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Abstract
We introduce a new language construct, stat, which converts
the description of the Markov kernel of an ergodic Markov
chain into a sample from its unique stationary distribution.
Up to minor changes in how certain error conditions are han-
dled, we show that language constructs for soft-conditioning
and normalization can be compiled away from the extended
language. We then explore the problem of approximately im-
plementing the semantics of the language with potentially
nested stat expressions, in a language without stat. For a
single stat term, the natural unrolling yields provable guar-
antees in an asymptotic sense. In the general case, under uni-
form ergodicity assumptions, we are able to give quantitative
error bounds and convergence results for the approximate
implementation of the extended first-order language. We
leave open the question of whether the same guarantees can
be made assuming mere geometric ergodicity.

1 Introduction
Approximations are ubiquitous for any practical implemen-
tation of a probabilistic programming language (PPL) for
Bayesian modelling; This is because computing the normal-
ized posterior of a Bayesian model is intractable. Broadly
speaking, there are two types of implementations for com-
puting the “approximate” posterior: 1) Languages like Stan,
Church, and Venture use versions of Markov chain Monte
Carlo (MCMC) algorithm to approximate the posterior; 2)
Languages like Tensorflow Probability and Pyro use varia-
tional inference to approximate the posterior [Abadi et al.
2015; Bingham et al. 2019; Carpenter et al. 2017; Goodman
et al. 2012; Tolpin et al. 2016]. A reasonable question to ask is:
Can probabilistic programming systems quantify the error
induced by these approximations? Also, do we know how
the error scales under composition of multiple “approximate”
programs and nested queries?
The answer to both the questions is no. One reason is

that the semantics of probabilistic languages is not amenable
to approximations introduced by the compiler of these real
world languages. In this paper we bridge the gap between
ideal semantics of probabilistic programming languages and
approximations induced by compilers that use MCMC based
inference engines. We do this by proposing a new language
construct, stat, that takes as input an initial distribution and
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a Markov kernel, and outputs the unique stationary distribu-
tion corresponding to the Markov kernel, if there exists one.
We show that having stat in the language is "essentially"
equivalent to having constructs norm and score that com-
pute the posterior distribution. Then in Section 5.1, we give
the approximate compiler for the stat construct based on
a unrolling scheme. We then identify some semantic con-
straints on the Markov kernel given as argument to the
stat construct under which we can derive quantitative error
bounds on a program.

2 Related Work
This work builds on top of the foundations laid by Sta-
ton [2017]; Staton et al. [2016] that gives semantics to the
first order probabilistic languages with construct norm and
score. Previously Borgström et al. [2016]; Hur et al. [2015];
Ścibior et al. [2017] have proves the asymptotic correctness
of Markov Chain Monte Carlo based inference algorithms,
but the do not quantify the error due to finite computation.
Rainforth [2018] gives quantitative bounds on the error

due to nested Monte Carlo approximations in probabilistic
programs; But this work assumes that we can produce exact
samples when the queries are nested.

In the Markov chain literature, following papers study the
convergence of Markov chain when the transition kernel
is approximate [Medina-Aguayo et al. 2018; Roberts et al.
1998]. This is relevant for nested queries. Also, Medina-
Aguayo et al. [2018] gives quantitative convergence bounds
for Metropolis–Hastings algorithm when the acceptance
probability can only be accessed in an approximate manner.

3 Language for MCMC inference
We first give an idealized first-order probabilistic language
with the proposed construct stat that takes as input a transi-
tion kernel for a Markov chain on some state space and re-
turns the stationary distribution associated with the Markov
chain. The language we present is based on the first-order
probabilistic language introduced and studied by Staton et al.
[2016] and Staton [2017], which has constructs for sam-
pling, soft constraints, and normalization. The key differ-
ences, which we highlight again below, are (i) a syntactic
distinction between probabilistic terms with and without
soft constraints, which affects also typing, and (ii) the intro-
duction of the new construct, stat.
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Types:

A0,A1 ::= R | 1 | P(A) | A0 × A1 |
∑
i ∈N

Ai

Terms:

deterministic:

a0,a1 ::= x | ∗ | (a0,a1) | (i,a) | πj (a) | f (a)

| case a of {(i,x) ⇒ ai }i ∈I

purely probabilistic:

t0, t1 ::= sample(a) | return(a) | let x = t0 in t1

| case a of {(i,x) ⇒ ti }i ∈I

| stat(t0, λx .t1) | norm(v)

probabilistic:

v0,v1 ::= t | let x = v0 in v1

| case a of {(i,x) ⇒ vi }i ∈I

| score(a)
Program:
t is a program if t is a purely probabilistic

with no free variables

Figure 1. Syntax for the probabilistic language: Lnorm

3.1 First order language with “stat”
We begin with types and syntax of the language, presented
in Figure 1. For the remainder of this paper we call this
language Lnorm. Along with standard types, this language
has a type R for real numbers and a type P(A) as a type for
the space of probability measures on A. The language has
all the basic constructors, destructor, case statements, and
sequencing. Along with standard programming language
constructs, the language has probabilistic features including
sample statements that takes in a probability measure as
input and returns a sample from it, score statements that
scales the prior programwith likelihood, and norm term that
takes an un-normalized measure and returns the normalized
probability measure.
Here, we give a very brief review of the semantics of the

language. For a detailed account, we refer the readers to
Staton [2017]. Types in the language are interpreted as mea-
surable spaces (⟦A⟧, Σ⟦A⟧). As in [Staton et al. 2016], each
term in the language is either deterministic or probabilis-
tic, satisfying typing judgments of the form Γ d t : A and
Γ p t : A, respectively, given some environment/context
Γ = (x1 : A1, ...,xn : An). Letting ⟦Γ⟧ = ∏n

i=1⟦Ai⟧, a de-
terministic term denotes a measurable function from the
environment ⟦Γ⟧ to ⟦A⟧. As in [Staton 2017], a probabilistic
term denotes an S-finite kernel from ⟦Γ⟧ to ⟦A⟧. Different

from Staton [2017]; Staton et al. [2016], we distinguish a sub-
set of probabilistic terms we call purely probabilistic, which
satisfy an additional typing judgment Γ p1 t : A. A purely
probabilistic term denotes a probability kernel from ⟦Γ⟧ to
⟦A⟧. Departing again from Staton [2017]; Staton et al. [2016],
a program in our language is a purely probabilistic term with
no free variables.

3.1.1 Sequencing and sampling terms
In addition to standard let statements and return statements
for sequencing, the language has a construct for producing
a random sample from a probability distribution.
As in [Staton 2017], the semantics of the let construct is

defined in terms of integration as follows:

⟦let x = t1 in t2⟧γ ,A def
=

∫
⟦A⟧

⟦t2⟧γ ,x,A⟦t1⟧γ ,dx

Since both t1 and t2 are probabilistic terms, both are inter-
preted as S-finite kernels; The category of S-finite kernels
is closed under composition, thus the term let x = t1 in t2 is
also interpreted as an S-finite kernel.
The semantics of the return statement is given by the

kernel ⟦return(t)⟧ : ⟦Γ⟧ × Σ⟦A⟧ → [0, 1]

⟦return(t)⟧γ ,A def
=

{
1 if ⟦t⟧γ ∈ A

0 otherwise

Finally the sample statement takes in as argument a deter-
ministic term of type P(A) that is it takes in as argument a
probability measure on the space ⟦A⟧. Thus the semantics
is given as:

⟦sample(t)⟧γ ,A = ⟦t⟧γ ,A,
where ⟦t⟧γ ∈ ⟦P(A)⟧.
3.1.2 Soft constraints and normalization terms
We are studying a probabilistic language for Bayesian infer-
ence; We have terms in the language that is used to scale
the prior by the likelihood of some observed data and a term
that re-normalizes the scaled measure to return the posterior
distribution over the return type. The constructs score and
norm are the constructs that, respectively, scale the prior
program, and normalize the program to return the posterior
probability distribution on the output type, if there exists
one. The semantics for the score construct are given by a
S-finite kernel on the unit type, 1, as follows:

⟦score(a)⟧γ ,A =
{��⟦t⟧γ �� if A = {()}

0 otherwise

The main difference between this semantics and the deno-
tational semantics of the language proposed in Staton [2017];
Staton et al. [2016] is in the semantics of norm. We interpret
the semantics of norm terms as a probability kernel on the
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sum space given as ⟦norm(t)⟧ : ⟦Γ⟧ × ΣA+1 → [0, 1] defined
as

⟦norm(t)⟧γ ,A =

⟦t⟧γ , {u |(0,u)∈A}

⟦t⟧γ ,⟦A⟧ if ⟦t⟧γ ,⟦A⟧ ∈ (0,∞)

0 else if (1, ()) < A
1 else if (1, ()) ∈ A

,

where A ∈ ⟦A + 1⟧. The key distinction is that we are not
able to determine if the term ⟦t⟧γ is an infinite measure or a
null measure.

3.1.3 Stationary terms
One of the main contributions of this paper is that we pro-
pose a new feature in the probabilistic language that takes
as argument a Markov chain transition kernel on some state
space and returns the stationary distribution associated with
the kernel.
We do this by allowing the users to define a transition

kernel on some measurable space using a standard lambda
expression. Following is the syntax and typing rules for the
stationary term:

Γ p1 t0 : A Γ,x : A p1 t1 : A

Γ p1 stat(t0, λx .t1) : A + 1
.

To give the denotational semantics for the stat-term, we
first introduce to the meta language to define the function
ST: ⟦P(A)⟧⟦A⟧ → ⟦P(A)⟧ + 1 as follows: For some k : X ×

ΣX → [0, 1],

ST(k) =


(0, µ) if µ is unique and


µ(·) − ∫

X k(x , ·)µ(dx)




tv
= 0

(1, ()) otherwise

.

Now, we define the semantics to the stationary term as:

⟦stat(t0, λx .t1)⟧γ ,A =



µγ (A) if ST(⟦t1⟧γ ) = (0, µγ )
0 if ST(⟦t1⟧γ ) = (1, ()) and

(1, ()) < A
1 if ST(⟦t1⟧γ ) = (1, ()) and

(1, ()) ∈ A.

4 Removing soft constraints and
normalization terms from Lnorm

So far we have modified the probabilistic language proposed
by Staton et al. [2016] to include a new construct stat. Con-
sider the language in Figure 2. We call this language Lstat.
The key difference between the Lstat and Lnorm is that Lstat
does not have the language constructs for soft constraints
and normalization. Following theorem says that Lstat is
equivalent to Lnorm.

Theorem 4.1 (Equivalence). For the languages Lnorm and
Lstat, there exists a function ϕ that maps Lnorm-phrases to

Types:

A0,A1 ::= R | 1 | P(A) | A0 × A1 |
∑
i ∈N

Ai

Terms:

deterministic:

a0,a1 ::= x | ∗ | (a0,a1) | (i,a) | πj (a) | f (a)

| case a of {(i,x) ⇒ ai }i ∈I

purely probabilistic:

t0, t1 ::= sample(a) | return(a) | let x = t0 in t1

| case a of {(i,x) ⇒ ti }i ∈I

| stat(t0, λx .t1)
Program:
t is a program if t is a purely probabilistic

with no free variables

Figure 2. Syntax for the probabilistic language: Lstat

Lstat-phrases such that under the semantics described in Sec-
tion 3 following statements hold:

• ϕ(t) is an Lstat-program for all Lnorm programs t ;
• φ(F(e1, . . . , ea)) = F(φ(e1), . . . ,φ(ea)) for all features
of Lstat

• For all programs t , and for all γ ,


⟦t⟧γ − ⟦ϕ(t)⟧γ




tv = 0

Proof idea. First, we identify that all score terms in a pro-
gram in Lnorm is encapsulated in the norm statement. For
every norm statement in a program, we can construct a
Markov kernel that proposes a move with the prior probabil-
ity distribution described by the program; Then accept/reject
the move using the standard Metropolis–Hastings accep-
tance probability. This transition kernel has the stationary
distribution that is semantically equivalent to the normalize
term. Thus we can use the stat construct to compile away
norm and score. □

5 Approximate compilation of
probabilistic programs

We saw in Section 3, to compute the the normalized measure
one term norm(t) from an un-normalized probabilistic term
t , we need to compute a normalization factor

∫
⟦A⟧⟦t⟧γ ,dx .

In the previous section we showed that the language Lnorm,
that includes norm construct, is equivalent to the language
Lstat that doesn’t have the norm construct. Unfortunately,
Lstat still includes the language construct stat and comput-
ing the stationary distribution for arbitrary Markov kernels
is also computationally intractable. One advantage of using
stat construct over norm is that there exists approximate
compilation for the stat construct that, under some suitable
assumptions are amenable to error quantification. In this

3
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section we begin by giving a broad semantic constraints that
needs to be imposed on the Markov kernels programming
language under which we can give an approximate compila-
tion scheme for a single stat construct which is asymptot-
ically exact. We later impose stricter semantic restrictions
that allows us to give quantitative bounds on error bounds
associated to the approximate compilation of program with
multiple stat terms, including nested queries.

5.1 Approximate implementation for stat terms
Before giving an approximate compilation for a stat term,
we first make an assumption on the inputs to the stat terms.

Assumption 1. For a term Γ p1 stat(t0, λx .t1) : A + 1 in
the language, we make the following assumptions for all γ ,
⟦t1⟧γ is an ergodic Markov kernel with stationary distribution
πγ ∈ M⟦A⟧ and ⟦t0⟧γ is such that:

lim
N→∞





∫⟦A⟧⟦t1⟧Nγ ,x (·)⟦t0⟧γ ,dx − πγ (·)






tv
= 0

Under Assumption 1, there exists a simple program trans-
formation via iteration that approximates the stat-term. First,
let’s inductively define syntactic sugar iterate as follows:

iterate0(t0, λx .t1) := t0

iterateN (t0, λx .t1) := let x = iterateN−1(t0, λx .t1) in t1

The semantics of the approximate program transformation
is given as:

⟦iterateN (t0, λx .t1)⟧γ =
∫

⟦t1⟧Nγ ,x⟦t0⟧γ (dx)
Given these syntactic sugar, now we given the program

transformation ϕ as follows:

ϕ(stat(t0, λx .t1),n)
def
= iteraten(t0, λx .t1)

Even though the Assumption 1 yields an asymptotically
exact compilation scheme for the stat construct, a program
with nested stat terms down not behave well in general. This
is highlighted in the following problem.

Problem 1. Semantics of the stat construct is not continuous,
i.e., for some term Γ p1 stat(t0, λx .t1) : A + 1 if we know
that ⟦t1⟧γ ,x is an ergodic kernel that has a unique stationary
distribution, it is possible to construct an approximate imple-
mentation of the Markov transition kernel λx .t ′1 such that

∃δ ∈ (0, 1)∀γ ,x . 

⟦t1⟧γ ,x − ⟦t ′1⟧γ ,x


 ≤ δ ,

but the Markov kernel ⟦t ′1⟧γ ,x does not have a stationary dis-
tribution. Such an example is given in proposition 1 of Roberts
et al. [1998].

To side step the issue stated in Problem 1, we need to make
further semantic restrictions on the Markov kernels passed
in as input to the stat construct. In this paper we identify
that if the transition kernel given to the stat construct is
uniformly ergodic, then stat construct is continuous.

Definition 5.1. A Markov chain with transition kernel P :
⟦A⟧ × Σ⟦A⟧ → [0, 1] is uniformly ergodic with stationary
distribution π if there exists C ∈ [0,∞), ρ ∈ [0, 1) such that
for all x ∈ ⟦A⟧ 

PN (x , ·) − π (·)




tv ≤ CρN

5.2 Quantitative error bounds
We finally state the quantitative error bounds for an ap-
proximate probabilistic programs where each stat term is
uniformly ergodic.
Theorem 5.2 (Quantitative error bound for probabilistic
programs). Let P be a probabilistic program in the proposed
language. Let {stat(t0i , λx .t1i )}i ∈I be the set of all stationary
terms in the program ∅ p1 P : B such that ∀γ , there ex-
ists constants {Ci } and {ρi } such that ⟦t1i⟧γ is uniformly
ergodic with those constants. Let P ′ be a program where ∀i ∈
I , stat(t0i , λx .t1i ) is replaced by ϕ(stat(t0i , λx .t1i ),Ni ) where
Ni ∈ N, then there exists constants

{
C ′
i

}
i ∈I such that

⟦P⟧γ − ⟦P ′⟧γ




tv ≤

∑
i ∈I

C ′
iρ

Ni
i .

Proof. In appendix. □

6 Summary and Discussion
Markov chainMonte Carlo algorithms are workhorses for ap-
proximate computation of the normalized posterior distribu-
tion. MCMC algorithms are popular because we they give us
asymptotic convergence guarantees and are commonly used
as "approximate" compilers for probabilistic programming
languages. In this abstract we proposed a novel language
construct stat that allows us give a formal description for
such compilers. We then gave a simple compiler description
that again at its core implements an MCMC algorithm. Typi-
cally quantifying the rate at which Markov chain with some
given transition kernel converges is an open problem and the
one we do not attempt to solve in this paper. We make a se-
mantic assumption that the user using our language provides
us with a description of the Markov kernel that converges
uniformly to the corresponding target distribution. We show
that under this uniform convergence property, we can derive
rates at which the approximate compiler converges to the
original program.

The assumption for uniform ergodicity is crucial for us to
derive the quantitative bound. The main difficulty we found
in relaxing the uniform ergodicity assumption is the fact that
our language allows us to nest the stat. We leave as open
problem if we can relax the uniform ergodicity assumption.
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A Proof of Theorem 5.2
Before we prove the Theorem 5.2, we prove the following
proposition that characterizes the uniform continuity of
let and case statements under uniform ergodicity assump-
tion.

Proposition A.1. The following statements hold:

1. Let
[
Γ p1 t0 : A

]
,
[
Γ p1 t ′0 : A

]
,
[
Γ,x : A p1 t1 : B

]
,

and
[
Γ,x : A p1 t ′1 : B

]
be purely probabilistic terms.

If for all γ ∈ Γ,


⟦t ′0⟧γ − ⟦t0⟧γ




tv ≤ α and for all

⟦x⟧γ ∈ ⟦A⟧,

⟦t ′1⟧γ (⟦x⟧γ ) − ⟦t1⟧γ (⟦x⟧γ )



tv ≤ β

then

⟦let x = t0 in t1⟧γ − ⟦let x = t ′0 in t ′1⟧γ



tv ≤ α + β

2. Let
[
Γ,x : Ai p1 ti : B

]
and

[
Γ,x : Ai p1 t ′i : B

]
, such

that

∀i ∈ I ,∀x ∈ ⟦Ai⟧,


⟦t ′i ⟧γ ,x − ⟦ti⟧γ ,x




tv ≤ αi






⟦case a in
{
(i,x) ⇒ t ′i

}
i ∈I ⟧γ−

⟦case a in {(i,x) ⇒ ti }i ∈I ⟧γ







tv

≤ sup {αi }i ∈I

Proof. 1. For the let construct:



∫ ⟦t1⟧γ ,x⟦t0⟧γ ,dx −

∫
⟦t ′1⟧γ ,x⟦t ′0⟧γ ,dx






tv

≤





∫ ⟦t1⟧γ ,x⟦t0⟧γ ,dx −

∫
⟦t ′1⟧γ ,x⟦t0⟧γ ,dx






tv

+





∫ ⟦t ′1⟧γ ,x⟦t0⟧γ ,dx −

∫
⟦t ′1⟧γ ,x⟦t ′0⟧γ ,dx






tv

=





∫ (⟦t1⟧γ ,x − ⟦t ′1⟧γ ,x
) ⟦t0⟧γ ,dx 





tv

+ sup
A

����∫ ⟦t ′1⟧γ (x ,A)⟦t0⟧γ ,dx −

∫
⟦t ′1⟧γ (x ,A)⟦t ′0⟧γ ,dx

����
≤

∫
sup
x ′



⟦t1⟧γ (x ′) − ⟦t ′1⟧γ (x ′)



tv ⟦t0⟧γ ,dx

+ sup
f ≤1

����∫ f (x)⟦t0⟧γ ,dx −

∫
f (x)⟦t ′0⟧γ ,dx

����
=

∫
β⟦t0⟧γ ,dx + α

=α + β

2. For the case construct:




⟦case a in
{
(i,x) ⇒ t ′i

}
i ∈I ⟧γ−

⟦case a in {(i,x) ⇒ ti }i ∈I ⟧γ







tv

=


⟦t ′i ⟧v,γ − ⟦ti⟧v,γ




tv if (i,v) = ⟦a⟧γ

≤ αi if (i,v) = ⟦a⟧γ
≤ sup

i
{αi }i ∈I

□

Remark A.2. A natural consequence of the sugar is that the
following terms are syntactically equivalent.

iterateN (t0, λx .t1) := iterateN−i (iteratei (t0, λx .t1), λx .t1)

We characterize the error of an approximate iterate trans-
formation.
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Theorem A.3. Let Γ,x p1 t1 and Γ,x p1 t ′1 be probabilistic
terms. If ⟦t1⟧γ is uniformly ergodic with stationary distribution
π and constants C , and ρ and

⟦t ′1⟧γ − ⟦t1⟧γ




tv ≤ ε,

then

⟦iterateN (t0, λx .t ′1)⟧ − ⟦stat(t0, λx .t1)⟧



tv ≤

εC

1 − ρ
+CρN .

We begin the proof of theorem Theorem A.3 by giving a
simple contraction lemma that quantifies the error associated
with the N step iteration transformation with a different
initial distribution.
LemmaA.4 (Contraction). If R

(⟦t1⟧γ , ST(⟦t1⟧γ ),C, ρ) then
for all




⟦iterateN (m1, λx .t1)⟧γ−

⟦iterateN (m2, λx .t1)⟧γ







tv

≤ CρN


⟦m1⟧γ − ⟦m2⟧γ



 .
Proof. The proof of this lemma follows directly from linearity
of integration. □

To prove Theorem A.3, we now give following theorem
quantifies the distance between iteration transformation the
transition kernels are close.
Lemma A.5. Let Γ,x p1 t1 and Γ,x p1 t ′1 be probabilistic
terms. If there exists π ∈ M(A), C ∈ R+, and ρ ∈ [0, 1) such
that R(⟦t1⟧γ ,π ,C, ρ) and

⟦t ′1⟧γ − ⟦t1⟧γ




tv ≤ ε

then,

⟦iterateN (t0, λx .t ′1)⟧ − ⟦iterateN (t0, λx .t1)⟧



tv ≤

εC

1 − ρ
,

Proof. We show this by first noting that

⟦iterateN (t0, λx .t1))⟧γ − ⟦iterateN (t0, λx .t ′1)⟧γ



tv

=










N−1∑
i=0

⟦iterateN−i (iteratei (t0, λx .t ′1), λx .t1)⟧γ

− ⟦iterateN−i−1(iteratei+1(t0, λx .t ′1), λx .t1)⟧γ










tv

=










N−1∑
i=0

⟦iterateN−i−1(let x = iteratei (t0, λx .t ′1) in n, λx .t1))⟧

− ⟦iterateN−i−1(iteratei+1(t0, λx .t ′1), λx .t1)⟧γ










tv

Applying the contraction lemma

≤

N−1∑
i=0

CρN−i−1 (

⟦let x = iteratei (t0, λx .t ′1) in n⟧γ

−⟦let x = iteratei (t0, λx .t ′1) in n′⟧γ



tv

)
≤

N−1∑
i=0

Cρiε ≤
εC

1 − ρ
.

□

Proof of Theorem A.3. Given the Lemma A.5 and the assump-
tion in the theorem statement thatR(⟦t1⟧γ ,π ,C, ρ) holds, the
proof of theorem follows by triangle inequality. □

Now we are in a position to prove the main theorem of
this section.

Proof of Theorem 5.2. The proof is seen by induction on prob-
abilistic terms.

• Base case:
Leaf node for the induction is the terms of the form
stat(t ′0, λx .t

′
1) . By the assumption of uniform ergodic-

ity there exists C ′, ρ ′ such that following holds

⟦stat(t0, λx .t1)⟧ − ⟦iterateN ′

(t0, λx .t1)⟧ ≤ C ′ρ ′N
′

.

Thus the base case holds.
• Inductive Step:
For the inductive step we show the hypothesis holds
for for all constructor of probabilistic terms in our
language.
– case terms: By the inductive hypothesis,

⟦t ′j⟧γ − ⟦t ′j⟧γ




tv ≤

∑
i ∈Ij

Ciρ
Ni .

Now, we show




⟦case a in
{
(j,x) ⇒ t ′j

}
j ∈J ⟧−

⟦case a in
{
(j,x) ⇒ tj

}
j ∈J ⟧







tv

≤
∑

i ∈
⋃
j∈J Ij

C ′
iρ

Ni
i

From Proposition A.1 and the inductive hypothesis,
we know




⟦case a in

{
(j,x) ⇒ t ′j

}
j ∈J ⟧−

− ⟦case a in
{
(j,x) ⇒ tj

}
j ∈J ⟧







tv

≤ sup
j ∈J

∑
i ∈Ij

Ciρ
Ni

≤
∑

i ∈
⋃
j Ij

ρNi .

– let term: We need to show

⟦let x = t1 in t2⟧ − ⟦let x = t ′1 in t ′2⟧



tv ≤

∑
i ∈I1∪I2

Ciρ
Ni
i

This follows from inductive hypothesis and Proposi-
tion A.1.

– stat term: From Theorem A.3 and inductive hypoth-
esis it follows that




⟦stat(t0, λx .t1)⟧−⟦iterateN ′

(t0, λx .t
′
1)⟧







tv

≤ C ′ρ ′Ni +
∑
i

C ′Ci

1 − ρ ′
ρNi
i .

□
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