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ABSTRACT

In this paper, we design a generic framework for learning a robust text classi-
fication model that achieves accuracy comparable to standard full models under
test-time budget constraints. We take a different approach from existing methods
and learn to dynamically delete a large fraction of unimportant words by a low-
complexity selector such that the high-complexity classifier only needs to process
a small fraction of important words. In addition, we propose a new data aggrega-
tion method to train the classifier, allowing it to make accurate predictions even
on fragmented sequence of words. Our end-to-end method achieves state-of-the-
art performance while its computational complexity scales linearly with the small
fraction of important words in the whole corpus. Besides, a single deep neural
network classifier trained by our framework can be dynamically tuned to different
budget levels at inference time.

1 INTRODUCTION

Recent advances in deep neural networks (DNN) has improved the performance of natural language
processing tasks such as document classification, question answering, and sentiment analysis (Wu
et al., 2017; Seo et al., 2016; Socher et al., 2011; Yu et al., 2017). These approaches process the
entire text and construct representations of words and phrases in order to perform target tasks. While
these models do realize high accuracy, their computational-time scales linearly with the size of the
documents, which can be slow for documents containing many sentences. In this context, various
approaches based on modifying the existing RNN or LSTM architecture have been proposed Seo
et al. (2017); Yu et al. (2017) to speed-up processing. However, processing is still fundamentally
sequential, which in turn requires loading entire documents to process, limiting compute gains.

Contributions: We propose a novel test-time prediction method for efficient text classification on
long documents that mitigates sequential processing as seen in Fig. 1. Our method is a general
framework consisting of a selector and a classifier. The selector performs a coarse one-shot selection
deleting unimportant words and choosing important words in the input document. The collection of
fragmented sentences is input into the classifier, which then performs the target task.

The problem is challenging due to competing goals and requires joint training of selector and clas-
sifier functions. First, selector must have negligible overhead while being compatible with the ter-
minal classification task, since uncontrolled word-deletions cannot be handled during classification.
We adopt an architecture that integrates dual embeddings, one based on word-embeddings and the
other based on bag-of-words. Second, the challenge encountered by the classifier is that its input is
a sequence of fractured sentences that is incompatible with standard RNN/LSTM inputs and when
used without modification leads to significant performance degradation. One potential solution is to
train classifiers with a diverse collection of sentence fragments but this is not meaningful since there
are combinatorially many possibilities. A different approach rooted in so-called “blanking-noise,”
that randomly blanks out text, leads to marginalized feature distortion (Maaten et al., 2013) but this
also leads to poor accuracy. This is because DNNs leverage word combinations and word sequences,
which the marginalized distortion approach does not account for. We propose a data aggregation
framework (DAG) that augments the training corpus with outputs from selectors at different budget
levels. By training the classifier on the aggregated structured blank-out text, the classifier learns to
fuse fragmented sentences into a feature representation that mirrors the representation obtained on
full sentences and thus realizes high-accuracy. We show the effectiveness of the proposed approach
through comprehensive experiments on real-world datasets.
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Figure 1: An illustration of the proposed framework. A selector is designed to select words that are
relevant to the target task. These words are input into the classifier for processing. We aggregate
output text from different selectors and train the classifier on the aggregated data.

2 RELATED WORK

Fast Reading Text: Recent works have proposed test-time speed-up for DNNs. Wu et al. (2017)
and Choi et al. (2017) propose CNN based approaches to speed up question answering. Of particular
relevance are LSTM-jump (Yu et al., 2017) and skim-RNN (Seo et al., 2017), which are based on
modifying existing RNN/LSTM architectures. LSTM-jump learns to completely skip words deemed
to be irrelevant and a variant, skim-RNN, uses a low-complexity LSTM to skim words rather than
skipping. In contrast, we adopt existing classifier architectures but modify the training method.

Interpretability of Neural Networks: Our framework resembles Lei et al. (2016), who propose to
find snippets of input-text to serve as justification (rationales) for text classification. Their framework
also consists of a selector in cascade with a classifier. However, in their proposed embodiment, both
of these modules have similar complexity and in turn, require similar processing times during run-
time. In contrast, our goal is speed-up and we show that a simple selector works as well as a complex
one as long as the classifier can account for fragmented text.

Feature Selection in Text Classification: While text preprocessing such as stop-word removal is
conventional, they require pre-defined word lists and are not learned in conjunction with targeted
tasks. Various feature selection approaches (Chandrashekar & Sahin, 2014) have been discussed in
the literature. The most relevant to ours is to employ lasso (Tibshirani, 1996) or group lasso (Faruqui
et al., 2015) for learning sparse features. Different from these approaches, we directly learn a se-
lector along with the classifier. Besides, our selector chooses salient words of an instance (long
sentence). These words serve as input to a classifier (e.g., LSTM). This is very different from fea-
ture subspace selection methods, such as PCA or other dimensionality reduction methods, that map
an instance into low dimension space as this representation is not aligned with required LSTM input.

Data Aggregation: Aggregating data or models to improve the performance of a classifier has been
studied under various contexts. Bagging (Breiman, 1996) has been proposed to aggregate models
learned from different set of training samples. Here, we aggregate the output from selector instead
of models. Similar to us the DAGGER algorithm (Ross et al., 2010) has been proposed to account
for distorted inputs in reinforcement learning and imitation learning. DAGGER is iterative; at each
iteration, it updates its policy by training a classifier in a different reinforcement learning context.
In contrast, our blank-out datasets originate from the given training data and we aggregate these
datasets only once, as a means to obtain a rich collection of fragmented sentences.

Budgeted Learning: The literature on budgeted learning is vast but much of it focuses on a different
set of applications and problems than ours (see Viola & Jones (2001); Karayev et al. (2013); Xu
et al. (2013); Trapeznikov & Saligrama (2013); Strubell et al. (2015); Weiss & Taskar (2013); He
et al. (2013). Of relevance are methods for speed-up in DNN architectures Bengio et al. (2015);
Leroux et al. (2017); Lin et al. (2017); Bolukbasi et al. (2017). Different from our method, those
methods focus on gating different layers of an existing DNN towards conditional computation.
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Algorithm 1: Data Aggregated Training Schema
Input: Training corpus X , a set of selectors S = {Sb}, classifier class C
Output: A robust classifier CT

1 Initialize the aggregated corpus: T ← X
2 for Sb ∈ S do
3 Sb ← Train a selector Sb ∈ S with budget level b on X (see Sec 3.2)
4 Generate a blank-out dataset I(X , Sb)
5 Aggregate data: T ← T ∪ I(X , Sb)
6 CT ← Train a classifier C on aggregated data T
7 return CT

3 TEXT CLASSIFICATION ON A TEST-TIME BUDGET

Our goal is to build a robust classifier along with a suite of selectors to achieve good performance un-
der test-time budgets. Formally, a classifier C(x̂) takes a sequence of words x̂ as input and predicts
the corresponding output label y, and a selector Sb(x) with test-time budget b takes an input word
sequence x = {w1, w2, . . . , wN} and generates a binary sequence Sb(x) = {zw1 , zw2 , . . . , zwN

}
where zwk

∈ {0, 1} representing if the corresponding word wk is selected or not. We denote the
sub-sequence of words generated by the selector as I

(
x, Sb(x)

)
= {wk : zwk

= 1,∀wk ∈ x}. Our
framework aims to train a classifier C and selectors Sb such that I

(
x, Sb(x)

)
is sufficient to make

accurate prediction on the output label (i.e., C
(
I
(
x, Sb(x)

))
≈ C(x)). Here, the test-time budget b

can be viewed as a hyper-parameter of the selector to control the trade-off between test-time speed
and accuracy. Note that in contrast to some existing frameworks (e.g., Yu et al. (2017)), we build a
single classifier for different budgets. This design choice is due to a practical reason. The learned
parameters of a classifier is often much larger than of a selector (e.g., the number of parameters in
one of the classifiers used in our experiment is more than 88 million, while the size of the selector
is 300). As a result, storing different classifiers for different budgets is impractical.

Our learning framework is designed to overcome two main challenges: 1) how to train a classifier
C such that it can work with selectors Sb with different budget levels and different architectures? 2)
How to train a selector without explicit annotations about which words should be selected? For the
former, we propose a data aggregation framework (DAG) to augment blank-out outputs I(x, Sb(x))
from different selectors and trained the classifier C on the aggregated data. For the latter, we train
the selectors by leveraging the feedback from task labels. We discuss details below.

3.1 THE DATA AGGREGATION FRAMEWORK

For the ease of discussion, given a set of training data X = {(x1, y1), .., (xt, yt), .., (xm, ym)},
we assume we have a set of selectors S = {Sb} with different budget levels. We will discuss
how to obtain these selectors in Section 3.2. To generate an aggregated corpus, we first apply each
selector Sb ∈ S on the training set, and generate corresponding blank-out corpus I(X , Sb) ={
I
(
xt, Sb(xt)

)
,∀xt ∈ X

}
. Then, we create an new corpus by aggregating blank-out corpora with

different budget level: T =
⋃
Sb∈S I(X , Sb). Finally, we train the classifier CT on the aggregated

corpus T . As CT is trained on documents with distortions, it learns to make predictions with
different budget levels. The data aggregation training framework is summarized in Algorithm 1.

In the following, we discuss two extensions of the data aggregation framework. First, the blank-out
data can be generated from different classes of selectors with different features or architectures. In
practice, we observed that by aggregating selections from multiple selectors, the trained classifier
CT is more robust, leading to higher accuracy. Second, in the above discussion, we filter out unim-
portant words by selectors and aggregate the resulting corpora (we call it word-level aggregation
(WAG)). However, the blank-out and selection can be done in phrase or sentence level. Specifically,
if phrase boundaries are provided, we can leverage this information and design a phrase-level aggre-
gation (PAG) to avoid a selector from breaking compound nouns or meaningful phrases (e.g., “New
York”, “not so bad”). Similarly, for documents consisting of many short sentences, we can enforce
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the selector to pick the whole sentence if any word in the sentence is selected. In this way, we can
design a sentence-level aggregation (SAG) to better capture long phrases.

3.2 LEARNING A Selector

A selector in our framework should satisfy the following criteria. First, as our goal is to reduce
overall test time, the selector has to be computationally efficient. Second, the selected words have
to be informative for the classifier to achieve similar performance using the selected words as the
original input. Several existing works (e.g., Lei et al. (2016)) do not satisfy both conditions. For
example, Lei et al. (2016) proposed a framework to jointly learn a selector with a classifier, where
they consider the selector has the same complexity as the classifier as both of components are
implemented with RCNN architecture. As a result, the time complexity of running a RCNN selector
is as high as the classifier; therefore, it is not suitable to be used in our framework. In the following,
we consider two classes of selectors: 1) a selector with word embedding features trained jointly with
the classifier by a doubly gradient descent method, and 2) a selector trained by a L1-regularized
logistic regression with bag-of-words features.

Word Embedding (WE) selector. To achieve overall speedup gains, we consider a parsimonious
word-selector using word embeddings (e.g., GloVe Pennington et al. (2014)) as features to predict if
a word should be passed to the classifier. Intuitively, word embedding preserves the word semantics.
Therefore, for semantic-oriented tasks, word embedding is suitable to identify informative words for
predicting target labels.

Formally, for each instance x = (w1, w2, . . . , wN ), the WE selector outputs a binary vector z, where
zwk

is associated with wordwk. Let ~wk ∈ Rd be a word vector of wordwk, where d is the dimension
of the word embedding. We assume the informative words can be identified independently by word
embedding and consider modeling the probability that a word wk is selected by

P (zwk
|wk) = sigmoid(zwk

θT ~wk) =
1

1 + exp(−zwk
θT ~wk)

, (1)

where θS ∈ Rn is the model parameters of the selector Sb. Then, the selection of the entire docu-
ment x = {w1, w2, . . . , wN} is

P
(
Sb(x)|x

)
=
∏N

k=1
P (zwk

|~wk).

Because we do not have explicit annotations about which words are important, directly optimizing
Sb is unfeasible. Instead, we train the selector Sb with a classifier C. We denote the model parame-
ters of the classifier as θC . Given a training data (xt, yt) ∈ X (X is the training set), the classifier C
makes predictions based on a word sequences sampled from the selector (i.e., zt ∼ P

(
Sb(xt)|xt

)
).

For classification problems, we minimizing the negative log-likelihood (i.e., cross-entropy loss)
l(C, yt, I(xt, zt)) = − logPC(yt; I(xt, zt)), where PC is the probability distribution over candi-
date labels predicted by the classifier C. For regression problem, we minimizing the squared loss
based on L2 distance: l(C, yt, I(xt, zt)) = ‖yt−C(I(xt, zt))‖22. As in Lei et al. (2016), we consider
two `1-regularizers to promote sparsity and continuity of selections, respectively,

φ(z) = λ1‖z‖1 + λ2
∑n

k=1
|zwk

− zwk−1
|,

where λ1 and λ2 are hyper-parameters (a.k.a. budget level) and solve the overall objective

min
θS ,θC

Ext,yt∼XEzt∼P (Sb(xt)|xt)

[
l(C, yt, I(xt, zt)) + φ(zt)

]
,

by doubly stochastic gradient descent.

Bag-of-Words selector. We also consider a traditional approach to use an `1-regularized linear
model (Zou & Hastie, 2005; Ng, 2004; Yuan et al., 2010) with bag-of-word features to identify
important words necessary for a target task. To build intuition, consider binary classification with
output labels y ∈ {1,−1}. In the bag-of-word model, for each document x, we construct a feature
vector ~x ∈ {0, 1}|V |, where |V | is the size of the vocabulary. Each element of the feature vector
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~xw represents if a specific word w appear in the document x. Given a training data set X , the
`1-regularized logistic regression model optimizes

θ∗ = argmin
θ

∑
(xt,yt)∈X

log(1 + exp(−ytθT ~xt)) + b‖θ‖1,

where θ ∈ R|V | is a weight vector to be learned, θw corresponds to word w ∈ V , and b is a
hyper-parameter (i.e., selection budget).1 Based on the optimal solution θ∗, we construct a selector
that picks word w if the corresponding θ∗w is non-zero. That is the Bag-of-Words selector output,
Sb(x) = {δ(θw 6= 0) : w ∈ x}, where δ is an indicator function.

4 EXPERIMENTS

In this section, we evaluate the proposed approach on five real-world text classification datasets.
We first compare the proposed approach with existing budget learning methods, then we conduct
comprehensive analyses.

Experimental Setup We consider five datasets in the experiments. The statistics of the datasets
are summarized in Table 5 in the appendix. Stanford Sentiment Treebank (SST-2) (Socher et al.,
2013) is a binary classification problem in sentiment analysis. The dataset contains annotations
of sentiment labels for entire sentences and phrases. IMDB is described in Maas et al. (2011).
Each instance in the dataset is a paragraph of a movie review. Multi-Aspect is collected by Lei
et al. (2016). For this dataset, we use word embeddings provided with the dataset and apply both
RCNN and WE selector to aggregate the data. To compare our model with other approaches, we
follow Lei et al. (2016) to model this problem as a regression problem and use mean square error
(MSE) as the evaluation metric. AGNews: We collect the dataset from a public repository2 Zhang
et al. (2015). Each instance consists of a title and a small paragraph. Yelp is used in Conneau
et al. (2016). Each instance is a short paragraph of a restaurant review. For all tasks, we apply
the word-level aggregation (WAG). For datasets consisting of documents with multiple sentences
(YELP, IMDB) or have phrase boundary annotations, we also consider sentence-aggregation (SAG)
and phrase-aggregation (PAG) schemes.

Our framework is generic and can leverage different types of classifiers. Therefore, we evalu-
ate our framework with the following two neural network architectures: Biattentive Classifica-
tion Network (BCN): BCN is a generic text classification model (McCann et al., 2017). It com-
prises Bi-LSTM, Bi-attention, and Maxout networks. BCN provides a strong baseline on many
datasets, including SQuAD, SST, IMDB, and several others. We use the implementation in Al-
lenNLP (https://allennlp.org/). LSTM: LSTM model is widely used for text classifica-
tion (Zhang et al., 2015; Seo et al., 2016). LSTM sequentially reads words in a passage and updates
its hidden state to capture features from the text. Both LSTM-jump and Skim-RNN are built upon
LSTM. Besides evaluating our framework with the BCN and the LSTM classifiers, we also analyze
the data aggregation framework with Recurrent Convolution Neural Network (RCNN). RCNN
is a refined local n-gram convolutional neural network model. The recurrent part learns the aver-
age features in a dynamic fashion and the convolution part learns the n-gram features that are not
necessarily contiguous. For selectors, we consider both selectors discussed in Sec. 3.2. To demon-
strate the speed and quality of the selectors, we compare them with an RCNN selector used in Lei
et al. (2016). By default, we use WAG selection scheme and aggregate the data using different
WE selectors with budgets (i.e., fraction of text to select) {0.5,0.6,..,1.0} (See Section 3.1, 3.2),
Glove (Pennington et al., 2014) word embeddings) and evaluate in terms of accuracy or error (error
= 1 - accuracy) unless stated otherwise. 3

4.1 EVALUATION

First, we compare our framework with the following approaches: 1) Baseline: the original classifier.
2) LSTM-jump Yu et al. (2017): accelerating LSTM inference by skipping words. 3) Skim-RNN Seo
et al. (2017): applying a low-complexity LSTM to model unimportant words. Seo et al. (2017) report

1In our experiment, we use the implementation in scikit-learn.
2https://github.com/mhjabreel/CharCNN/tree/master/data/ag_news_csv
3For more details on experimental settings, See Appendix.

5

https://allennlp.org/
https://github.com/mhjabreel/CharCNN/tree/master/data/ag_news_csv


Under review as a conference paper at ICLR 2019

Model SST-2 IMDB AGNews Yelp
Acc(%) speedup Acc (%) speedup Acc (%) speedup Acc (%) speedup

LSTM Classifier

LSTM-jump - - 89.4 (+0.3) 1.6x 89.3 (+1) 1.1x - -
skim-RNN-1 85.6 (-0.8) 1.5x 88.7 (-2.4) 1.5x 93.3 (-0.2) 1x - -
skim-RNN-2 86.4 (0) 1.7x 90.9 (-0.2) 2.7x 92.5 (-1) 0.8x - -

Baseline 85.2 1x 92.0 1x 92.8 1x 66.7 1x
Stop-words 84.0 (-1.2) 1x 91.1 (-0.9) 1.8x 92.7 (-0.1) 1x 64.3 (-2.4) 1.7x
Bag-of-Words 82.2 (-3.0) 1.3x 89.7 (-2.3) 1.2x 90.1 (-2.7) 1.2x 60.6 (-6.1) 1.5x

Our framework 82.9 (-2.3) 1.3x 91.1 (-0.9) 1.2x 92.3 (-0.5) 1.2x 64.5 (-2.2) 1.5x
86.4 (+1.2) 1x 92.1 (+0.1) 1x 92.9 (+0.1) 1x 66.4 (-0.3) 1x

BCN Classifier

Baseline 85.7 1x 91.0 1x 92.3 1x 66.5 1x

Stop-words 82.2 (-3.5) 1x 91.2 (+0.2) 1.8x 92.8 (+0.5) 1x 64.7 (-1.8) 1.7x
Bag-of-Words 78.8 (-6.9) 1.7x 90.4 (-0.7) 1.2x 91.7 (+0.7) 1.3x 59.7 (-6.8) 1.6x

Our framework 82.6 (-3.1) 2x 92.0 (+1) 1.2x 93.1 (+0.8) 1.3x 64.8 (-1.7) 1.6x
85.3 (-0.4) 1x 92.1 (+1.1) 1x 93.2 (+0.9) 1x 66.3 (-0.2) 1x

Table 1: Test performance and overall speedup on the Test set. Our reported speedup refers to full
pipeline (selection + classification) test-time in comparison with the baseline classifier. LSTM-
jump and Skim-RNN use a different baseline classifier, and we report the difference in accuracy in
parentheses. We report the best result of models tuned on the Dev set. All results are the average
of 3 runs. For each classifier in the table, our framework has two rows of results. First one (top
row) denotes the best speedup performance and the second one (bottom row) denotes the best text
accuracy achieved by our framework. Best performance and best speed-up are boldfaced.

results with four different parameter settings. As we do not have access to the performance of their
model on dev set, we cannot perform model selections. Therefore, we report two of the best results
shown in their paper. 4) Stop-Words: We filter out stop-words by the list of stop-words provided by
NLTK (https://www.nltk.org/). This approach is widely used as a prepossessing step and
is viewed as a naive baseline. 5) Bag-of-Words: Filter words by the Bag-of-Word selector in Sec 3.2
and feed the fragments of sentences to the original classifier. This approach has been considered in
the context of linear models (e.g., Chang & Lin (2008)).

We conduct experiments on all datasets except Multi-Aspect, as we do not have performances of
LSTM-jump and Skim-RNN on it. We will use Multi-Aspect to analyze the proposed approach and
compare with Lei et al. (2016). We evaluate our framework with two widely used text classification
models, LSTM, and BCN. As both Skim-RNN and LSTM-jump are designed specifically for accel-
erating the LSTM model, we only compare them with our model with LSTM classifier. Besides both
of these models built upon LSTM with slighlty different baseline accuracy. To make the comaprison
fair, we also report the difference in accuracy with respect to each of their baseline model.

The accuracy and speed-up of all the methods are shown in Table 1. The results show that our
framework achieves competitive performance to both LSTM-jump, and skim-RNN. In particular,
despite skim-RNN performs well in SST-2 and IMDB, it is unstable and is hard to control the trade-
off between performance and the test-time budget. For example, Skim-RNN-2 is slower than the
baseline method with significant accuracy drops. In contrast, our model is more stable and achieves
reasonable performance under different budgets (details will be demonstrated in Sec. 4.2). Besides,
our model allows to naturally incorporate fine-grained annotations in word and phrase levels. For
example, if we leverage the sentiment annotations for phrases in SST-2, our model achieves 86.4
with 1.3x speedup for LSTM and 86.7 with 1.7x speedup for BCN. Although Stop-words achieves
notable speedup, it sometimes comes with a significant performance drop. This is due to the Stop-
words used for filtering text are not learned with the class labels; therefore, some meaningful words
(e.g., “but”) are filtered out even if they play a very significant role in determining the polarity of the
full sentence. Besides, we are not able to control the budget in the Stop-words approach. Compared
to Bag-of-Words, our framework achieves better performance, highlighting the fact that the issue of
classifier incompatibility is real. By training classifier with the proposed aggregation framework,
the model is robust to the distortions and achieves better performance. Finally, we observed that the
classifiers trained with data aggregation improves both the baselines with LSTM and BCN on full-
text. By aggregating fragments picked by selectors, the model can put more emphasis on important
words and be more robust to the noise in the input document.
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(a) Multi-Aspect (b) Multi-Aspect (c) IMDB
Figure 2: The performance versus the fraction of selected words on Multi-Aspect and IMDB
datasets. We present results using RCNN and LSTM classifier and varying the sparsity, and co-
herent hyper-parameters (see Equation 3.2) of the corresponding selector. (C), (S), and (A) denote
classifier, selector and data aggregation scheme. Results demonstrate that with the data aggregation
framework (SAG/WAG), a simple WE selector is competitive with a complex RCNN selector.

4.2 ANALYSIS

In the rest of this section, we provide comprehensive analyses. To compare with (Lei et al., 2016),
we conduct experiments on Multi-Aspect and IMDB, but conclusions are similarly on other datasets.

Performance vs. Selected Words. Figure 2 demonstrates the trade-off between the performance
and the fraction of words selected by each setting. Overall, the error increases when the fraction
of the text selected is lower. On the Multi-Aspect dataset (see Figure 2(a)), the performance of the
proposed WE selector is competitive with the complex RCNN selector. With training the classifier
with word-level data aggregation strategy, the model further improves and requires only 12% of
selected text to achieves an error rate within 0.1% of full-text. Similarly, the WE selector and its
variant perform well when the classifier is an LSTM model (see Figure 2(b)). The mean square
error (MSE) of a standard LSTM classifier on Multi-Aspect dataset is 0.01250 and our framework
outperforms it achieving MSE 0.01188 with only 28% of text. On the IMDB data (see Figure 2(c)),
WE selector has similar performance trade-off as the RCNN selector and further confirms that a
simple selector is sufficient for identifying rationales. With sentence-level data aggregation, the
model performs the best and achieves lower error rate than the baseline RCNN model. To achieve
the same accuracy, our approach needs much smaller fraction of text.

Performance vs. Test Time. Next, we report the performance versus test running time in Figure
3. While RCNN selector performs well in identifying important words, its complexity is too high
and the overall test-time is 2X higher in all cases (see Figure 3(a), 3(d)). In Figures 3(b), 3(c), we
show that our framework with data aggregation achieves around 2.5x speed up for RCNN and LSTM
classifier on the Multi-Aspect dataset at accuracy level of MSE=0.012. Similar results on IMDB are
also demonstrated in Figures 3(e), 3(f).

Robust Sentence Representation.

The DNN classifier can be viewed as a representation learner in cascade with a linear classifier (the
last softmax layer). Our data aggregation schema enables the representation learner to be robust to
the distortions in the input sentences and effectively estimate the representation of a full sentence
when only given its fragments. To demonstrate this, we output the latent feature vectors produced
by the representation learner and estimate the differences between the vectors when full documents
and the fragmented documents are inputted. Results show that, on the AGNews test corpus, the
differences in average cosine distances are 0.81 and 0.56 when using the original classifier and the
classifier trained with DAG, respectively. This confirms the proposed approach has an effect of
extrapolating to features obtained with full-text even when many words are deleted.

Qualitative Analysis. One advantage of the proposed framework is that the output of the selector is
interpretable. In Table 2, we present three examples from the AGNews dataset. Results demonstrate
that our framework correctly identifies words such as “Nokia”, “nuclear”, “plant”, “Shane Warne”,
“software” and phrases such as “searched by police”, “takes six but India established handy lead”
as important to the document classification task. It also learns to filter out words (e.g., “Aug.”,
“products”, “users”) that are less predictive to the classification labels.
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(a) Multi-Aspect (b) Multi-Aspect (c) Multi-Aspect

(d) IMDB (e) IMDB (f) IMDB
Figure 3: The performance versus test running time on Multi-Aspect and IMDB datasets. Results
demonstrate that RCNN selector is significantly slower than WE due to its high complexity. The data
aggregation framework (SAG/WAG) achieves better performance given the same test-time budget.

World News Japanese nuclear plant searched . Kansai Electric Power #39;s nuclear power plant in Fukui, Japan, was searched by
police Saturday during an investigation into an Aug. 9 mishap.

Sports Warne takes six but India establish handy lead (Reuters) . Reuters- World test wicket record holder Shane Warne
grabbed six wickets as India established a handy 141-run first innings lead in the second test on Saturday.

Sci/Tech
Handset Makers Raising Virus Defenses (Reuters) . Reuters - Software security companies and handset makers,
including Finland’s Nokia (NOK1V.HE), are gearing up to launch products intended to secure cell phones from
variants of the Internet viruses that have become a scourge for personal computer users.

Table 2: Examples of the WE selector output on AGNews. Bold words are selected by the se-
lector, while the remainder are filtered out. Although words like “during an” seem unimportant,
appearing in phrases like “bomb exploded during an Independence Day parade” (World-News) and
“undefeated during an entire season” (Sports-News), provide a hint to understand the sentences.

Latency Analysis. In contrast to skim-RNN and LSTM-Jump that sequentially visit the words in
a passage. Our model design allows the WE, and Bag-of-Words selectors to process words in a
passage in parallel. In practice, as the computation involved in our proposed selectors is simple, the
running time of the selector can be negligible. For example, the WE selector takes overall only 14s
seconds to identify important words on the Yelp dataset, and the LSTM models take up to 316.5 sec-
onds to process the selected words. The benefit is more obvious when the text classification model is
employed in a cloud computing setting. The local devices (e.g., smart watches or mobile phones) do
not have sufficient memory and computational power to execute a complex classifier. Therefore, the
test instance has to be sent to a cloud server and classified by the model on the cloud. In this setting,
our approach can employ the selector in the local device, and send only important words to the cloud
server. In contrast, skim-RNN and LSTM-jump, which process the text in a sequential nature must
either send the entire text to the server or require multiple rounds of communication between the
server and local devices. In either case, the network latency and bandwidth may restrict the speed
of the classification framework. For WE, and Bag-of-Words selector, selection depends only on
the embedding, and the unigram word itself respectively. Instead, we can cache the predictions and
store only a list of important words to save memory.

5 CONCLUSION

We proposed a budgeted learning framework for learning a robust classifier under test-time bud-
get constraints. We demonstrated that training classifiers with data aggregation work well with
low-complexity selectors based on word-embedding or bag-of-word model and achieve good per-
formance with fragmented input. The future work includes applying the proposed framework to
other text reading tasks and improving the data aggregation strategy by applying learning to search
approaches (Chang et al., 2015).
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He He, Hal Daumé III, and Jason Eisner. Dynamic Feature Selection for Dependency Parsing. In
EMNLP, pp. 1455–1464, 2013.

Sergey Karayev, Mario Fritz, and Trevor Darrell. Dynamic feature selection for classification on a
budget. In International Conference on Machine Learning (ICML): Workshop on Prediction with
Sequential Models, 2013.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola. Rationalizing neural predictions. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016.

Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens,
and Bart Dhoedt. The cascading neural network: building the internet of smart things. Knowledge
and Information Systems, pp. 1–24, 2017.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 2181–2191. Curran Associates, Inc., 2017.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

Laurens Maaten, Minmin Chen, Stephen Tyree, and Kilian Weinberger. Learning with marginalized
corrupted features. In International Conference on Machine Learning, pp. 410–418, 2013.

Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. Learned in translation:
Contextualized word vectors. In Advances in Neural Information Processing Systems, pp. 6297–
6308, 2017.

9



Under review as a conference paper at ICLR 2019

Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In Proceedings
of the twenty-first international conference on Machine learning, pp. 78. ACM, 2004.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014.
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APPENDIX

We report the statistics of the datasets in Table 3.

Dataset #class Classification Task Vocabulary Size (Train/Dev/Test) Avg. Len

SST 2 Sentiment Analysis 13,750 6,920 / 872 / 1,821 19
IMDB 2 Sentiment Analysis 61,046 21,143/3,857/25,000 240
AGNews 4 News Classification 60,088 101,851/18,149/7,600 43
Yelp 5 Sentiment Analysis 1,001,485 600k/50k/50k 149
Multi-Aspect 10 Sentiment Analysis 147,761 51,675/1,000/1,000 144

Table 3: Statistics of the datasets we evaluate our framework on.

MORE EXPERIMENTAL SETTINGS

For the data aggregation on Multi-Aspect dataset, we use budgets {0.1, 0.2, .., 1.0} with WE selec-
tors. For data aggregation on SST-2, we use the Bag-of-Words selectors. Both for the BCN and
LSTM classifier, we use Allennlp implementation, Adam optimizer, learning rate 0.001, 300 di-
mensional Glove embeddings with dropout 0.25, batch size 32, and the corresponding architecture
of the classifier is 2 layered (i.e., encoder, integrator), a 3 feed-forward linear layers with dropout
[0.2, 0.3, 0.0], maxpolling and softmax layer.
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