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A Neuro-AI Interface: Learning DNNs from the Human Brain

Abstract
Deep neural networks (DNNs) are inspired from
the human brain and the interconnection between
the two has been widely studied in the liter-
ature. However, it is still an open question
whether DNNs are able to make decisions like
the brain. Previous work has demonstrated that
DNNs, trained by matching the neural responses
from inferior temporal (IT) cortex in monkey’s
brain, is able to achieve human-level performance
on the image object recognition tasks. This indi-
cates that neural dynamics can provide informa-
tive knowledge to help DNNs accomplish specific
tasks. In this paper, we introduce the concept of
a neuro-AI interface, which aims to use human’s
neural responses as supervised information for
helping AI systems solve a task that is difficult
when using traditional machine learning strate-
gies. In order to deliver the idea of neuro-AI
interfaces, we focus on deploying it to one of the
fundamental problems in generative adversarial
networks (GANs): designing a proper evaluation
metric to evaluate the quality of images produced
by GANs.

1. Introduction
Deep neural networks (DNNs) have successfully been ap-
plied to a number of different areas such as computer vision
and natural language processing where they have demon-
strated state-of-the-art results, often matching and even
sometimes surpassing a human’s ability. Moreover, DNNs
have been studied with respect to how similar processing
is carried out in the human brain, where identifying these
overlaps and interconnections has been a focus of study and
investigation in the literature (Cichy et al., 2016; Cichy &
Kaiser, 2019; Groen et al., 2018; Kuzovkin et al., 2018; Tu
et al., 2018; Batista & DiCarlo, 2018; Yamins & DiCarlo,
2016; Kriegeskorte, 2015; Kheradpisheh et al., 2016). In
this research area, convolutional neural networks (CNNs)
are widely studied to be compared with the visual system
in human’s brain because of following reasons: (1) CNNs
and human’s visual system are both hierarchical system;
(2) Steps of processing input between CNNs and human’s
visual system are similar to each other e.g., in a object

recognition task, both CNNs and human recognize a object
based on their its shape, edge, color etc.. Work (Yamins
& DiCarlo, 2016) outlines the use of CNNs approach for
delving even more deeply into understanding the develop-
ment and organization of sensory cortical processing. It
has been demonstrated that CNNs are able to reflect the
spatio-temporal neural dynamics in human’s brain visual
area (Cichy et al., 2016; Tu et al., 2018; Kuzovkin et al.,
2018). Despite lots of work is carried out to reveal the
similarity between CNNs and brain system, research on
interacting between CNNs and neural dynamics is less dis-
cussed in the literature as understanding of neural dynamics
in the neuroscience area is still limited.

There is a growing interest in studying generative adversarial
networks (GANs) in the deep learning community (Good-
fellow et al., 2014). Specifically, GANs have been widely
applied to various domains such as computer vision (Karras
et al., 2018), natural language processing (Fedus et al., 2018)
and speech synthesis (Donahue et al., 2018). Compared with
other deep generative models (e.g. variational autoencoders
(VAEs)), GANs are favored for effectively handling sharp
estimated density functions, efficiently generating desired
samples and eliminating deterministic bias. Due to these
properties GANs have successfully contributed to plausi-
ble image generation (Karras et al., 2018), image to image
translation (Zhu et al., 2017), image super-resolution (Ledig
et al., 2017), image completion (Yu et al., 2018) etc..

However, three main challenges still exist currently in the
research of GANs: (1) Mode collapse - the model can-
not learn the distribution of the full dataset well, which
leads to poor generalization ability; (2) Difficult to train -
it is non-trivial for discriminator and generator to achieve
Nash equilibrium during the training; (3) Hard to evaluate
- the evaluation of GANs can be considered as an effort to
measure the dissimilarity between real distribution pr and
generated distribution pg. Unfortunately, the accurate esti-
mation of pr is intractable. Thus, it is challenging to have
a good estimation of the correspondence between pr and
pg. Aspects (1) and (2) are more concerned with computa-
tional aspects where much research has been carried out to
mitigate these issues (Li et al., 2015; Salimans et al., 2016;
Arjovsky et al., 2017). Aspect (3) is similarly fundamen-
tal, however, limited literature is available and most of the
current metrics only focus on measuring the dissimilarity
between training and generated images. A more meaning-
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ful GANs evaluation metric that is consistent with human
perceptions is paramount in helping researchers to further
refine and design better GANs.

Although some evaluation metrics, e.g., Inception Score
(IS), Kernel Maximum Mean Discrepancy (MMD) and
Fréchet Inception Distance (FID), have already been pro-
posed (Salimans et al., 2016; Heusel et al., 2017; Borji,
2018), their limitations are obvious: (1) These metrics do
not agree with human perceptual judgments and human
rankings of GAN models. A small artefact on images can
have a large effect on the decision made by a machine learn-
ing system (Koh & Liang, 2017), whilst the intrinsic image
content does not change. In this aspect, we consider human
perception to be more robust to adversarial images samples
when compared to a machine learning system; (2) These
metrics require large sample sizes for evaluation (Xu et al.,
2018; Salimans et al., 2016). Large-scale samples for evalu-
ation sometimes are not realistic in real-world applications
since it is time-consuming; and (3) They are not able to
rank individual GAN-generated images by their quality i.e.,
the metrics are generated on a collection of images rather
than on a single image basis. The within GAN variances are
crucial because it can provide the insight on the variability
of that GAN.

Work (Yamins et al., 2014) demonstrates that CNN matched
with neural data recorded from inferior temporal cor-
tex (Chelazzi et al., 1993) has high performance in object
recognition tasks. Given the evidence above that a CNN
is able to predict the neural response in the brain, we de-
scribe a neuro-AI interface system, where human being’s
neural response is used as supervised information to help
the AI system (CNNs used in this work) solve more difficult
problems in real-world. As a starting point for exploiting
the idea of neuro-AI interface, we focus on utilizing it to
solve one of the fundamental problems in GANs: designing
a proper evaluation metric.

AI System

……

Make decision

Neural response

Stimulus

Figure 1. Schematic of neuro-AI interface. Stimuli (image stimuli
used in this work) are simultaneously presented to an AI system
and participants. Participants’ neural responses are transferred
to the AI system as supervised information for assisting the AI
system make decision.

In this paper, we first demonstrate the ability of a brain-

produced score (we call it Neuroscore), generated from
human being’s electroencephalography (EEG) signals , in
terms of the quality evaluation on GANs. Secondly, we
demonstrate and validate a neural-AI interface (as seen in
Fig. 1), which uses neural responses as supervised infor-
mation to train a CNN. The trained CNN model is able to
predict Neuroscore for images without corresponding neural
responses. We test this framework via three models: Shal-
low convolutional neural network, Mobilenet V2 (Sandler
et al., 2018) and Inception V3 (Szegedy et al., 2016).

In detail, Neuroscore is calculated via measurement of
the P300, an event-related potential (ERP) (Polich, 2007)
present in EEG, via a rapid serial visual presentation (RSVP)
paradigm (Wang et al., 2018a). P300 and RSVP paradigm
are mature techniques in the brain-computer interface (BCI)
community and have been applied in a wider variety of
tasks such as image search (Gerson et al., 2006), informa-
tion retrieval (Mohedano et al., 2015), and etc. The unique
benefit of Neuroscore is that it more directly reflects the
human perceptual judgment of images, which is intuitively
more reliable compared to the conventional metrics in the
literature (Borji, 2018).

2. Related work
Current literature has demonstrated that CNNs are able to
predict neural responses in inferior temporal cortex in image
recognition task (Yamins et al., 2014; Yamins & DiCarlo,
2016) via invasive BCI techniques (Waldert, 2016). Ev-
idence shows that neural responses in inferior temporal
cortex directly link the information processing during the
image recognition task. Therefore, a CNN trained by pre-
dicting neural responses in inferior temporal cortex also
achieves the good performance during the image recogni-
tion (Yamins et al., 2014). Comparing the traditional end-to-
end machine learning system, use of DNNs for predicting
neural responses in the brain favors following benefits: (1)
It enables the information processing of DNNs closer to
human being’s brain system; (2) For some difficult tasks in
real-world e.g, evaluation of image quality demonstrated
in this paper, it is still challenging to design the machine
learning algorithms, which teach DNNs to process the infor-
mation like humans; and (3) Neural signals directly reflect
the human perception and interfacing between neural re-
sponses and DNNs can be more efficient than the traditional
methods regarding the area of human and AI.

The investigation of using CNNs to predict neural response
from non-invasive BCI aspect is still blank in the litera-
ture. Comparing to invasively measured neural dynamics,
EEG favors pros such as simple measurement, unpainful
experience during recording, free to ethic argument and
more easily generalized to real-world applications. How-
ever, EEG suffers challenges such as low signal quality (i.e.,
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low SNR), low spatial resolution (interested neural activities
span all scalp and difficult to be localized), which makes the
prediction for EEG response still challenging.

With advanced machine leaching technologies applied
to non-invasive BCI area, source localization and recon-
struction are feasible for EEG signals today. Previously
work (Wang et al., 2018b;a) have demonstrated the efficacy
of using spatial filtering approaches for reconstructing P300
source ERP signals. The low SNR issue can be remedied
by averaging the EEG trials. Based on this evidence, we
explore the use of DNNs to predict Neuroscore when neural
information is available.

3. Methodology
3.1. Neuro-AI Interface

We propose a neuro-AI interface in order to generalize the
use of Neuroscore. This kind of framework interfaces be-
tween neural responses and AI systems (CNN used in this
study), which uses neural responses as supervised infor-
mation to train a CNN. The trained CNN is then used for
predicting Neuroscore given images generated by one of the
popular GAN models. Figure 2 demonstrates the schematic
of neuro-AI interface used in this work1. Flow 1 shows that
the image processed by human being’s brain and produces
single trial P300 source signal for each input image. Flow 2
in Fig. 2 demonstrates a CNN with including EEG signals
during training stage. The convolutional and pooling layers
process the image similarly as retina done (McIntosh et al.,
2016). Fully connected layers (FC) 1-3 aim to emulate
the brain’s functionality that produces EEG signal. Yellow
dense layer in the architecture aims to predict the single
trial P300 source signal in 400-600 ms response from each
image input. In order to help model make a more accurate
prediction for the single trial P300 amplitude for the output,
the single trial P300 source signal in 400-600 ms is fed to
the yellow dense layer to learn parameters for the previous
layers in the training step. The model was then trained to
predict the single trial P300 source amplitude (red point
shown in signal trail P300 source signal of Fig. 2).

3.2. Training Details

Mobilenet V2, Inception V3 and Shallow network were ex-
plored in this work, where in flow 2 we use these three net-
work bones: such as Conv1-pooling layers. For Mobilenet
V2 and Inception V3. We used pretrained parameters from
up to the FC 1 shown in Fig. 2. We trained parameters from
FC 1 to FC 4 for Mobilenet V2 and Inception V3. θ1 is

1We understand that human being’s brain system is much more
complex than what we demonstrated in this work and the flow in
the brain is not one-directional (She et al., 2016; 2018). Our frame-
work can be further extended to be more biologically plausible.

Retina

ŏ
ŏ

ŏ
ŏ

ŏ
ŏ

Add windowed single trial P300 source signal

Conv 1 FC 1 FC 2 FC 3

P300 source

Pool 1 Conv n Pool n…..

Output size: 50 X 1 

Output size: 1 X 1 

Loss2

FC 4

Loss1
Gradient descent

Gradient descent
Stage 1

Stage 2

Flow 1

Flow 2

Single trial P300 source signal 

Figure 2. A neuro-AI interface and training details with adding
EEG information. Our training strategy includes two stages: (1)
Learning from image to P300 source signal; and (2) Learning from
P300 source signal to P300 amplitude. loss1 is the L2 distance
between the yellow layer and the single trial P300 source signal in
the 400 - 600 ms corresponding to the single input image. loss2 is
the mean square error between model prediction and the single trial
P300 amplitude. loss1 and loss2 will be introduced in section 3.2.

used to denote the parameters from FC 1 to FC 3 and θ2

indicates the parameters in FC 4. For the Shallow model,
we trained all parameters from scratch.

We added EEG to the model because we first want to find
a function f(χ) → s that maps the images space χ to
the corresponding single trial P300 source signal s. This
prior knowledge can help us to predict the single trial P300
amplitude in the second learning stage.

We compared the performance of the models with and with-
out EEG for training. We defined two stage loss function
(loss1 for single trial P300 source signal in the 400 - 600 ms
time window and loss2 for single trial P300 amplitude) as

loss1(θ1) =
1

N

N∑
i=1

‖Strue
i − Spred

i (θ1)‖22,

loss2(θ1,θ2) =
1

N

N∑
i=1

(ytruei − ypredi (θ1,θ2))
2,

(1)

where Strue
i ∈ R1×T is the single trial P300 signal in the

400 - 600 ms time window to the presented image, and yi
refers to the single trial P300 amplitude to each image.

The training of the models without using EEG is
straightforward, models were trained directly to minimize
loss2(θ1,θ2) by feeding images and the corresponding sin-
gle trial P300 amplitude. Training with EEG information
is explained in Algorithm 1 and visualized in the “Flow 2”
of Fig. 2 with two stages. Stage 1 learns parameters θ1 to
predict P300 source signal while stage 2 learns parameters
θ2 to predict single trial P300 amplitude with θ1 fixed.

4. Results
Table 1 shows the error for each model with EEG signal,
with randomized EEG signal within each type of GAN
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Algorithm 1 Two training stages with EEG information.
Stage 1: Training parameters θ1.

1: Input: Images and averaged P300 signal Strue
i .

2: for number of training iterations do
3: Update θ1 by descending its stochastic gradient:

∇θ1

1
N

∑N
i=1‖S

true
i − Spred

i (θ1)‖22
4: end for

Stage 2: Freezing θ1, training parameters θ2.
5: Input: Images and single trial P300 amplitude ytruei .
6: for number of training iterations do
7: Update θ2 by descending its stochastic gradient:

∇θ2

1
N

∑N
i=1(y

true
i − ypredi (θ1,θ2))

2

8: end for

Model Error mean(std)

Shallow net
Shallow-EEG 0.209 (±0.102)

Shallow-EEGrandom 0.348 (±0.114)
Shallow 0.360 (±0.183)

Mobilenet
Mobilenet-EEG 0.198 (±0.087)

Mobilenet-EEGrandom 0.404 (±0.162)
Mobilenet 0.366 (±0.261)

Inception
Inception-EEG 0.173 (±0.069)

Inception-EEGrandom 0.392 (±0.057)
Inception 0.344 (±0.149)

Table 1. Errors of 9 models for cross participants (“-EEG” indi-
cates models are trained with paired EEG, “-EEGrandom” refers
to EEG trials which are randomized in the loss1 within each
type of GAN). Results are averaged by shuffling training/testing
sets for 20 times. Error is defined as:

∑m
i |Neuroscore

(i)
pred −

Neuroscore
(i)
true|, where m = 3 is the number of GAN category

used (DCGAN, BEGAN, PROGAN).

and without EEG. All models with EEG perform better
than models without EEG, with much smaller errors and
variances. Statistic tests between model with EEG and
without EEG are also carried out to verify the significance
of including EEG information during the training phase.
One-way ANOVA tests (P-value) for each model with
EEG and without EEG are stated as: PShallow = 0.003,
PMobilenet = 0.012 and PInception = 5.980e − 05. Re-
sults here demonstrate that including EEG during the train-
ing stage helps all three CNNs improve the performance on
predicting the Neuroscore. The performance of models with
EEG is ranked as follows: Inception-EEG, Mobilenet-EEG,
and Shallow-EEG, which indicates that deeper neural net-
works may achieve better performance in this task. We used
the randomized EEG signal here as a baseline to see the
efficacy of adding EEG to produce better Neuroscore out-
put. When randomizing the EEG, it shows that the error for
each three model increases significantly. For Mobilenet and
Inception, the error of the randomized EEG is even higher
than those without EEG in the training stage, demonstrating

that the EEG information in the training stage is crucial to
each model.

Figure 3 shows that the models with EEG information have
a stronger correlation between predicted Neuroscore and
real Neuroscore. The cluster (blue, orange, and green cir-
cles) for each category of the model trained with EEG (left
column) is more separable than the cluster produced by
model without EEG (right column). This conveys with EEG
for training models: (1) Neuroscore is more accurate; and
(2) Neuroscore is able to rank the performances of different
GANs, which cannot be achieved by other metrics (Borji,
2018).

Figure 3. Scatter plot of predicted and real Neuroscore of 6 models
(Shallow, Mobilenet, Inception with and without EEG for train-
ing) cross participants by 20 times repeated shuffling training and
testing set. Each circle represents the cluster for a specific cat-
egory. Small triangle markers inside each cluster correspond to
each shuffling process. The dot at the center of each cluster is the
mean.

5. Conclusion
In this paper, we introduce a neuro-AI interface that inter-
acts CNNs with neural signals. We demonstrate the use of
neuro-AI interface by introducing a challenge in the area
of GANs i.e., evaluate the quality of images produced by
GANs. Three deep network architectures are explored and
the results demonstrate that including neural responses dur-
ing the training phase of the neuro-AI interface improves its
accuracy even when neural measurements are absent when
evaluating on the test set. More details of the performance
of Neuroscore can be referred in Appendix.
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Appendix
5.1. Neuroscore performance

Figure 4 shows the averaged reconstructed P300 signal
across all participants (using LDA beamformer) in the RSVP
experiment. It should be noted here that the averaged recon-
structed P300 signal is calculated as the difference between
averaged target trials and averaged standard trials after ap-
plying the LDA beamformer method. The solid lines in
Figure 4 are the means of the averaged reconstructed P300
signals for each image category (across 12 participants)
while the shaded areas represent the standard deviations
(across participants). It can be seen that the averaged re-
constructed P300 (across participants) clearly distinguishes
between different image categories.

Figure 4. Averaged reconstructed (via LDA beamformer) P300
signal across 12 participants in this study.

In order to statistically measure this correlative relation-
ship, we calculated the Pearson correlation coefficient and
p-value (two-tailed) between Neuroscore and BE accuracy
and found (r(48) = −0.767,p = 2.089e− 10). We also
did the Pearson statistical test and bootstrap on the correla-
tion between Neuroscore and BE accuracy (human judgment
performance) only for GANs i.e., DCGAN, BEGAN and
PROGAN. Pearson statistic is (r(36)=-0.827, p=4.766e-10)
and the bootstrapped p ≤ 0.0001.

Figure 5. Correlation between NS and BE accuracy. Neuroscore
and BE are both mean centered within each participant.

5.2. Comparison to other evaluation metrics

Three traditional methods are also employed to evaluate the
GANs used in this study. Table 2 shows the scores from the
three traditional metrics, Neuroscore and human judgment
for three GANs. To be consistent with other metrics (smaller

Methods DCGAN BEGAN PROGAN
1/IS 0.44 0.57 0.42

MMD 0.22 0.29 0.12
FID 63.29 83.38 34.10

1/Neuroscore 1.715 1.479 1.195
Human 0.995 0.824 0.705

Table 2. Score comparison for each GAN category. Three conven-
tional scores: Inception Score (IS), Maximum Mean Discrepancy
(MMD), Fréchet Inception Distance (FID), and Neuroscore are
compared with each other. Lower score indicates better perfor-
mance of GAN.

score indicates better GAN performance), we use 1/Neu-
roscore for comparison. It can be seen that all three methods
are consistent with each other and they rank the GANs in
the same order of PROGAN, DCGAN and BEGAN from
high to low performance. By comparing the three traditional
evaluation metrics to the human, it can be seen that they are
not consistent with human judgment of GAN performance.
It should be remembered that Inception Score is able to
measure the quality of the generated images (Salimans et al.,
2016) while the other two methods cannot do so. However,
Inception Score still rates DCGAN as outperforming BE-
GAN. Our proposed Neuroscore is consistent with human
judgment.

5.3. Performance of neuro-AI interface

Another property of using Neuroscore is the ability to track
the quality of an individual image. Traditional evaluation
metrics are unable to score each individual image for two
reasons: (1) They need large-scale samples for evaluation;
(2) Most methods (e.g. MMD and FID) evaluate GANs
based on the dissimilarity between real images and gener-
ated images so they are not able to score the generated image
one by one. For our proposed method, the score of each
single image can also be evaluated as a single trial P300
amplitude. We demonstrate that using the predicted single
trial P300 amplitude to observe the single image quality
in Fig. 6. This property provides Neuroscore with a novel
capability that can observe the variations within a typical
GAN. Although Neuroscore and IS are generated from deep
neural networks. Neuroscore is more suitable than IS for
evaluating GANs in that: (1) It is more explainable than IS
as it is a direct reflection of human perception; (2) Much
smaller sample size is required for evaluation; (3) Higher
Neuroscore exactly indicates better image quality while IS
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Figure 6. P300 for each single image predicted by the proposed
neuro-AI interface in our paper. Higher predicted P300 indicates
the better image quality.

does not.

(a)

(b)

Figure 7. Performances of the CNN model trained by including
EEG response. (a). Scatter plot between predicted and real Neu-
roscore. EEG corresponding to real face (RFACE) has been in-
cluded to test the generalization of the architecture. (b). Neu-
roscore of different evaluated sample size for each type of GAN.
200 repeated measurements have been made by randomly shuffling
the image samples.

We also included the RFACE images in our generalization

test. Figure 7(c) demonstrates that the predicted Neuroscore
is still correlated with the real Neuroscore when adding the
RFACE images and the model ranks the types of images as:
PROGAN>RFACE>BEGAN>DCGAN, which is consis-
tent with the Neuroscore that has been measured directly
from participants shown in Fig.7(d).

Compared to traditional evaluation metrics, Neuroscore is
able to score the GAN based on very few image samples,
relatively. Recording EEG in the training stage could be
the limitation of generalizing Neuroscore to evaluate a new
GAN. However, the use of dry electrode EEG recording
system (Gargiulo et al., 2010) can accelerate and simplify
the data acquisition significantly. Moreover, GANs enable
the possibility of synthesizing the EEG (Hartmann et al.,
2018), which has wide applications in brain-machine inter-
face research.


