we can see from
the graph, BO in 784 dimensions does not converge to a successful attack (i.e., objective value > 0)
in 500 iterations on either of the images, while BO with 16 dimensions on the same images finds
the adversarial perturbation in less than 200 iterations. This aligns with our observation that with
increase in latent dimension, it becomes harder for BO to find successful perturbation and indeed it
would require much more queries than running BO in lower dimensions.
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Figure 5: Convergence graphs on MNIST

B DISTORTION EFFICIENCY

We compare the average `2 distortion per image of the proposed method BAYES-ATTACK with
the current state-of-the-art methods including gradient-based approaches on RESNET50 trained on
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ImageNet. We fix the query budget at 200 similar to the experiments described in Section 5.2 and
compute the distortion using only the successful adversarial perturbations. As we can see from
Table 2, the `2 distortion of adversarial examples generated using BAYES-ATTACK is almost similar
to the current state-of-the-art methods but achieves better attack success rate in low query budget
regimes. Having said that, as in BANDITS-TD (Ilyas et al., 2019) and PARSIMONIOUS (Moon et al.,
2019), our approach focuses on finding successful adversarial perturbations subject to a pre-defined
maximum distortion specified in terms of `∞ distance.

Table 2: Average `2 distortion of adversarial examples generated for `∞ untargeted attacks on
RESNET50 trianed on ImageNet.

METHOD
SUCCESS AVERAGE `2

RATE DISTORTION

BANDITS-TD 56.59% 18.65
PARSIMONIOUS 72.26% 19.40
BAYES-ATTACK 74.16% 19.14
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