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ABSTRACT

With the recent success and popularity of pre-trained language models (LMs) in
natural language processing, there has been a rise in efforts to understand their in-
ner workings. In line with such interest, we propose a novel method that assists us
in investigating the extent to which pre-trained LMs capture the syntactic notion
of constituency. Our method provides an effective way of extracting constituency
trees from the pre-trained LMs without training. In addition, we report intriguing
findings in the induced trees, including the fact that some pre-trained LMs outper-
form other approaches in correctly demarcating adverb phrases in sentences.

1 INTRODUCTION

Grammar induction, which is closely related to unsupervised parsing and latent tree learning, allows
one to associate syntactic trees, i.e., constituency and dependency trees, with sentences. As gram-
mar induction essentially assumes no supervision from gold-standard syntactic trees, the existing
approaches for this task mainly rely on unsupervised objectives, such as language modeling (Shen
et al., 2018b; 2019; Kim et al., 2019a;b) and cloze-style word prediction (Drozdov et al., 2019) to
train their task-oriented models. On the other hand, there is a trend in the natural language pro-
cessing (NLP) community of leveraging pre-trained language models (LMs), e.g., ELMo (Peters
et al., 2018) and BERT (Devlin et al., 2019), as a means of acquiring contextualized word represen-
tations. These representations have proven to be surprisingly effective, playing key roles in recent
improvements in various models for diverse NLP tasks.

In this paper, inspired by the fact that the training objectives of both the approaches for grammar
induction and for training LMs are identical, namely, (masked) language modeling, we investigate
whether pre-trained LMs can also be utilized for grammar induction/unsupervised parsing, espe-
cially without training. Specifically, we focus on extracting constituency trees from pre-trained LMs
without fine-tuning or introducing another task-specific module, at least one of which is usually
required in other cases where representations from pre-trained LMs are employed. This restriction
provides us with some advantages: (1) it enables us to derive strong baselines for grammar induc-
tion with reduced time and space complexity, offering a chance to reexamine the current status of
existing grammar induction methods, (2) it facilitates an analysis on how much and what kind of
syntactic information each pre-trained LM contains in its intermediate representations and atten-
tion distributions in terms of phrase-structure grammar, and (3) it allows us to easily inject biases
into our framework, for instance, to encourage the right-skewness of the induced trees, resulting in
performance gains in English unsupervised parsing.

First, we briefly mention related work (§2). Then, we introduce the intuition behind our proposal in
detail (§3), which is motivated by our observation that we can cluster words in a sentence according
to the similarity of their attention distributions over words in the sentence. Based on this intuition, we
define a straightforward yet effective method (§4) of drawing constituency trees directly from pre-
trained LMs with no fine-tuning or addition of task-specific parts, instead resorting to the concept
of Syntactic Distance (Shen et al., 2018a;b). Then, we conduct experiments (§5) on the induced
constituency trees, discovering some intriguing phenomena. Moreover, we analyze the pre-trained
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LMs and constituency trees from various points of view, including looking into which layer(s) of
the LMs is considered to be sensitive to phrase information (§6).

To summarize, our contributions in this work are as follows:

• By investigating the attention distributions from Transformer-based pre-trained LMs, we
show that there is evidence to suggest that several attention heads of the LMs exhibit syn-
tactic structure akin to constituency grammar.

• Inspired by the above observation, we propose a method that facilitates the derivation of
constituency trees from pre-trained LMs without training. We also demonstrate that the
induced trees can serve as a strong baseline for English grammar induction.

• We inspect, in view of our framework, what type of syntactic knowledge the pre-trained
LMs capture, discovering interesting facts, e.g., that some pre-trained LMs are more aware
of adverb phrases than other approaches.

2 RELATED WORK

Grammar induction is a task whose goal is to infer from sequential data grammars which generalize,
and are able to account for unseen data (Lari & Young (1990); Clark (2001); Klein & Manning
(2002; 2004), to name a few). Traditionally, this was done by learning explicit grammar rules (e.g.,
context free rewrite rules), though more recent methods employ neural networks to learn such rules
implicitly, focusing more on the induced grammars’ ability to generate or parse sequences.

Specifically, Shen et al. (2018b) proposed Parsing-Reading-Predict Network (PRPN) where the con-
cept of Syntactic Distance is first introduced. They devised a neural model for language modeling
where the model is encouraged to recognize syntactic structure. The authors also probed the possi-
bility of inducing constituency trees without access to gold-standard trees by adopting an algorithm
that recursively splits a sequence of words into two parts, the split point being determined according
to correlated syntactic distances; the point having the biggest distance becomes the first target of
division. Shen et al. (2019) presented a model called Ordered Neurons (ON), which is a revised
version of LSTM (Long Short-Term Memory, Hochreiter & Schmidhuber (1997)) which reflects the
hierarchical biases of natural language and can be used to compute syntactic distances. Shen et al.
(2018a) trained a supervised parser relying on the concept of syntactic distance.

Other studies include Drozdov et al. (2019), who trained deep inside-outside recursive autoencoders
(DIORA) to derive syntactic trees in an exhaustive way with the aid of the inside-outside algorithm,
and Kim et al. (2019a) who proposed Compound Probabilistic Context-Free Grammars (compound
PCFG), showing that neural PCFG models are capable of producing promising unsupervised parsing
results. Li et al. (2019) proved that an ensemble of unsupervised parsing models can be beneficial,
while Shi et al. (2019) utilized additional training signals from pictures related with input text. Dyer
et al. (2016) proposed Recurrent Neural Network Grammars (RNNG) for both language modeling
and parsing, and Kim et al. (2019b) suggested an unsupervised variant of the RNNG. There also
exists another line of research on task-specific latent tree learning (Yogatama et al., 2017; Choi et al.,
2018; Havrylov et al., 2019; Maillard et al., 2019). The goal here is not to construct linguistically
plausible trees, but to induce trees fitted to improving target performance. Naturally, the induced
performance-based trees need not resemble linguistically plausible trees, and some studies (Williams
et al., 2018a; Nangia & Bowman, 2018) examined the apparent fact that performance-based and
lingusitically plausible trees bear little resemblance to one another.

Concerning pre-trained language models (Peters et al. (2018); Devlin et al. (2019); Radford et al.
(2019); Yang et al. (2019); Liu et al. (2019b), inter alia)—particularly those employing a Trans-
former architecture (Vaswani et al., 2017)—these have proven to be helpful for diverse NLP down-
stream tasks. In spite of this, there is no vivid picture for explaining what particular factors contribute
to performance gains, even though some recent work has attempted to shed light on this question. In
detail, one group of studies (Raganato & Tiedemann (2018); Clark et al. (2019); Ethayarajh (2019);
Hao et al. (2019); Voita et al. (2019), inter alia) has focused on dissecting the intermediate represen-
tations and attention distributions of the pre-trained LMs, while the another group of publications
(Mareček & Rosa (2018); Goldberg (2019); Hewitt & Manning (2019); Liu et al. (2019a); Rosa &
Mareček (2019), to name a few) delve into the question of the existence of syntactic knowledge in
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Figure 1: Self-attention heatmaps from two different pre-trained LMs. (Left) A heatmap for the
average of attention distributions from the 7th layer of the XLNet-base (Yang et al., 2019) model
given the sample sentence. (Right) A heatmap for the average of attention distributions from the 9th
layer of the BERT-base (Devlin et al., 2019) model given another sample sentence. We can easily
spot the chunks of words on the two heatmaps that are correlated with the constituents of the input
sentences, e.g., (Left) ‘the price of plastics’, ‘took off in 1987’, ‘Quantum Chemical Corp.’, (Right)
‘when price increases can be sustained’, and ‘he remarks’.

Transformer-based models. Particularly, Mareček & Rosa (2019) proposed an algorithm for extract-
ing constituency trees from Transformers trained for machine translation, which is similar to our
approach.

3 MOTIVATION

As pioneers in the literature have pointed out, the multi-head self-attention mechanism (Vaswani
et al., 2017) is a key component in Transformer-based language models, and it seems this mecha-
nism empowers the models to capture certain semantic and syntactic information existing in natural
language. Among a diverse set of knowledge they may capture, in this work we concentrate on
phrase-structure grammar by seeking to extract constituency trees directly from their attention in-
formation and intermediate weights.

In preliminary experiments, where we manually visualize and investigate the intermediate repre-
sentations and attention distributions of several pre-trained LMs given input, we have found some
evidence which suggests that the pre-trained LMs exhibit syntactic structure akin to constituency
grammar in some degree. Specifically, we have noticed some patterns which are often displayed
in self-attention heatmaps as explicit horizontal lines, or groups of rectangles of various sizes. As
an attention distribution of a word in an input sentence corresponds to a row in a heatmap matrix,
we can say that the appearance of these patterns indicates the existence of groups of words where
the attention distributions of the words in the same group are relatively similar. Interestingly, we
have also discovered the fact that the groups of words we observed are fairly correlated with the
constituents of the input sentence, as shown in Figure 1 (above) and Figure 3 (in Appendix A.1).

Even though we have identified some patterns which match with the constituents of sentences, it is
not enough to conclude that the pre-trained LMs are aware of syntactic phrases as found in phrase-
structure grammars. To demonstrate the claim, we attempt to obtain constituency trees in a zero-shot
learning fashion, relying only on the knowledge from the pre-trained LMs. To this end, we suggest
the following, inspired from our finding: two words in a sentence are syntactically close to each
other (i.e., the two words belong to the same constituent) if their attention distributions over words
in the sentence are also close to each other. Note that this implicitly presumes that each word is
more likely to attend more on the words in the same constituent to enrich its representation in the
pre-trained LMs. Finally, we utilize the assumption to compute syntactic distances between each
pair of adjacent words in a sentence, from which the corresponding constituency tree can be built.
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4 PROPOSED METHOD

4.1 SYNTACTIC DISTANCE AND TREE CONSTRUCTION

We leverage the concept of Syntactic Distance proposed by Shen et al. (2018a;b) to draw con-
stituency trees from raw sentences in an intuitive way. Formally, given a sequence of words in a
sentence, w1, w2, . . . , wn, we compute d = [d1, d2, . . . , dn−1] where di corresponds to the syntac-
tic distance between wi and wi+1. Each di is defined as follows:

di = f(g(wi), g(wi+1)), (1)

where f(·, ·) and g(·) are a distance measure function and representation extractor function, respec-
tively. The function g converts each word into the corresponding vector representation, while f
computes the syntactic distance between the two words given their representations. Once d is de-
rived, it can be easily converted into the target constituency tree by a simple algorithm following
Shen et al. (2018a).1 For details of the algorithm, we refer the reader to Appendix A.2.

Although previous studies attempted to explicitly train the functions f and g with supervision (with
access to gold-standard trees, Shen et al. (2018a)) or to obtain them as a by-product of training
particular models that are carefully designed to recognize syntactic information (Shen et al., 2018b;
2019), in this work we stick to simple distance metric functions for f and pre-trained LMs for g, for-
going any training process. In other words, we focus on investigating the possibility of pre-trained
LMs possessing constituency information in a form that can be readily extracted with straightfor-
ward computations. If the trees induced by the syntactic distances derived from the pre-trained LMs
are similar enough to gold-standard syntax trees, we can reasonably claim that the LMs resemble
phrase-structure.

4.2 PRE-TRAINED LANGUAGE MODELS

We consider four types of recently proposed language models. These are: BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2019), RoBERTa (Liu et al., 2019b), and XLNet (Yang et al., 2019).
They all have in common that they are based on the Transformer architecture and have been proven
to be effective in natural language understanding (Wang et al., 2019) or generation. We handle two
variants for each LM, varying in the number of layers, attention heads, and hidden dimensions,
resulting in eight different cases in total. In particular, each LM has two variants. (1) base: consists
of l=12 layers, a=12 attention heads, and d=768 hidden dimensions, while (2) large: has l=24 layers,
a=16 attention heads, and d=1024 hidden dimensions.2 We deal with a wide range of pre-trained
LMs, unlike previous work which has mostly analyzed a specific model, particularly BERT. For
details about each LM, we refer readers to the respective original papers.

In terms of our formulation, each LM instance provides two categories of representation extractor
functions, Gv and Gd. Specifically, Gv refers to a set of functions {gvj |j = 1, . . . , l}, each of which
simply outputs the intermediate hidden representation of a given word on the jth layer of the LM.
Likewise, Gd is a set of functions {gd(j,k)|j = 1, . . . , l, k = 1, . . . , a + 1}, each of which outputs
the attention distribution of an input word by the kth attention head on the jth layer of the LM.
Even though our main motivation comes from the self-attention mechanism, we also deal with the
intermediate hidden representations present in the pre-trained LMs by introducing Gv , considering
that the hidden representations serve as storage of collective information taken from the processing
of the pre-trained LMs. Note that k ranges up to a+1, not a, implying that we consider the average
of all attention distributions on the same layer in addition to the individual ones. This averaging
function can be regarded as an ensemble of other functions in the layer which are specialized for
different aspects of information, and we expect that this technique will provide a better option in
some cases as reported in previous work (Li et al., 2019).

1 Our parsing algorithm is an unbiased method in contrast to one (named as COO parser by Dyer et al.
(2019)) employed in most previous studies (Shen et al., 2018b; 2019; Htut et al., 2018; Li et al., 2019; Shi
et al., 2019). This choice enables us to investigate the exact extent to which pre-trained LMs contribute to their
performance on unsupervised parsing, considering the fact revealed recently by Dyer et al. (2019) that the COO
parser has potential issues that it prefers right-branching trees and does not cover all possible tree derivations.
Furthermore, we can directly adjust the right-branching bias using our method in Section 4.4 if needed.

2In case of GPT-2, ‘GPT2’ corresponds to the ‘base’ variant while ‘GPT2-medium’ to the ‘large’ one.
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One remaining issue is that all the pre-trained LMs we use regard each input sentence as a sequence
of subword tokens, while our formulation assumes words cannot be further divided into smaller
tokens. To resolve this difference, we tested certain heuristics that guide how subword tokens for
a complete word should be exploited to represent the word, and we have empirically found that
the best result comes when each word is represented by an average of the representations of its
subwords.3 Therefore, we adopt the above heuristic in this work for cases where a word is tokenized
into more than two parts.

4.3 DISTANCE MEASURE FUNCTIONS

For the distance measure function f , we prepare three options (F v) for Gv and two options (F d) for
Gd. Formally, f ∈ F v ∪F d, where F v = {COS, L1, L2}, F d = {JSD,HEL}. COS, L1, L2, JSD,
and HEL correspond to Cosine, L1, and L2, Jensen-Shannon, and Hellinger distance respectively.
The functions in F v are only compatible with the elements of Gv , and the same holds for F d and
Gd. The exact definition of each function is listed in Appendix A.3.

4.4 INJECTING BIAS INTO SYNTACTIC DISTANCES

One of the main advantages we obtain by leveraging syntactic distances to derive parse trees is that
we can easily inject inductive bias into our framework by simply modifying the values of the syn-
tactic distances. Hence, we investigate whether the extracted trees from our method can be further
refined with the aid of additional biases. To this end, we introduce a well-known bias for English
constituency trees—the right-skewness bias—in a simple linear form.4 Namely, our intention is
to influence the induced trees such that they are moderately right-skewed following the nature of
gold-standard parse trees in English.

Formally, we compute d̂i by appending the following linear bias term to every di:

d̂i = di + λ · AVG(d)× (1− 1/(m− 1)× (i− 1)), (2)

where AVG(·) outputs an average of all elements in a vector, λ is a hyperparameter, and i ranges
from 1 to m = n − 1. We write d̂ = [d̂1, d̂2, . . . , d̂m] in place of d to signify biased syntactic
distances.

The main purpose of introducing such a bias is examining what changes are made to the resulting
tree structures rather than boosting quantitative performance per se, though it is of note that it serves
this purpose as well. We believe that this additional consideration is necessary based on two points.
First, English is what is known as a head-initial language. That is, given a selector and argument,
the selector has a strong tendency to appear on the left, e.g., ‘eat food’, or ‘to Canada’. Head-initial
languages therefore have an in-built preference for right-branching structures. By adjusting the bias
injected into syntactic distances derived from pre-trained LMs, we can figure out whether the LMs
are capable of inducing the right-branching bias, which is one of the main properties of English
syntax; if injecting the bias does not influence the performance of the LMs on unsupervised parsing,
we can conjecture they are inherently capturing the bias to some extent. Second, as mentioned
before, we have witnessed some previous work (Shen et al., 2018b; 2019; Htut et al., 2018; Li et al.,
2019; Shi et al., 2019) where the right-skewness bias is implicitly exploited, although it could be
regarded as not ideal. What we intend to focus on is the question about which benefits the bias
provides for such parsing models, leading to overall performance improvements. In other words, we
look for what the exact contribution of the bias is when it is injected into grammar induction models,
by explicitly controlling the bias using our framework.

3We also tried other heuristics following previous work (Kitaev & Klein, 2018), e.g., using the first or last
subword of a word as representative, but this led to no performance gains.

4It is necessary to carefully design biases for other languages as they have their own properties.
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5 EXPERIMENTS

5.1 GENERAL SETTINGS

5.1.1 DATASETS

In this section, we conduct unsupervised constituency parsing on two datasets. The first dataset is
WSJ Penn Treebank (PTB, Marcus et al. (1993)), in which human-annotated gold-standard trees are
available. We use the standard split of the dataset—2-21 for training, 22 for validation, and 23 for
test. The second one is MNLI (Williams et al., 2018b), which is originally designed to test natural
language inference but often utilized as a means of evaluating parsers. It contains constituency trees
produced by an external parser (Klein & Manning, 2003). We leverage the union of two different
versions of the MNLI development set as test data following convention (Htut et al., 2018; Drozdov
et al., 2019), and we call it the MNLI test set in this paper. Moreover, we randomly sample 40K
sentences from the training set of the MNLI to utilize them as a validation set. To preprocess the
datasets, we follow the setting of Kim et al. (2019a) with the minor exceptions that words are not
lower-cased and number characters are preserved instead of being substituted by a special character.

5.1.2 IMPLEMENTATION DETAILS

For implementation, to compare pre-trained LMs in an unified manner, we resort to an integrated
PyTorch codebase that supports all the models we consider.5 For each LM, we tune the best combi-
nation of f and g functions using the validation set. Then, we derive a set of d for sentences in the
test set using the chosen functions, followed by the resulting constituency trees converted from each
d by the tree construction algorithm in Section 4.1. In addition to sentence-level F1 (S-F1) score,
we report label recall scores for six main categories: SBAR, NP, VP, PP, ADJP, and ADVP. We also
present the results of utilizing d̂ instead of d, empirically setting the bias hyperparameter λ as 1.5.
We do not fine-tune the LMs on domain-specific data, as we here focus on finding their universal
characteristics.

We take four naı̈ve baselines into account, random (averaged over 5 trials), balanced, left-branching,
and right-branching binary trees. In addition, we present two more baselines which are identical to
our models except that their g functions are based on a randomly initialized XLNet-base rather
than pre-trained ones. To be concrete, We provide ‘Random XLNet-base (F v)’ which applies the
functions in F v on random hidden representations and ‘Random XLNet-base (F d)’ that utilizes the
functions in F d and random attention distributions, respectively. Considering the randomness of
initialization and possible choices for f , the final score for each of the baselines is calculated as an
average over 5 trials of each possible f , i.e., an average over 5 × 3 runs in case of F v and 5 × 2
runs for F d. These baselines enable us to estimate the exact advantage we obtain by pre-training
LMs, effectively removing additional unexpected gains that may exist. Furthermore, we compare
our parse trees against ones from existing grammar induction models.

All scripts used in our experiments will be publicly available for reproduction and further analysis.6

5.2 EXPERIMENTAL RESULTS ON PTB

In Table 1, we report the results of the various models on the PTB test set. First of all, our method
combined with pre-trained LMs shows competitive or comparable results in terms of S-F1 even
without the right-skewness bias. This result implies that the extracted trees from our method can be
regarded as a baseline for English grammar induction. Moreover, pre-trained LMs show substan-
tial improvements over Random Transformers (XLNet-base), demonstrating that training language
models on large corpora, in fact, enables the LMs to be more aware of syntactic information.

When the right-skewness bias is applied to syntactic distances derived from pre-trained LMs, the
S-F1 scores of the LMs increase by up to ten percentage points. This improvement indicates that
the pre-trained LMs do not properly capture the largely right-branching nature of English syntax, at
least when observed through the lens of our framework. By explicitly controlling the bias through
our framework and observing the performance gap between our models with and without the bias,

5https://github.com/huggingface/transformers
6https://github.com/galsang/trees_from_transformers
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Table 1: Results on the PTB test set. Bold numbers correspond to the top 3 results for each column.
L: layer number, A: attention head number (AVG: the average of all attentions). †: Results reported
by Kim et al. (2019a). ‡: Approaches in which COO parser is utilized.

Model f L A S-F1 SBAR NP VP PP ADJP ADVP
Baselines
Random Trees - - - 18.1 8% 23% 12% 18% 23% 28%
Balanced Trees - - - 18.5 7% 27% 8% 18% 27% 25%
Left Branching Trees - - - 8.7 5% 11% 0% 5% 2% 8%
Right Branching Trees - - - 39.4 68% 24% 71% 42% 27% 38%
Random XLNet-base (Fv) - - - 19.6 9% 26% 12% 20% 23% 24%
Random XLNet-base (Fd) - - - 20.1 11% 25% 14% 19% 22% 26%
Pre-trained LMs (w/o bias)
BERT-base JSD 9 AVG 32.4 28% 42% 28% 31% 35% 63%
BERT-large HEL 17 AVG 34.2 34% 43% 27% 39% 37% 57%
GPT2 JSD 9 1 37.1 32% 47% 27% 55% 27% 36%
GPT2-medium JSD 10 13 39.4 41% 51% 21% 67% 33% 44%
RoBERTa-base JSD 9 4 33.8 40% 38% 33% 43% 42% 57%
RoBERTa-large JSD 14 5 34.1 29% 46% 30% 37% 28% 40%
XLNet-base HEL 9 AVG 40.1 35% 56% 26% 38% 47% 68%
XLNet-large L2 11 - 38.1 36% 51% 26% 41% 45% 69%
Pre-trained LMs (w/ bias λ=1.5)
BERT-base HEL 9 AVG 42.3 45% 46% 49% 43% 41% 65%
BERT-large HEL 17 AVG 44.4 55% 48% 48% 52% 41% 62%
GPT2 JSD 9 1 41.3 43% 49% 38% 58% 27% 43%
GPT2-medium HEL 2 1 42.3 54% 50% 39% 56% 24% 41%
RoBERTa-base JSD 8 AVG 42.1 51% 44% 44% 55% 40% 66%
RoBERTa-large JSD 12 AVG 42.3 40% 50% 43% 44% 48% 56%
XLNet-base HEL 7 AVG 48.3 62% 53% 50% 58% 49% 74%
XLNet-large HEL 11 AVG 46.7 57% 50% 54% 50% 57% 73%
Other models
PRPN(tuned)†‡ - - - 47.3 50% 59% 46% 57% 44% 32%
ON(tuned)†‡ - - - 48.1 51% 64% 41% 54% 38% 31%
Neural PCFG† - - - 50.8 52% 71% 33% 58% 32% 45%
Compound PCFG† - - - 55.2 56% 74% 41% 68% 40% 52%

we confirm that the main contribution of the bias comes from its capability to capture subordinate
clauses (SBAR) and verb phrases (VP). This observation provides a hint for what some previous
work on unsupervised parsing desired to obtain by introducing the bias to their models. It is in-
triguing to see that all of the existing grammar induction models are inferior to the right-branching
baseline in recognizing SBAR and VP (although some of them already utilized the right-skewness
bias), implying that the same problem—models do not properly capture the right-branching nature—
may also exist in current grammar induction models. One possible assumption is that the models
do not need the bias to perform well in language modeling, although future work should provide a
rigorous analysis about the phenomenon.

On the other hand, the existing models show exceptionally high recall scores on noun phrases (NP),
even though our pre-trained LMs also have success to some extent in capturing noun phrases com-
pared to naı̈ve baselines. From this, we conjecture that neural models trained with a language
modeling objective become largely equipped with the ability to understand the concept of NP. In
contrast, the pre-trained LMs record the best recall scores on adjective and adverb phrases (ADJP
and ADVP), suggesting that the LMs and existing models capture disparate aspects of English syn-
tax to differing degrees. To further explain why some pre-trained LMs are good at capturing ADJPs
and ADVPs, we manually investigated the attention heatmaps of the sentences that contain ADJPs
or ADVPs. From the inspection, we empirically found that there are some keywords—including
‘two’, ‘ago’, ‘too’, and ‘far’—which have different patterns of attention distributions compared to
those of their neighbors and that these keywords can be a clue for our framework to recognize the
existence of ADJPs or ADJPs. It is also worth mentioning that ADJPs and ADVPs consist of a
relatively smaller number of words than those of SBAR and VP, indicating that the LMs combined
with our method have strength in correctly finding small chunks of words, i.e., low-level phrases.

Meanwhile, in comparison with other LM models, GPT-2 and XLNet based models demonstrate
their effectiveness and robustness in unsupervised parsing. Particularly, the XLNet-base model
serves as a robust baseline achieving the top performance among LM candidates. One plausible
explanation for this outcome is that the training objective of XLNet, which considers both autoen-
coding (AE) and autoregressive (AR) features, might encourage the model to be better aware of
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Figure 2: The best layer-wise S-F1 scores of each LM instance on the PTB test set. (Left) The
performance of the X-‘base’ models. (Right) The performance of the X-‘large’ models.

phrase structure than other LMs. Another possible hypothesis is that AR objective functions (e.g.,
typical language modeling) are more effective in training syntax-aware neural models than AE ob-
jectives (e.g., masked language modeling), as both GPT-2 and XLNet are pre-trained on AR variants.
However, it is hard to conclude what factors contribute to their high performance at this stage.

Interestingly, there is an obvious trend that the functions in F d—the distance measure functions for
attention distributions—lead most of the LM instances to the best parsing results, indicating that
deriving parse trees from attention information can be more compact and efficient than extracting
them from the LMs’ intermediate representations, which should contain linguistic knowledge be-
yond phrase structure. In addition, the results in Table 1 show that large parameterizations of the
LMs generally increase their parsing performance, but this improvement is not always guaranteed.
Meanwhile, as we expected in Section 4.2 and as seen in the ‘A’ (attention head number) column
of Table 1, the average of attention distributions in the same layer often provides better results than
individual attention distributions.

5.3 EXPERIMENTAL RESULTS ON MNLI

We present the results of various models on the MNLI test set in Table 3 of Appendix A.5. We
observe trends in the results which mainly coincide with those of the PTB dataset. Particularly, (1)
right-branching trees are strong baselines for the task, especially showing their strengths in captur-
ing SBAR and VP clauses/phrases, (2) our method resorting to the LM instances is also comparable
to the right-branching trees, demonstrating its superiority in recognizing different aspects of phrase
categories including prepositional phrases (PP) and adverb phrases (ADVP), and (3) attention dis-
tributions seem more effective for distilling the phrase structures of sentences than intermediate
representations.

However, there are some issues worth mentioning. First, the right-branching baseline seems to be
even stronger in the case of MNLI, recording a score of over 50 in sentence-level F1. We conjecture
that this result comes principally from two reasons: (1) the average length of sentences in MNLI is
much shorter than in PTB, giving a disproportionate advantage to naı̈ve baselines, and (2) our data
preprocessing, which follows Kim et al. (2019a), removes all punctuation marks, unlike previous
work (Htut et al., 2018; Drozdov et al., 2019), leading to an unexpected advantage for the right-
branching scheme. Moreover, it deserves to consider the fact that the gold-standard parse trees in
MNLI are not human-annotated, rather automatically generated.

Second, in terms of consistency in identifying the best choice of f and g for each LM, we observe
that most of the best combinations of f and g tuned for PTB do not correspond well to the best
ones for MNLI. Does this observation imply that a specific combination of these functions and the
resulting performance do not generalize well across different data domains? To clarify, we manually
investigated the performance of some combinations of f and g, which are tuned on PTB but tested
on MNLI instead. As a result, we discover that particular combinations of f and g which are good
at PTB are also competitive on MNLI, even though they fail to record the best scores on MNLI.
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Table 2: Results of training a pseudo-optimum fideal with PTB and XLNet-base model.
Model f L A S-F1 SBAR NP VP PP ADJP ADVP
Baselines (from Table 1)
Random XLNet-base (Fv) - - - 19.6 9% 26% 12% 20% 23% 24%
Random XLNet-base (Fd) - - - 20.1 11% 25% 14% 19% 22% 26%
XLNet-base (λ=0) JSD 9 AVG 40.1 35% 56% 26% 38% 47% 68%
XLNet-base (λ=1.5) HEL 7 AVG 48.3 62% 53% 50% 58% 49% 74%
Trained models (w/ gold trees)
Random XLNet-base fideal - - 41.2 28% 58% 29% 50% 35% 41%
XLNet-base (worst case) fideal 1 - 58.0 47% 75% 56% 71% 50% 61%
XLNet-base (best case) fideal 7 - 65.1 61% 82% 67% 78% 55% 73%

Concretely, the union of fd(JSD) and gd(9,13)—the best duo for the XLNet-base on PTB—achieves
39.2 in sentence-level F1 on MNLI, which is very close to the top performance (39.3) we can obtain
when leveraging the XLNet-base. It is also worth noting that GPT-2 and XLNet are efficient in
capturing PP and ADVP respectively, regardless of the data domain and the choice of f and g.

6 FURTHER ANALYSIS

6.1 PERFORMANCE COMPARISON BY LAYER

To take a closer look at how different the layers of the pre-trained LMs are in terms of parsing
performance, we retrieve the best sentence-level F1 scores from the lth layer of an LM from all
combinations of f and gl, with regard to the PTB and MNLI respectively. Then we plot the scores
as graphs in Figure 2 for the PTB and Figure 4 in Appendix A.4 for the MNLI. Each score is from
the models to which the bias is not applied.

From the graphs, we observe several patterns. First, XLNet-based models outperform other com-
petitors across most of the layers. Second, the best outcomes are largely shown in the middle layers
of the LMs akin to the observation from Shen et al. (2019), except for some cases where the first lay-
ers (especially in case of MNLI) record the best. Interestingly, GPT-2 shows a decreasing trend in its
output values as the layer becomes high, while other models generally exhibit the opposite pattern.
Moreover, we discover from raw statistics that regardless of the choice of f and gl, the parsing per-
formance reported as S-F1 is moderately correlated with the layer number l. In other words, it seems
that there are some particular layers in the LMs which are more sensitive to syntactic information.

6.2 ESTIMATING THE UPPER LIMIT OF DISTANCE MEASURE FUNCTIONS

Although we have introduced effective candidates for f , we explore the potential of extracting more
sophisticated trees from pre-trained LMs, supposing we are equipped with a pseudo-optimum f ,
call it fideal. To obtain fideal, we train a simple linear layer on each layer of the pre-trained LMs with
supervision from the gold-standard trees of the PTB training set, while g remains unchanged—the
pre-trained LMs are frozen during training. We choose the XLNet-base model as a representative
for the pre-trained LMs. For more details about experimental settings, refer to Appendix A.6.

In Table 2, we present three new results using fideal. As a baseline, we report the performance
of fideal with a randomly initialized XLNet-base. Then, we list the worst and best result of fideal
according to g, when it is combined with the pre-trained LM. We here mention some findings from
the experiment. First, comparing the results with the pre-trained LM against one with the random
LM, we reconfirm that pre-training an LM apparently enables the model to capture some aspects of
grammar. Specifically, our method is comparable to the linear model trained on the gold-standard
trees. Second, we find that there is a tendency for the performance of fideal relying on different LM
layers to follow one we already observed in Section 6.1—the best result comes from the middle
layers of the LM while the worst from the first and last layer. Third, we identify that the LM has
a potential to show improved performance on grammar induction by adopting a more sophisticated
f . However, we emphasize that our method equipped with a simple f without gold-standard trees
is remarkably reasonable in recognizing constituency grammar, being especially good at catching
ADJP and ADVP.
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6.3 CONSTITUENCY TREE EXAMPLES

We visualize several gold-standard trees from PTB and the corresponding tree predictions for com-
parison. For more details, we refer readers to Appendix A.7.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a simple but effective method of inducing constituency trees from pre-
trained language models in a zero-shot learning fashion. Furthermore, we report a set of intuitive
findings observed from the extracted trees, demonstrating that the pre-trained LMs exhibit some
properties similar to constituency grammar. In addition, we show that our method can serve as a
strong baseline for English grammar induction when combined with (or even without) appropriate
linguistic biases.

On the other hand, there are still remaining issues that can be good starting points for future work.
First, although we analyzed our method based on two popular datasets, we focused only on English
grammar induction. As each language has its own properties (and correspondingly would need
individualized biases), it is desirable to expand this work to other languages. Second, it would also
be desirable to investigate whether further improvements can be achieved by directly grafting the
pre-trained LMs onto existing grammar induction models. Lastly, by verifying the usefulness of the
knowledge from the pre-trained LMs and linguistic biases for grammar induction, we want to point
out that there is still much room for improvement in the existing grammar induction models.
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A APPENDIX

A.1 ATTENTION HEATMAP EXAMPLES

Figure 3: Self-attention heatmaps for the average of all attention distributions from the 7th layer of
the XLNet-base model, given a set of input sentences.
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A.2 TREE CONSTRUCTION ALGORITHM WITH SYNTACTIC DISTANCES

Algorithm 1 Syntactic Distances to Binary Constituency Tree (originally from Shen et al. (2018a))
1: S = [w1, w2, . . . , wn]: a sequence of words in a sentence of length n.
2: d = [d1, d2, . . . , dn−1]: a vector whose elements are the distances between every two adjacent words.
3: function TREE(S, d)
4: if d = [] then
5: node← Leaf(S[0])
6: else
7: i← argmaxi(d)
8: childl← TREE(S≤i,d<i)
9: childr ← TREE(S>i,d>i)

10: node← Node(childl, childr)
11: end if
12: return node
13: end function

A.3 DISTANCE MEASURE FUNCTIONS

Table 3: The definitions of distance measure functions for computing syntactic distances between
two adjacent words in a sentence. Note that r = gv(wi), s = gv(wi+1), P = gd(wi), and Q =
gd(wi+1), respectively. d: hidden embedding size, n: the number of words (w) in a sentence (S).

Function (f ) Definition
Functions for intermediate representations (F v)
COS(r, s)

(
r>s/

(
(
∑d
i=1 ri

2)
1
2 · (

∑d
i=1 si

2)
1
2

)
+ 1
)
/2

L1(r, s)
∑d
i=1 |ri − si|

L2(r, s) (
∑d
i=1(ri − si)2)

1
2

Functions for attention distributions (F d)
JSD(P‖Q) ((DKL(P‖M) +DKL(Q‖M))/2)

1
2

where M = (P +Q)/2
and DKL(A‖B) =

∑
w∈S A(w) log(A(w)/B(w))

HEL(P,Q) 1√
2
(
∑n
i=1(
√
pi −

√
qi)

2)
1
2

A.4 PERFORMANCE COMPARISON BY LAYER ON MNLI
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Figure 4: The best layer-wise S-F1 scores of each LM instance on the MNLI test set. (Left) The
performance of the X-‘base’ models. (Right) The performance of the X-‘large’ models.

15



Published as a conference paper at ICLR 2020

A.5 EXPERIMENTAL RESULTS ON MNLI

Table 4: Results on the MNLI test set. Bold numbers correspond to the top 3 results for each column.
L: layer number, A: attention head number (AVG: the average of all attentions). †: Results reported
by Htut et al. (2018) and Drozdov et al. (2019). ‡: Approaches in which COO parser is utilized. ∗:
These results are not strictly comparable to ours, due to the difference in data preprocessing.

Model f L A S-F1 SBAR NP VP PP ADJP ADVP
Baselines
Random Trees - - - 21.4 11% 25% 16% 22% 22% 27%
Balanced Trees - - - 20.0 8% 29% 11% 20% 22% 32%
Left Branching Trees - - - 8.4 6% 13% 1% 4% 1% 8%
Right Branching Trees - - - 51.9 65% 28% 75% 47% 45% 30%
Random XLNet-base (Fv) - - - 22.0 12% 26% 15% 22% 22% 25%
Random XLNet-base (Fd) - - - 23.5 14% 26% 18% 22% 22% 25%
Pre-trained LMs (w/o bias)
BERT-base HEL 9 10 36.1 36% 37% 34% 45% 26% 42%
BERT-large JSD 17 10 37.0 38% 32% 34% 50% 22% 39%
GPT2 JSD 1 10 44.0 43% 53% 31% 60% 24% 40%
GPT2-medium JSD 3 12 49.1 57% 32% 61% 44% 35% 37%
RoBERTa-base JSD 10 9 36.2 26% 35% 34% 50% 23% 44%
RoBERTa-large JSD 3 6 39.8 20% 28% 35% 30% 28% 27%
XLNet-base HEL 1 6 39.0 25% 39% 28% 59% 35% 44%
XLNet-large HEL 1 15 42.2 32% 49% 27% 62% 32% 49%
Pre-trained LMs (w/ bias λ=1.5)
BERT-base HEL 2 12 52.7 64% 35% 70% 50% 46% 30%
BERT-large HEL 4 4 51.7 63% 31% 71% 49% 46% 30%
GPT2 HEL 1 10 52.2 57% 53% 49% 62% 32% 42%
GPT2-medium HEL 2 1 53.9 53% 57% 50% 62% 29% 44%
RoBERTa-base HEL 2 3 52.0 64% 31% 72% 49% 47% 30%
RoBERTa-large L1 23 - 52.7 55% 40% 65% 53% 43% 41%
XLNet-base L2 8 - 54.9 57% 49% 61% 55% 44% 57%
XLNet-large L2 12 - 53.5 54% 47% 59% 51% 48% 60%
Other models
PRPN-UP†‡ - - - 48.6∗ - - - - - -
PRPN-LM†‡ - - - 50.4∗ - - - - - -
DIORA† - - - 51.2∗ - - - - - -
DIORA(+PP)† - - - 59.0∗ - - - - - -

A.6 EXPERIMENTAL DETAILS FOR TRAINING IDEAL DISTANCE MEASURE FUNCTION

In this part, we present the detailed specifications of the experiments introduced in Section 6.2. We
assume fideal is only compatible with the functions in Gv , as the functions in Gd are not suitable for
training as the sizes of the representations provided by Gd are variable according to the length of an
input sentence. To train the pseudo-optimal function fideal, we minimize a pair-wise learning-to-rank
loss following previous work (Burges et al., 2005; Shen et al., 2018a):

Lrank
dist =

∑
i,j>i

[1− sign(dgold
i − dgold

j )(dpred
i − dpred

j )]+, (3)

where dgold and dpred are computed from the gold tree and our predicted one, respectively. [x]+ is
defined as max(0, x). We train the fideal with the PTB training set for 5 epochs. Each batch of
the training set contains 16 sentences. We use an ADAM optimizer (Kingma & Ba, 2014) with the
learning rate 5e-4. We train the variations of fideal differentiated by the choice of g in Gv and report
the best result in the Table 2. Each fideal is chosen based on its performance on the PTB validation
set. Considering the randomness of training, every result for fideal is averaged over 3 different trials.

A.7 CONSTITUENCY TREE EXAMPLES

We randomly select six sentences from PTB and visualize their trees, where the resulting group
of trees for each sentence consists of a gold constituency tree and two induced trees (one without
the right-skewness bias and the other with the bias) from our best model—XLNet-base. The ‘T’
character in the induced trees indicates a dummy tag.
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Figure 5: Gold (top) and predicted trees (one without the bias in the middle, the other with the bias at
the bottom) for the sentence ‘These include a child-care initiative and extensions of soon-to-expire
tax breaks for low-income housing and research-and-development expenditures’.
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Figure 6: Gold (top) and predicted trees (one without the bias in the middle, the other with the bias
at the bottom) for the sentence ‘But HOFI ‘s first offer would have given Ideal ’s other shareholders
about 10 % of the combined company’.
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Figure 7: Gold (top) and predicted trees (one without the bias in the middle, the other with the bias
at the bottom) for the sentence ‘It was Friday the 13th and the stock market plummeted nearly 200
points’.

19



Published as a conference paper at ICLR 2020

S

PP-TMP

IN

Until

ADVP

RB

recently

NP-SBJ

NP

JJ

national

NNS

governments

PP-LOC

IN

in

NP

NNP

Europe

VP

VP

VBD

controlled

NP

NP

JJS

most

PP

IN

of

NP

DT

the

NN

air

NN

time

CC

and

VP

VBD

allowed

NP

ADJP

JJ

little

CC

or

DT

no

NN

advertising

T

T

T

T

Until

T

recently

T

T

national

T

T

governments

T

T

in

T

Europe

T

T

T

controlled

T

T

T

T

most

T

T

of

T

the

T

air

T

time

T

T

T

and

T

allowed

T

T

T

little

T

T

or

T

no

T

advertising

T

T

T

Until

T

recently

T

T

T

T

national

T

governments

T

T

in

T

Europe

T

T

controlled

T

T

T

most

T

T

of

T

T

the

T

T

air

T

time

T

T

T

and

T

allowed

T

T

little

T

T

or

T

T

no

T

advertising

Figure 8: Gold (top) and predicted trees (one without the bias in the middle, the other with the bias
at the bottom) for the sentence ‘Until recently national governments in Europe controlled most of
the air time and allowed little or no advertising’.
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Figure 9: Gold (top) and predicted trees (one without the bias in the middle, the other with the bias
at the bottom) for the sentence ‘Nevertheless Ms. Garzarelli said she was swamped with phone calls
over the weekend from nervous shareholders’.
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Figure 10: Gold (top) and predicted trees (one without the bias in the middle, the other with the
bias at the bottom) for the sentence ‘Analysts and competitors however doubt the numbers were that
high’.
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