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ABSTRACT

The machine learning and computer vision community is witnessing an unprece-
dented rate of new tasks being proposed and addressed, thanks to the power of
deep convolutional networks to find complex mappings from X to Y . The advent
of each task often accompanies the release of a large-scale human-labeled dataset,
for supervised training of the deep network. However, it is expensive and time-
consuming to manually label sufficient amount of training data. Therefore, it is
important to develop algorithms that can leverage off-the-shelf labeled dataset to
learn useful knowledge for the target task. While previous works mostly focus
on transfer learning from a single source, we study multi-source transfer across
domains and tasks (MS-DTT), in a semi-supervised setting. We propose GradMix,
a model-agnostic method applicable to any model trained with gradient-based
learning rule. GradMix transfers knowledge via gradient descent, by weighting
and mixing the gradients from all sources during training. Our method follows a
meta-learning objective, by assigning layer-wise weights to the source gradients,
such that the combined gradient follows the direction that can minimize the loss for
a small set of samples from the target dataset. In addition, we propose to adaptively
adjust the learning rate for each mini-batch based on its importance to the target
task, and a pseudo-labeling method to leverage the unlabeled samples in the target
domain. We perform experiments on two MS-DTT tasks: digit recognition and
action recognition, and demonstrate the advantageous performance of the proposed
method against multiple baselines.

1 INTRODUCTION

Deep convolutional networks (ConvNets) have significantly improved the state-of-the-art for visual
recognition, by finding complex mappings from X to Y . Unfortunately, these impressive gains in
performance come only when massive amounts of paired labeled data (x, y) s.t. x ∈ X , y ∈ Y are
available for supervised training. For many application domains, it is often prohibitive to manually
label sufficient training data, due to the significant amount of human efforts involved. Hence, there is
strong incentive to develop algorithms that can reduce the burden of manual labeling, typically by
leveraging off-the-shelf labeled datasets from other related domains and tasks.

There has been a large amount of efforts in the research community to address adapting deep models
across domains (Ganin & Lempitsky, 2015; Long et al., 2016; Tzeng et al., 2017), to transfer
knowledge across tasks (Luo et al., 2017; He et al., 2017; Zamir et al., 2018), and to learn efficiently
in a few shot manner (Finn et al., 2017; Ravi & Larochelle, 2017; Ren et al., 2018a). However, most
works focus on a single-source and single-target scenario. Recently, some works (Xu et al., 2018;
Mancini et al., 2018) propose deep approaches for multi-source domain adaptation, but they assume
that the source and target domains have shared label space (task).

In many computer vision applications, there often exist multiple labeled datasets available from
different domains and/or tasks related to the target application. Hence, it is important and practically
valuable that we can transfer knowledge from as many source datasets as possible. In this work, we
formalize this problem as multi-source domain and task transfer (MS-DTT). Given a set of labeled
source dataset, S = {S1, S2, ..., Sk}, we aim to transfer knowledge to a sparsely labeled target
dataset T . Each source dataset Si could come from a different domain compared to T , or from a
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different task, or different in both domain and task. We focus on a semi-supervised setting, where
only few samples in T have labels.

Most works achieve domain transfer by aligning the feature distribution of source domain and target
domain (Long et al., 2015b; 2016; Ganin & Lempitsky, 2015; Tzeng et al., 2015; Mancini et al.,
2018; Xu et al., 2018). However, this method could be suboptimal for MS-DTT. The reason is that in
MS-DTT, the distribution of source data p(xSi , ySi) and target data p(xT , yT ) could be significantly
different in both input space and label space, thus simply aligning their input space may generate
indiscriminative features for the target classes. In addition, feature alignment introduces additional
layers and loss terms, which require careful design to perform well.

In this work, we propose a generic and scalable method, namely GradMix, for semi-supervised
MS-DTT. GradMix is a model-agnostic method, applicable to any model that uses gradient-based
learning rule. Our method does not introduce extra layers or loss functions for feature alignment.
Instead, we perform knowledge transfer via gradient descent, by weighting and mixing the gradients
from all the source datasets during training. We follow a meta-learning paradigm and model the most
basic assumption: the combined gradient should minimize the loss for a set of unbiased samples from
the target dataset. We propose an online method to weight and mix the source gradients at each
training iteration, such that the knowledge most useful for the target task is preserved through the
gradient update. Our method can adaptively adjust the learning rate for each mini-batch based on
its importance to the target task. In addition, we propose a pseudo-labeling method based on model
ensemble to learn from the unlabeled data in target domain. We perform extensive experiments on
two sets of MS-DTT task, including digit recognition and action recognition, and demonstrate the
advantageous performance of the proposed method compared to multiple baselines. Our code is
available at https://www.url.com.

2 RELATED WORK

Domain Adaptation. Domain adaptation seeks to learn from source domain a well-performing
model on the target domain, by addressing the domain shift problem (Csurka, 2017). Most existing
works focus on aligning the feature distribution of the source domain and target domain. Several
works attempt to learn domain-invariant features by minimizing Maximum Mean Discrepancy (Long
et al., 2015b; 2016; Sun & Saenko, 2016). Another class of method uses adversarial discriminative
models, i.e. learn domain-agnostic representations by maximizing a domain confusion loss (Ganin &
Lempitsky, 2015; Tzeng et al., 2015; Luo et al., 2017). Recently, multi-source domain adaptation
with deep model has been studied. Mancini et al. (2018) use DA-layers (Carlucci et al., 2017; Li et al.,
2017b) to minimize the distribution discrepancy of network activations. Xu et al. (2018) propose
multi-way adversarial domain discriminator that minimizes the domain discrepancies between the
target and each of the sources. However, both methods (Mancini et al., 2018; Xu et al., 2018) assume
that the source and target domains have a shared label space.

Transfer Learning. Transfer learning extends domain adaptation into more general cases, where
the source and target domain could be different in both input space and label space (Pan & Yang,
2010; Weiss et al., 2016). In computer vision, transfer learning has been widely studied to overcome
the deficit of labeled data by adapting models trained for other tasks. With the advance of deep
supervised learning, ConvNets trained on large datasets such as ImageNet (Russakovsky et al., 2015)
have achieved state-of-the-art performance when transfered to other tasks (e.g. object detection (He
et al., 2017), semantic segmentation (Long et al., 2015a), image captioning (Donahue et al., 2015),
etc.) by simple fine-tuning. In this work, we focus on the setting where source and target domains
have the same input space and different label spaces.

Meta-Learning. Meta-learning aims to utilize knowledge from past experiences to learn quickly
on target tasks, from only a few annotated samples. Meta-learning generally seeks performing the
learning at a level higher than where conventional learning occurs, e.g. learning the update rule
of a learner (Ravi & Larochelle, 2017), or finding a good initialization point that can be easily
fine-tuned (Finn et al., 2017). Recently Li et al. (2018) propose a meta-learning method to train
models with good generalization ability to novel domains. Our method follows the meta-learning
paradigm that uses validation loss as the meta-objective. Our method also resembles the example
reweighting method by Ren et al. (2018b). However, they reweight samples in a batch for robust
learning against noise, whereas we reweight source domain gradients layer-wise for transfer learning.
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3 METHOD

3.1 PROBLEM FORMULATION

We first formally introduce the semi-supervised MS-DTT problem. We assume that there exists a set
of k source domains S = {S1, S2, ..., Sk}, and a target domain T . Each source domain Si contains
NSi images, xSi ∈ XSi , with associated labels ySi ∈ YSi . Similarly, the target domain consists of
NT unlabeled images, xT ∈ X T , as well as MT labeled images, with associated labels yT ∈ YT .
We assume that the target domain is only sparsely labeled, i.e. MT � NT . Our goal is to learn a
strong target classifier that can predict labels yT given xT .

Different from standard domain adaptation approaches that assume a shared label space between
source and target domain (YS = YT ), we study the problem of joint transfer across domains and
tasks. Each source domain could have a partially overlapping label space with the target domain
(YSi ∩YT ⊂ YT and YSi ∩YT 6= ∅), or a non-overlapping label space (YSi ∩YT = ∅). However,
we presume that at least one source domain should have the same label space as the target domain
(∃Si s.t. YSi = YT ).

3.2 META-LEARNING OBJECTIVE

Let Θ denote the network parameters for our model. We consider a loss function L(x, y; Θ) = f(Θ)
to minimize during training. For deep networks, SGD or its variants are commonly used to optimize
the loss functions. At every step n of training, we forward a mini-batch of samples from each of the
source domain {Si}ki=1, and apply back-propagation to calculate the gradients w.r.t the parameters
Θn, ∇fsi(Θn). The parameters are then adjusted according to the sum of the source gradients. For
example, for vanilla SGD:

Θn+1 = Θn − α
k∑
i=1

∇fsi(Θn), (1)

where α is the learning rate.

In semi-supervised MS-DTT, we also have a small validation set V that contains few labeled samples
from the target domain. We want to learn a set of weights for the source gradients, w = {wsi}ki=1,
such that when taking a gradient descent using their weighted combination

∑k
i=1 wsi∇fsi(Θn), the

loss on the validation set is minimized:

Θ∗(w) = Θn − α
k∑
i=1

wsi∇fsi(Θn), (2)

w∗ = arg min
w,w≥0

fV(Θ∗(w)) (3)

3.3 LAYER-WISE GRADIENT WEIGHTING

Calculating the optimal w∗ requires two nested loops of optimization, which can be computationally
expensive. Here we propose an approximation to the above objective. At each training iteration n,
we do a forward-backward pass using the small validation set V to calculate the gradient, ∇fV(Θn).
We take a first-order approximation and assume that adjusting Θn in the direction of∇fV(Θn) can
minimize fV(Θn). Therefore, we find the optimal w∗ by maximizing the cosine similarity between
the combined source gradient and the validation gradient:

w∗ = arg max
w,w≥0

〈
k∑
i=1

wsi∇fsi(Θn),∇fV(Θn)〉, (4)

where 〈a, b〉 denotes the cosine similarity between vector a and b. This method is a cheap estimation
for the meta-objective, which can also prevent the model from over-fitting to V .

Instead of using a global weight value for each source gradient, we propose a layer-wise gradient
weighting, where the gradient for each layer of the network are weighted separately. This enables
a finer level of gradient combination. Specifically, in our MS-DTT setting, the source domains
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and the target domain share the same parameters up to the last fully-connected (fc) layer, which is
task-specific. Therefore, for each layer l with parameter θl, and for each source domain Si, we have
a corresponding weight wlsi . We can then write Equation 4 as:

w∗ = arg max
w,w≥0

L−1∑
l=1

〈
k∑
i=1

wlsi∇fsi(θ
l
n),∇fV(θln)〉, (5)

where L is the total number of layers for the ConvNet. We constrain wl
si ≥ 0 for all i and l, since

negative gradient update can usually result in unstable behavior. To efficiently solve the above
constrained non-linear optimization problem, we utilize a sequential quadratic programming method,
SLSQP, implemented in NLopt (Johnson).

In practice, we normalize the weights for each layer across all source domains so that they sum up to
one:

w̃lsi =
wlsi∑k
i=1 w

l
si

(6)

3.4 ADAPTIVE LEARNING RATE

Intuitively, certain mini-batches from the source domains contain more useful knowledge that can
be transferred to the target domain, whereas some mini-batches contain less. Therefore, we want to
adaptively adjust our training to pay more attention to the important mini-batches. To this end, we
measure the importance score ρ of a mini-batch using the cosine similarity between the optimally
combined gradient and the validation gradient:

ρ =

L−1∑
l=1

〈
k∑
i=1

w̃lsi∇fsi(θ
l
n),∇fV(θln)〉 (7)

Based on ρ, we calculate a scaling term η bounded between 0 and 1:

η =
1

1 + e−βρ−γ
, (8)

where β controls the rate of saturation for η, and γ defines the value of βρ where η = 0.5. We
determine the value of β and γ empirically through experiments.

Finally, we multiply η to the learning rate α, and perform SGD to update the parameters:

θln+1 = θln − ηα
k∑
i=1

w̃lsi∇fsi(θ
l
n), for l = 1, 2, ..., L− 1 (9)

3.5 PSEUDO-LABEL WITH ENSEMBLES

In our semi-supervised MS-DTT setting, there also exists a large set of unlabeled images in the
target domain, denoted as U = {(xTn )}NT

n=1. We want to learn target-discriminative knowledge from
U . To achieve this, we propose a method to calculated pseudo-labels ŷTn for the unlabeled images,
and construct a pseudo-labeled dataset Su = {(xTn , ŷTn )}Np

n=1. Then we leverage Su using the same
gradient mixing method as described above. Specifically, we consider a loss Lu(x, ŷ; Θ) to minimize
during training, where (x, ŷ) ∈ Su. At each training iteration n, we sample a mini-batch from Su,
calculate the gradient ∇fsu(Θn), and combine it with the source gradients {∇fsi(Θn)}ki=1 using
the proposed layer-wise weighting method.

In order to acquire the pseudo-labels, we perform a first step to train a model using the source
domain datasets following the proposed gradient mixing method, and use the learned model to label
U . However, the learned model would inevitably create some false pseudo-labels. Previous studies
found that ensemble of models helps to produce more reliable pseudo-labels (Saito et al., 2017; Laine
& Aila, 2017; Tarvainen & Valpola, 2017). Therefore, in our first step, we train multiple models
with different combination of β and γ in Equation 8. Then we pick the top R models with the best
accuracies on the hyper-validation set (R = 3 in our experiments), and use their ensemble to create
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Figure 1: An illustration of the two experimental settings (digit recognition and action recognition)
for multi-source domain and task transfer (MS-DTT). Our method effectively transfers knowledge
from multiple sources to the target task.

pseudo-labels. The difference in hyper-parameters during training ensures that different models learn
significantly different sets of weight, hence the ensemble of their prediction is less biased.

Here we propose two approaches to create pseudo-labels, namely hard label and soft label:

Hard label. In this approach, we assume that the pseudo-label is more likely to be correct if all
the models can reach an agreement with high confidence. We assign a pseudo-label ŷ = C to an
image x ∈ U , where C is a class number, if the two following conditions are satisfied. First, all of the
R models should predict C as the class with the maximum probability. Second, for all models, the
probability for C should exceed certain threshold, which is set as 0.8 in our experiments. If these
two conditions are satisfied, we will add (x, ŷ) into Su. During training, the loss Lu(x, ŷ; Θ) is the
standard cross entropy loss.

Soft label. Let pr denote the output from the r-th model’s softmax layer for an input x, which
represents the probability over classes. We calculate the average of pr across all of the R pre-trained
models as the soft pseudo-label for x: ŷ = 1

R

∑R
r=1 pr. Every unlabeled image x ∈ U will be

assigned a soft label and added to Su. During training, let pΘ be the output probability from the
model, we want to minimize the KL-divergence between pΘ and the soft pseudo-label for all pairs
(x, ŷ) ∈ Su. Therefore, the loss is Lu(x, ŷ; Θ) = DKL(pΘ, ŷ).

For both hard and soft label approach, after getting the pseudo-labels, we train a model from scratch
using all available datasets {Si}ki=1, Su and V . Since the proposed gradient mixing method relies on
V to estimate the model’s performance on the target domain, we enlarge the size of V to 100 samples
per class, by adding hard-labeled images from Su using the method described above. The enlarged V
can represent the target domain with less bias, which helps to calculate better weights on the source
gradients, such that the model’s performance on the target domain is maximized.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Datasets. In our experiment we perform MS-DTT across two different groups of data settings, as
shown in Figure 1. First we do transfer learning across different digit domains using MNIST (LeCun
et al., 1998) and Street View House Numbers (SVHN) (Netzer et al., 2011). MNIST is the popular
benchmark for handwritten digit recognition, which contains a training set of 60,000 examples,
and a test set of 10,000 examples. SVHN is a real-word dataset consisting of images with colored
background and blurred digits. It has 73,257 examples for training and 26,032 examples for testing.

For our second setup, we study MS-DTT from human activity images in MPII dataset (Andriluka
et al., 2014) and human action images from the Web (BU101 dataset) (Ma et al., 2017), to video
action recognition using UCF101 (Soomro et al., 2012) dataset. MPII dataset consists of 28,821
images covering 410 human activities including home activities, religious activities, occupation, etc.
UCF101 is a benchmark action recognition dataset collected from YouTube. It consists of 13,320
videos from 101 action categories, captured under various lighting conditions with camera motion
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Table 1: Classification accuracy (%) of the baselines and our method on the test split of MNIST 5-9.
We report the mean and the standard error of each method across 10 runs with different randomly
sampled V .

Method Datasets k=2 k=3 k=4 k=5
Target only V 71.35±1.85 77.15±1.36 81.43±1.41 84.83±1.10
Source only S1, S2 82.39 82.39 82.39 82.39
Fine-tune S1, S2,V 89.94±0.35 89.86±0.46 90.89±0.48 91.96±0.39
GradMix w/o AdaLR S1, S2,V 90.10±0.37 90.22±0.62 92.14±0.43 92.92±0.29
GradMix S1, S2,V 91.17±0.37 91.45±0.52 92.14±0.40 93.06±0.46
MDDA (Mancini et al., 2018) S1, S2,V,U 90.23±0.40 90.28±0.50 91.45±0.37 91.85±0.31
DCTN (Xu et al., 2018) S1, S2,V,U 91.81±0.26 92.34±0.28 92.42±0.39 92.97±0.37
GradMix w/ soft label S1, S2,V,U 94.62±0.18 95.03±0.30 95.26±0.17 95.74±0.21
GradMix w/ hard label S1, S2,V,U 96.02±0.24 96.24±0.33 96.63±0.17 96.84±0.20

and occlusion. We take the first split of UCF101 for our experiment. BU101 contains 23,800 images
collected from the Web, with the same action categories as UCF101. It contains professional photos,
commercial photos, and artistic photos, which can differ significantly from video frames.

Network and implementation details. For our first setting, we use the same ConvNet architecture
as Luo et al. (2017), which has 4 Conv layers and 2 fc layers. We randomly initialize the weights, and
train the network using SGD with learning rate α = 0.05, and a momentum of 0.9. For fine-tuning
we reduce the learning rate to 0.005. For our second setting, we use the ResNet-18 (He et al., 2016)
architecture. We initialize the network with ImageNet pre-trained weights, which is important for all
baseline methods to perform well. The learning rate is 0.001 for training and 5e−5 for fine-tuning.

4.2 SVHN 5-9 + MNIST 0-4→ MNIST 5-9

Experimental setting. In this experiment, we define four sets of training data: (1) labeled images
of digits 5-9 from the training split of SVHN dataset as the first source S1, (2) labeled images
of digits 0-4 from the training split of MNIST dataset as the second source S2, (3) few labeled
images of digits 5-9 from the training split of MNIST dataset as the validation set V , (4) unlabeled
images from the rest of the training split of MNIST 5-9 as U . We subsample k examples from each
class of MNIST 5-9 to construct the unbiased validation set V . We experiment with k = 2, 3, 4, 5,
which corresponds to 10, 15, 20, 25 labeled examples. Since V is randomly sampled, we repeat our
experiment 10 times with different V . In order to monitor training progress and tune hyper-parameters
(e.g. α, β, γ), we split out another 1000 labeled samples from MNIST 5-9 as the hyper-validation set.
The hyper-validation set is the traditional validation set, which is fixed across the 10 runs.

Baselines. We compare the proposed method to multiple baseline methods: (1) Target only: the
model is trained using V . (2) Source only: the model is trained using S1 and S2 without gradient
reweighting. (3) Fine-tune: the Source only model is fine-tuned using V . (4) MDDA (Mancini et al.,
2018): Multi-domain domain alignment layers that shift the network activations for each domain
using a parameterized transformation equivalent to batch normalization. (5) DCTN (Xu et al., 2018):
Deep Cocktail Network, which uses multi-way adversarial adaptation to align the distribution of
multiple source domains and the target domain.

We also evaluate different variants of our model with and without certain component to show its effect:
(6) GradMix w/o AdaLR: the method in Section 3.3 without the adaptive learning rate (Section 3.4).
(7) GradMix: the proposed method that uses S1, S2 and V during training. (8) GradMix w/ hard
label: using the hard label approach to create pseudo-labels for U , and train a model with all available
datasets. (9) GradMix w/ soft label: using the soft label approach to create pseudo-labels for U , and
train a model with all available datasets.

Results. Table 1 shows the results for methods described above. We report the mean and standard
error of classification accuracy across 10 runs with randomly sampled V . Methods in the upper part
of the table do not use the unlabeled target domain data U . Among these methods, the proposed
GradMix has the best performance. If we remove the adaptive learning rate, the accuracy would
decrease. As expected, the performance improves as k increases, which indicates more samples in
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Figure 2: Loss on the hyper-validation set as training proceeds. We define 1 epoch as training for 100
mini-batches (gradient descents).

Table 2: Results of GradMix using different β and γ when k = 3. Numbers indicate the test accuracy
(%) on MNIST 5-9 (averaged across 10 runs). The ensemble of the top three models is used to create
pseudo-labels.

γ = 0 γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 0.6 γ = 0.7 γ = 0.8

β = 5 90.92 90.96 90.95 90.58 90.75 90.75 90.51 90.63 91.12
β = 6 90.41 90.75 89.95 90.79 90.59 89.95 90.58 90.63 90.56
β = 7 89.76 90.44 90.42 90.94 90.28 90.40 90.52 90.70 90.66
β = 8 90.05 90.89 90.93 90.57 90.77 90.69 89.99 90.58 90.71
β = 9 90.32 90.70 90.48 90.94 90.47 90.92 90.20 90.23 90.86
β = 10 90.52 90.03 89.67 90.01 89.84 90.51 91.45 90.58 90.70

Table 3: Results of GradMix w/ hard label using different number of pre-trained models for ensemble.

Num. of Models k=2 k=3 k=4 k=5
R = 1 95.80±0.28 95.92±0.28 96.29±0.20 96.46±0.25
R = 2 95.30±0.23 95.80±0.18 96.18±0.22 96.57±0.26
R = 3 96.02±0.24 96.24±0.33 96.63±0.17 96.84±0.20

V can help the GradMix method to better combine the gradients during training. The lower part
of the table shows methods that use all available datasets including S1, S2,V and U . The proposed
GradMix without U can achieve comparable performance with state-of-the-art baselines that use U
(MDDA and DCTN). Using pseudo-label with model ensemble significantly improves performance
compared to baseline methods. Comparing soft label to hard label, the hard label approach achieves
better performance. More detailed results about model ensemble for pseudo-labeling is shown later
in the ablation study.

Ablation Study. In this section, we perform multiple ablation experiments to demonstrate the
effectiveness of our method and the effect of different hyper-parameters. First, Figure 2 shows two
examples of the hyper-validation loss as training proceeds. We show the loss for the baseline Source
only method and the proposed GradMix, where we perform hyper-validation every 100 mini-batches
(gradient descents). In both examples with different k, GradMix achieves a quicker and steadier
decrease in the hyper-validation loss.

In Table 2, we show the results using GradMix with different combination of β and γ when k = 3.
We perform a grid search with β = [5, 6, ..., 10] and γ = [0, 0.1, ..., 0.8]. The accuracy is the highest
for β = 10 and γ = 0.6. The top three models are selected for ensemble to create pseudo-labels for
the unlabeled set U .

In addition, we perform experiments with different number of models used for ensemble. Table 3
shows the results for R = 1, 2, 3 across all values of k. R = 1 and R = 2 have comparable
performance, whereas R = 3 performs better. This indicates that using the top three models for
ensemble can create more reliable pseudo-labels.
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Table 4: Classification accuracy (%) of the baselines and our method on the test split of UCF101. We
report the mean accuracy of each method across two runs with different randomly sampled V .

Method Datasets per-frame per-video

k=3 k=5 k=10 k=3 k=5 k=10
Target only V 42.58 53.31 63.05 43.74 55.50 64.74
Source only S1, S2 41.96 41.96 41.96 43.46 43.46 43.46
Fine-tune S1, S2,V 55.86 60.55 66.77 58.57 66.01 70.21
EnergyNet (Li et al., 2017a) S1, S2,V 55.93 60.82 66.73 58.70 66.23 70.25
GradMix S1, S2,V 56.25 61.73 67.30 59.41 66.27 71.49
MDDA (Mancini et al., 2018) S1, S2,V,U 56.65 61.58 67.65 60.00 65.14 71.54
GradMix w/ hard label S1, S2,V,U 68.92 68.76 69.25 72.58 72.34 73.48

4.3 MPII + BU101→ UCF101

Experimental setting. In the action recognition experiment, we have four sets of training data similar
to the digit recognition experiment, which include (1) S1: labeled images from the training split of
MPII, (2) S2: labeled images from the training split of BU101, (3) V: k labeled video clips per class
randomly sampled from the training split of UCF101, (4) U : unlabeled images from the rest of the
training split of UCF101. We experiment with k = 3, 5, 10 which corresponds to 303, 505, 1010
video clips. Each experiment is run two times with different V . We report the mean accuracy across
the two runs for both per-frame classification and per-video classification. Per-frame classification
is the same as doing individual image classification for every frame in the video, and per-video
classification is done by averaging the softmax score for all the frames in a video as the video’s score.

Baselines. We compare our method with multiple baselines described in Section 4.2, including (1)
Target only, (2) Source only, (3) Fine-tune. In addition, we evaluate another baseline for knowledge
transfer in action recognition, namely (4) EnergyNet (Li et al., 2017a): The ConvNet (ResNet-18) is
first trained on MPII and BU101, then knowledge is transfered to UCF101 through spatial attention
maps using a Siamese Energy Network.

Results. Table 4 shows the results for action recognition. Target only has better performance
compared to Source only even for k = 3, which indicates a strong distribution shift between source
data and target data for actions in the wild. For all values of k, the proposed GradMix outperforms
baseline methods that use S1, S2 and V for training in both per-frame and per-video accuracy.
GradMix also has comparable performance with MDDA that uses the unlabeled dataset U . The
proposed pseudo-label method achieves significant gain in accuracy by assigning hard labels to U
and learn target-discriminative knowledge from the pseudo-labeled dataset.

5 CONCLUSION

In this work, we propose GradMix, a method for semi-supervised MS-DTT: multi-source domain
and task transfer. GradMix assigns layer-wise weights to the gradients calculated from each source
objective, in a way such that the combined gradient can optimize the target objective, measured by
the loss on a small validation set. GradMix can adaptively adjust the learning rate for each mini-batch
based on its importance to the target task. In addition, we assign pseudo-labels to the unlabeled
samples using model ensembles, and consider the pseudo-labeled dataset as a source during training.
We validate the effectiveness our method with extensive experiments on two MS-DTT settings,
namely digit recognition and action recognition. GradMix is a generic framework applicable to
any models trained with gradient descent. For future work, we intend to extend GradMix to other
problems where labeled data for the target task is expensive to acquire, such as image captioning.
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