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ABSTRACT

Efficient audio synthesis is an inherently difficult machine learning task, as hu-
man perception is sensitive to both global structure and fine-scale waveform co-
herence. Autoregressive models, such as WaveNet, model local structure but have
slow iterative sampling and lack global latent structure. In contrast, Generative
Adversarial Networks (GANs) have global latent conditioning and efficient paral-
lel sampling, but struggle to generate locally-coherent audio waveforms. Herein,
we demonstrate that GANs can in fact generate high-fidelity and locally-coherent
audio by modeling log magnitudes and instantaneous frequencies with sufficient
frequency resolution in the spectral domain. Through extensive empirical investi-
gations on the NSynth dataset, we demonstrate that GANs are able to outperform
strong WaveNet baselines on automated and human evaluation metrics, and effi-
ciently generate audio several orders of magnitude faster than their autoregressive
counterparts

1 INTRODUCTION

Neural audio synthesis, training generative models to efficiently produce audio with both high-
fidelity and global structure, is a challenging open problem as it requires modeling temporal scales
over at least five orders of magnitude (~0.1ms to ~100s). Large advances in the state-of-the art
have been pioneered almost exclusively by autoregressive models, such as WaveNet, which solve
the scale problem by focusing on the finest scale possible (a single audio sample) and rely upon
external conditioning signals for global structure (van den Oord et al.| 2016). This comes at the
cost of slow sampling speed, since they rely on inefficient ancestral sampling to generate waveforms
one audio sample at a time. Due to their high quality, a lot of research has gone into speeding
up generation, but the methods introduce significant overhead such as training a secondary student
network or writing highly customized low-level kernels (van den Oord et al., 2018} |Paine et al.,
2016). Furthermore, since these large models operate at a fine timescale, their autoencoder variants
are restricted to only modeling local latent structure due to memory constraints (Engel et al.|[2017).

On the other end of the spectrum, Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) have seen great recent success at generating high resolution images (Radford et al.l 2016
Arjovsky et al., 2017;|Gulrajani et al., 2017; Berthelot et al.,|2017; |Kodali et al., 2017; Karras et al.,
2018a; Miyato et al.,[2018)). Typical GANs achieve both efficient parallel sampling and global latent
control by conditioning a stack of transposed convolutions on a latent vector, The potential for audio
GANSs extends further, as adversarial costs have unlocked intriguing domain transformations for
images that could possibly have analogues in audio (Isola et al., {2017 Zhu et al., 2017; Wolf et al.,
2017;Jin et al.L 2017). However, attempts to adapt image GAN architectures to generate waveforms
in a straightforward manner (Donahue et al.,2019) fail to reach the same level of perceptual fidelity
as their image counterparts.

!Online resources:
Colab Notebook: http://goo.gl/magenta/gansynth-demo,
Audio Examples: http://goo.gl/magenta/gansynth-examples)
Code: http://goo.gl/magenta/gansynth-code


http://goo.gl/magenta/gansynth-demo
http://goo.gl/magenta/gansynth-examples
http://goo.gl/magenta/gansynth-code
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Figure 1: Frame-based estimation of audio waveforms. Much of sound is made up of locally-
coherent waves with a local periodicity, pictured as the red-yellow sinusoid with black dots at the
start of each cycle. Frame-based techniques, whether they be transposed convolutions or STFTs,
have a given frame size and stride, here depicted as equal with boundaries at the dotted lines. The
alignment between the two (phase, indicated by the solid black line and yellow boxes), precesses in
time since the periodicity of the audio and the output stride are not exactly the same. Transposed
convolutional filters thus have the difficult task of covering all the necessary frequencies and all
possible phase alignments to preserve phase coherence. For an STFT, we can unwrap the phase over
the 27 boundary (orange boxes) and take its derivative to get the instantaneous radial frequency (red
boxes), which expresses the constant relationship between audio frequency and frame frequency.
The spectra are shown for an example trumpet note from the NSynth dataset.

1.1 GENERATING INSTRUMENT TIMBRES

GAN researchers have made rapid progress in image modeling by evaluating models on focused
datasets with limited degrees of freedom, and gradually stepping up to less constrained domains.
For example, the popular CelebA dataset is restricted to faces that have been
centered and cropped, removing variance in posture and pose, and providing a common reference

for qualitative improvements (Radford et al., 2016}, [Karras et al.| [2018a) in generating realistic tex-

ture and fine-scale features. Later models then built on that foundation to generalize to broader

domains (Karras et al.,[2018b}; [Brock et al., 2019).

The NSynth dataset (Engel et al., |2017|E| was introduced with similar motivation for audio. Rather
than containing all types of audio, NSynth consists solely of individual notes from musical instru-
ments across a range of pitches, timbres, and volumes. Similar to CelebA, all the data is aligned and
cropped to reduce variance and focus on fine-scale details, which in audio corresponds to timbre and
fidelity. Further, each note is also accompanied by an array of attribute labels to enable exploring
conditional generation.

The original NSynth paper introduced both autoregressive WaveNet autoencoders and bottleneck
spectrogram autoencoders, but without the ability to unconditionally sample from a prior. Follow
up work has explored diverse approaches including frame-based regression models
2018), 1nverse scattering networks (Andreux & Mallat, 2018), VAEs with perceptual priors
et al.,[2018), and adversarial regularization for domain transfer (Mor et al.,[2019). This work builds
on these efforts by introducing adversarial training and exploring effective representations for non-
causal convolutional generation as typical found in GANs.

https://magenta.tensorflow.org/datasets/nsynth


https://magenta.tensorflow.org/datasets/nsynth
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1.2  EFFECTIVE AUDIO REPRESENTATIONS FOR GANS

Unlike images, most audio waveforms—such as speech and music—are highly periodic. Convolu-
tional filters trained for different tasks on this data commonly learn to form logarithmically-scaled
frequency selective filter banks spanning the range of human hearing (Dieleman & Schrauwen, 2014;
Zhu et al.l 2016). Human perception is also highly sensitive to discontinuities and irregularities in
periodic waveforms, so maintaining the regularity of periodic signals over short to intermediate
timescales (1ms - 100ms) is crucial. Figure E] shows that when the stride of the frames does not
exactly equal a waveform’s periodicity, the alignment (phase) of the two precesses over time. This
condition is assured as at any time there are typically many different frequencies in a given sig-
nal. This is a challenge for a synthesis network, as it must learn all the appropriate frequency and
phase combinations and activate them in just the right combination to produce a coherent waveform.
This phase precession is exactly the same phenomena observed with a short-time Fourier transform
(STFT), which is composed of strided filterbanks just like convolutional networks. Phase precession
also occurs in situations where filterbanks overlap (window or kernel size < stride).

In the middle of Figure |1} we diagram another approach to generating coherent waveforms loosely
inspired by the phase vocoder (Dolson, [1986). A pure tone produces a phase that precesses. Un-
wrapping the phase, by adding 27 whenever it crosses a phase discontinuity, causes the precessing
phase to grow linearly. We then observe that the derivative of the unwrapped phase with respect to
time remains constant and is equal to the angular difference between the frame stride and signal peri-
odicity. This is commonly referred to as the instantaneous angular frequency, and is a time varying
measure of the true signal oscillation. With a slight abuse of terminology we will simply refer to
it as the instantaneous frequency (IF) (Boashashl |1992). Note that for the spectra at the bottom of
Figure[I} the pure harmonic frequencies of a trumpet cause the wrapped phase spectra to oscillate at
different rates while the unwrapped phase smoothly diverges and the IF spectra forms solid bands
where the harmonic frequencies are present.

1.3 CONTRIBUTIONS

In this paper, we investigate the interplay of architecture and representation in synthesizing coherent
audio with GANs. Our key findings include:

e Generating log-magnitude spectrograms and phases directly with GANs can produce more
coherent waveforms than directly generating waveforms with strided convolutions.

e Estimating IF spectra leads to more coherent audio still than estimating phase.

e [t is important to keep harmonics from overlapping. Both increasing the STFT frame size
and switching to mel frequency scale improve performance by creating more separation
between the lower harmonic frequencies. Harmonic frequencies are multiples of the fun-
damental, so low pitches have tightly-spaced harmonics, which can cause blurring and
overlap.

e On the NSynth dataset, GANs can outperform a strong WaveNet baseline in automatic and
human evaluations, and generate examples ~54,000 times faster.

e Global conditioning on latent and pitch vectors allow GANSs to generate perceptually
smooth interpolation in timbre, and consistent timbral identity across pitch.

2 EXPERIMENTAL DETAILS

2.1 DATASET

We focus our study on the NSynth dataset, which contains 300,000 musical notes from 1,000 differ-
ent instruments aligned and recorded in isolation. NSynth is a difficult dataset composed of highly
diverse timbres and pitches, but it is also highly structured with labels for pitch, velocity, instrument,
and acoustic qualities (Liu et al., [2015} [Engel et al., 2017). Each sample is four seconds long, and
sampled at 16kHz, giving 64,000 dimensions. As we wanted to included human evaluations on au-
dio quality, we restricted ourselves to training on the subset of acoustic instruments and fundamental
pitches ranging from MIDI 24-84 (~32-1000Hz), as those timbres are most likely to sound natural
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to an average listener. This left us with 70,379 examples from instruments that are mostly strings,
brass, woodwinds, and mallets. We created a new test/train 80/20 split from shuffled data, as the
original split was divided along instrument type, which isn’t desirable for this task.

2.2 ARCHITECTURE AND REPRESENTATIONS

Taking inspiration from successes in image generation, we adapt the progressive training methods
of |Karras et al.|(2018a) to instead generate audio spectraﬂ While e search over a variety of hyper-
parameter configurations and learning rates, we direct readers to the original paper for an in-depth
analysis (Karras et al.,|2018a)), and the appendix for complete details.

Briefly, the model samples a random vector z from a spherical Gaussian, and runs it through a stack
of transposed convolutions to upsample and generate output data * = G(z), which is fed into a
discriminator network of downsampling convolutions (whose architecture mirrors the generator’s) to
estimate a divergence measure between the real and generated distributions (Arjovsky et al.,[2017).
As in [Karras et al.| (2018a), we use a gradient penalty (Gulrajani et al., [2017) to promote Lipschitz
continuity, and pixel normalization at each layer. We also try training both progressive and non-
progressive variants, and see comparable quality in both. While it is not essential for success, we
do see slightly better convergence time and sample diversity for progressive training, so for the
remainder of the paper, all models are compared with progressive training.

Unlike Progressive GAN, our method involves conditioning on an additional source of informa-
tion. Specifically, we append a one-hot representation of musical pitch to the latent vector, with the
musically-desirable goal of achieving independent control of pitch and timbre. To encourage the
generator to use the pitch information, we also add an auxiliary classification (Odena et al.l [2017)
loss to the discriminator that tries to predict the pitch label.

For spectral representations, we compute STFT magnitudes and phase angles using TensorFlow’s
built-in implementation. We use an STFT with 256 stride and 1024 frame size, resulting in 75%
frame overlap and 513 frequency bins. We trim the Nyquist frequency and pad in time to get an
“image” of size (256, 512, 2). The two channel dimension correspond to magnitude and phase.
We take the log of the magnitude to better constrain the range and then scale the magnitudes to be
between -1 and 1 to match the tanh output nonlinearity of the generator network. The phase angle
is also scaled to between -1 and 1 and we refer to these variants as “phase” models. We optionally
unwrap the phase angle and take the finite difference as in Figure [If we call the resulting models
“instantaneous frequency” (“IF”) models. We also find performance is sensitive to having sufficient
frequency resolution at the lower frequency range. Maintaining 75% overlap we are able to double
the STFT frame size and stride, resulting in spectral images with size (128, 1024, 2), which we refer
to as high frequency resolution, “+ H”, variants. Lastly, to provide even more separation of lower
frequencies we transform both the log magnitudes and instantaneous frequencies to a mel frequency
scale without dimensional compression (1024 bins), which we refer to as “IF-Mel” variants. To
convert back to linear STFTs we just use the approximate inverse linear transformation, which,
perhaps surprisingly does not harm audio quality significantly.

It is important for us to compare against strong baselines, so we adapt WaveGAN (Donahue et al.,
2019), the current state of the art in waveform generation with GANSs, to accept pitch conditioning
and retrain it on our subset of the NSynth dataset. We also independently train our own waveform
generating GANs off the progressive codebase and our best models achieve similar performance
to WaveGAN without progressive training, so we opt to primarily show numbers from WaveGAN
instead (see appendix Table [2]for more details).

Beyond GANs, WaveNet (van den Oord et al., 2016)) is currently the state of the art in generative
modeling of audio. Prior work on the NSynth dataset used an WaveNet autoencoder to interpolate
between sounds (Engel et al., 2017), but is not a generative model as it requires conditioning on the
original audio. Thus, we create strong WaveNet baselines by adapting the architecture to accept the
same one-hot pitch conditioning signal as the GANs. We train variants using both a categorical 8-bit
mu law and 16-bit mixture of logistics for the output distributions, but find that the 8-bit model is
more stable and outperforms the 16-bit model (see appendix Table 2] for more details).

3Code: http://goo.gl/magenta/gansynth-code
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3 METRICS

Evaluating generative models is itself a difficult problem: because our goals (perceptually-realistic
audio generation) are hard to formalize, the most common evaluation metrics tend to be heuristic
and have “blind spots” (Theis et al., | 2016). To mitigate this, we evaluate all of our models against a
diverse set of metrics, each of which captures a distinct aspect of model performance. Our evaluation
metrics are as follows:

o Human Evaluation We use human evaluators as our gold standard of audio quality be-
cause it is notoriously hard to measure in an automated manner. In the end, we are interested
in training networks to synthesize coherent waveforms, specifically because human percep-
tion is extremely sensitive to phase irregularities and these irregularities are disruptive to
a listener. We used Amazon Mechanical Turk to perform a comparison test on examples
from all models presented in Table 1| (this includes the hold-out dataset). The participants
were presented with two 4s examples corresponding to the same pitch. On a five-level Lik-
ert scale, the participants evaluate the statement “Sample A has better audio quality / has
less audio distortions than Sample B”. For the study, we collected 3600 ratings and each
model is involved in 800 comparisons.

e Number of Statistically-Different Bins (NDB) We adopt the metric proposed by
Richardson & Weiss| (2018) to measure the diversity of generated examples: the training
examples are clustered into & = 50 Voronoi cells by k-means in log-spectrogram space, the
generated examples are also mapped into the same space and are assigned to the nearest
cell. NDB is reported as the number of cells where the number of training examples is
statistically significantly different from the number of generated examples by a two-sample
Binomial test.

e Inception Score (IS) (Salimans et al.,2016) propose a metric for evaluating GANs which
has become a de-facto standard in GAN literature (Gulrajani et al., |2017; Miyato et al.|
2018}, |[Karras et al.l 2018a). Generated examples are run through a pretrained Inception
classifier and the Inception Score is defined as the mean KL divergence between the image-
conditional output class probabilities and the marginal distribution of the same. IS penalizes
models whose examples aren’t each easily classified into a single class, as well as models
whose examples collectively belong to only a few of the possible classes. Though we still
call our metric “IS” for consistency, we replace the Inception features with features from a
pitch classifier trained on spectrograms of our acoustic NSynth dataset.

e Pitch Accuracy (PA) and Pitch Entropy (PE) Because the Inception Score can conflate
models which don’t produce distinct pitches and models which produce only a few pitches,
we also separately measure the accuracy of the same pretrained pitch classifier on generated
examples (PA) and the entropy of its output distribution (PE).

e Fréchet Inception Distance (FID) (Heusel et al., [2017) propose a metric for evaluating
GANs based on the 2-Wasserstein (or Fréchet) distance between multivariate Gaussians fit
to features extracted from a pretrained Inception classifier and show that this metric cor-
relates with perceptual quality and diversity on synthetic distributions. As with Inception
Score, we use pitch-classifier features instead of Inception features.

4 RESULTS

Table [1| presents a summary of our results on all model and representation variants. Our most dis-
cerning measure of audio quality, human evaluation, shows a clear trend, summarized in Figure [2]
Quality decreases as output representations move from IF-Mel, IF, Phase, to Waveform. The highest
quality model, IF-Mel, was judged comparably but slightly inferior to real data. The WaveNet base-
line produces high-fidelity sounds, but occasionally breaks down into feedback and self oscillation,
resulting in a score that is comparable to the [F GANS.

While there is no a priori reason that sample diversity should correlate with audio quality, we in-
deed find that NDB follows the same trend as the human evaluation. Additionally, high frequency
resolution improves the NDB score across models types. The WaveNet baseline receives the worst
NDB score. Even though the generative model assigns high likelihood to all the training data, the
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Table 1: Metrics for different models. “+ H” stands for higher frequency resolution, and “Real Data”
is drawn from the test set.

Human Eval
Examples (wins) NDB FID IS PA PE
Real Data 549 2.2 13 47.1 982 0.22
IF-Mel + H 485 293 167 38.1 979 040
IF+H 308 36.0 104 41.6 983 0.32
Phase + H 225 376 592 362 976 044
IF-Mel 479 370 600 29.6 941 0.63
IF 283 37.0 708 36.3 96.8 044
Phase 203 414 687 244 944 0.77
WaveNet 359 459 320 29.1 927 0.70
WaveGAN 216 43.0 461 137 827 1.40

WaveGAN
Phase + HP
WaveNet (8bit)
IF + HP

IF-Mel + HP

Real Data

o

50 100 150 200 250 300 350
# of wins

Figure 2: Number of wins on pair-wise comparison across different output representations and base-
lines. Ablation comparing highest performing models of each type. Higher scores represent better
perceptual quality to participants. The ranking observed here correlates well with the evaluation on
quantitative metrics as in Table E

autoregressive sampling itself has a tendency gravitate to the same type of oscillation for each given
pitch conditioning, leading to an extreme lack of diversity. Histograms of the sample distributions
showing peaky distributions for the different models can be found in the appendix.

FID provides a similar story to the first two metrics with significantly lower scores for for IF models
with high frequency resolution. Comparatively, Mel scaling has much less of an effect on the FID
then it does in the listener study. Phase models have high FID, even at high frequency resolution,
reflecting their poor sample quality.

Many of the models do quite well on the classifier metrics of IS, Pitch Accuracy, and Pitch En-
tropy, because they have explicit conditioning telling them what pitches to generate. All of the
high-resolution models actually generate examples classified with similar accuracy to the real data.
As this accuracy and entropy can be a strong function of the distribution of generated examples,
which most certainly does not match the training distribution due to mode collapse and other issues,
there is little discriminative information to gain about sample quality from differences among such
high scores. The metrics do provide a rough measure of which models are less reliably generating
classifiable pitches, which seems to be the low frequency models to some extent and the baselines.

5 QUALITATIVE ANALYSIS

While we do our best to visualize qualitative audio concepts, we highly recommend the reader
to listen to the accompanying audio examples provided at https://goo.gl/magenta/
gansynth-examples.


 https://goo.gl/magenta/gansynth-examples
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Figure 3: Phase coherence. Examples are selected to be roughly similar between the models for
illustrative purposes. The top row shows the waveform modulo the fundamental periodicity of the
note (MIDI C60), for 1028 examples taken in the middle of the note. Notice that the real data
completely overlaps itself as the waveform is extremely periodic. The WaveGAN and PhaseGAN,
however, have many phase irregularities, creating a blurry web of lines. The IFGAN is much more
coherent, having only small variations from cycle-to-cycle. In the Rainbowgrams below, the real
data and IF models have coherent waveforms that result in strong consistent colors for each har-
monic, while the PhaseGAN has many speckles due to phase discontinuities, and the WaveGAN
model is quite irregular.

5.1 PHASE COHERENCE

Figure [3] visualizes the phase coherence of examples from different GAN variants. It is clear from
the waveforms at the top, which are wrapped at the fundamental frequency, that the real data and
IF models produce waveforms that are consistent from cycle-to-cycle. The PhaseGAN has some
phase discontinuities, while the WaveGAN is quite irregular. Below we use Rainbowgrams (Engel
et all 2017) to depict the log magnitude of the frequencies as brightness and the IF as the color
on a rainbow color map. This visualization helps to see clear phase coherence of the harmonics in
the real data and IFGAN by the strong consistent colors. In contrast, the PhaseGAN discontinuities
appear as speckled noise, and the WaveGAN appears largely incoherent.

5.2 INTERPOLATION

As discussed in the introduction, GANSs also allow conditioning on the same latent vector the entire
sequence, as opposed to only short subsequences for memory intensive autoregressive models like
WaveNet. WaveNet autoencoders, such as ones in (Engel et al.l |2017), learn local latent codes
that control generation on the scale of milliseconds but have limited scope, and have a structure of
their own that must be modelled and does not fit a compact prior. In Figure ff] we take a pretrained
WaveNet autoencoder E| and compare interpolating between examples in the raw waveform (top),
the distributed latent code of a WaveNet autoencoder, and the global code of an IF-Mel GAN.

Interpolating the waveform is perceptually equivalent to mixing between the amplitudes of two
distinct sounds. WaveNet improves upon this for the two notes by mixing in the space of timbre,
but the linear interpolation does not correspond to the complex prior on latents, and the intermediate
sounds have a tendency to fall apart, oscillate and whistle, which are the natural failure modes for
a WaveNet model. However, the GAN model has a spherical gaussian prior which is decoded to

5https://github.com/tensorflow/magenta/tree/master/magenta/models/
nsynth
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Figure 4: Global interpolation. Examples available for listenin Interpolating between waveforms
perceptually results in crossfading the volumes of two distinct sounds (rainbowgrams at top). The
WaveNet autoencoder (middle) only has local conditioning distributed in time, and no compact
prior over those time series, so linear interpolation ventures off the true prior / data manifold, and
produces in-between sounds that are less realistic examples and feature the default failure mode of
autoregressive wavenets (feedback harmonics). Meanwhile, the IF-Mel GAN (bottom) has global
conditioning so interpolating in perceptual attributes while staying along the prior at all intermediate
points, so they produce high-fidelity audio examples like the endpoints.

produce the entire sound, and spherical interpolation stays well-aligned with the prior. Thus, the
perceptual change during interpolation is smooth and all intermediate latent vectors are decoded to
produce sounds without additional artifacts. As a more musical example, in the audio examples, we
interpolate the timbre between 15 random points in latent space while using the pitches from the
prelude to Bach’s Suite No. 1 in G majorﬂ As seen in appendix Figure the timbre of the sounds
morph smoothly between many instruments while the pitches consistently follow the composed
piece.

5.3 CONSISTENT TIMBRE ACROSS PITCH

While timbre slightly varies for a natural instrument across register, on the whole it remains consis-
tent, giving the instrument its unique character. In the audio examples ﬂ we fix the latent condition-
ing variable and generate examples by varying the pitch conditioning over five octaves. It’s clear
that the timbral identity of the GAN remains largely intact, creating a unique instrument identity
for the given point in latent space. As seen in appendix Figure[7} the Bach prelude rendered with a
single latent vector has a consistent harmonic structure across a range of pitches.

6 FAST GENERATION

One of the advantages of GANs with upsampling convolutions over autoregressive models is that
the both the training and generation can be processed in parallel for the entire audio sample. This

®http://www.jsbach.net/midi/midi_solo_cello.html
"nttps://goo.gl/magenta/gansynth-examples
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is quite amenable to modern GPU hardware which is often I/O bound with iterative autoregressive
algorithms. This can be seen when we synthesize a single four second audio sample on a TitanX
GPU and the latency to completion drops from 1077.53 seconds for the WaveNet baseline to 20
milliseconds for the IF-Mel GAN making it around 53,880 times faster. Previous applications of
WaveNet autoencoders trained on the NSynth dataset for music performance relied on prerendering
all possible sounds for playback due to the long synthesis latency |°| This work opens up the intrigu-
ing possibility for realtime neural network audio synthesis on device, allowing users to explore a
much broader pallete of expressive sounds.

7 RELATED WORK

Much of the work on deep generative models for audio tends to focus on speech synthesis (van den
Oord et al., 2018} |Sotelo et al.| 2017 Wang et al.| [2017). These datasets require handling variable
length conditioning (phonemes/text) and audio, and often rely on recurrent and/or autoregressive
models for variable length inputs and outputs. It would be interesting to compare adversarial audio
synthesis to these methods, but we leave this to future work as adapting GANS to use variable-length
conditioning or recurrent generators is a non-trivial extension of the current work.

In comparison to speech, audio generation for music is relatively under-explored. van den Oord
et al.| (2016) and |Mehri et al.| (2017) propose autoregressive models and demonstrate their ability
to synthesize musical instrument sounds, but these suffer from the aforementioned slow generation.
Donahue et al.| (2019) first applied GANSs to audio generation with coherent results, but fell short of
the audio fidelity of autoregressive likelihood models.

Our work also builds on multiple recent advances in GAN literature. |Gulrajani et al.|(2017) propose
a modification to the loss function of GANs and demonstrate improved training stability and archi-
tectural robustness. [Karras et al.|(2018a)) further introduce progressive training, in which successive
layers of the generator and discriminator are learned in a curriculum, leading to improved generation
quality given a limited training time. They also propose a number of architectural tricks to further
improve quality, which we employ in our best models.

The NSynth dataset was first introduced as a “CelebA of audio” (Liu et al. |2015; Engel et al.,
2017), and used WaveNet autoencoders to interpolate between timbres of musical instruments, but
with very slow sampling speeds. [Mor et al.| (2019) expanded on this work by incoporating an ad-
versarial domain confusion loss to achieve timbre transformations between a wide range of audio
sources. [Defossez et al.| (2018)) achieve significant sampling speedups (~2,500x) over wavenet au-
toencoders by training a frame-based regression model to map from pitch and instrument labels to
raw waveforms. They consider a unimodal likelihood regression loss in log spectrograms and back-
propagate through the STFT, which yeilds good frequency estimation, but provides no incentive to
learn phase coherency or handle multimodal distributions. Their architecture also requires a large
amount of channels, slowing down sample generation and training.

8 CONCLUSION

By carefully controlling the audio representation used for generative modeling, we have demon-
strated high-quality audio generation with GANs on the NSynth dataset, exceeding the fidelity of a
strong WaveNet baseline while generating samples tens of thousands of times faster. While this is a
major advance for audio generation with GANS, this study focused on a specific controlled dataset,
and further work is needed to validate and expand it to a broader class of signals including speech
and other types of natural sound. This work also opens up possible avenues for domain transfer
and other exciting applications of adversarial losses to audio. Issues of mode collapse and diversity
common to GANSs exist for audio as well, and we leave it to further work to consider combining
adversarial losses with encoders or more straightforward regression losses to better capture the full
data distribution.

$http://g.co/nsynthsuper
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A MEASURING DIVERSITY ACROSS GENERATED EXAMPLES
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Figure 5: NDB bin proportions for the IF-Mel + H model and the WaveGAN baseline (evaluated
with examples of pitch 60).
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Figure 6: NDB bin proportions for the WaveNet baseline (evaluated with examples of pitch 60).
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B TIMBRAL SIMILARITY ACROSS PITCH

Bach Prelude -- Single Latent Vector

Figure 7: The first 20 seconds (10 seconds per a row) of the prelude to Bach’s Suite No. 1 in G
majorﬂ, for pitches synthesized with a single latent vector (top), and with spherical interpolation in
latent space (bottom). The timbre is constant for a single latent vector, shown by the consistency
of the upper harmonic structure, while it varies dramatically as the latent vector changes. Listening
examples are provided at https://goo.gl/magenta/gansynth-examples
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C BASELINE MODEL COMPARISONS

Table 2: Comparison of models generating waveforms directly. Our Waveform GAN baseline per-
forms similar to the WaveGAN baseline, but the progressive training does not improve performance,
so we only compare to the WaveGAN baseline for the paper. The 8-bit categorical WaveNet outper-
forms the 16-bit mixture of logistics, likely due to the decreased stability of the 16-bit model with
only pitch conditioning, despite the increased fidelity.

Examples NDB FID IS PA PE

WaveGAN 43.0 461 137 827 140
Waveform NoProg  48.2 447 148 963 1.61
Waveform Prog 450 375 25 567 3.59
WaveNet 8-bit 448 320 29.1 927 0.70
WaveNet 16-bit 459 656 95 646 1.71
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D TRAINING DETAILS

GAN architectures were directly adapted from an open source implementation in Tensorﬂowm Full
details are given in Table [3] including adding a pitch classifier to the end of the discriminator as in
AC-GAN. All models were trained with the ADAM optimizer (Kingma & Bal 2014). We sweep
over learning rates (2e-4, 4e-4, 8e-4) and weights of the auxiliary classifier loss (0.1, 1.0, 10), and
find that for all variants (spectral representation, progressive/no progressive, frequency resolution) a
learning rate of 8e-4 and classifier loss of 10 perform the best.

As in the original progressive GAN paper, both networks use box upscaling/downscaling and the
generators use pixel normalization,

1
T = xnth/(E Z T huwe) (1)

where n, h, w, and c refer to the batch, height, width, and channel dimensions respectively, x is
the activations, and C is the total number of channels. The discriminator also appends the standard
deviation of the minibatch activations as a scalar channel near the end of the convolutional stack as
seen in Table

Since we find it helpful to use a Tanh output nonlinearity for the generator, we normalize real data
before passing to the discriminator. We measure the maximum range over 100 examples and inde-
pendently shift and scale the log-magnitudes and phases to [-0.8, 0.8] to allow for outliers and use
more of the linear regime of the Tanh nonlinearity.

We train each GAN variant for 4.5 days on a single V100 GPU, with a batch size of 8. For non-
progressive models, this equates to training on ~5M examples. For progressive models, we train on
1.6M examples per a stage (7 stages), 800k during alpha blending and 800k after blending. At the
last stage we continue training until the 4.5 days completes. Because the earlier stages train faster,
the progressive models train on ~11M examples.

For the WaveNet baseline, we also adapt the open source Tensorflow implementation[ﬂ The decoder
is composed of 30 layers of dilated convolution, each of 512 channels and receptive field of 3, and
each with a 1x1 convolution skip connection to the output. The layers are divided into 3 stacks of
10, with dilation in each stack increasing from 2° to 2%, and then repeating. We replace the audio
encoder stack with a conditioning stack operating on a one-hot pitch conditioning signal distributed
in time (3 seconds on, 1 second off). The conditioning stack is 5 layers of dilated convolution,
increasing to 2°, and then 3 layers of regular convolution, all with 512 channels. This conditioning
signal is then passed through a 1x1 convolution for each layer of the decoder and added to the output
of each layer, as in other implementations of WaveNet conditioning. For the 8-bit model we use mu-
law encoding of the audio and a categorical loss, while for the 16-bit model we use a quantized
mixture of 10 logistics (Salimans et al., [2017). WaveNets converged to 150k iterations in 2 days
with 32 V100 GPUs trained with synchronous SGD with batch size 1 per GPU, for a total batch size
of 32.

10https://github.com/tensorflow/models/tree/master/research/qan/
progressive_gan

"nttps://github.com/tensorflow/magenta/tree/master/magenta/models/
nsynth
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Table 3: Model architecture for hi-frequency resolution. Low frequency resolution starts with a
width of 4, and height of 8, but is otherwise the same. "PN” stands for pixel norm, and "LReLU”
stands for leaky rectified linear unit, with a slope of 0.2. The latent vector Z has 256 dimensions and
the pitch conditioning is a 61 dimensional one-hot vector.

Generator Output Size kwiath  Kreight Eriters Nonlinearity
concat(Z, Pitch) (1,1, 317) - - - -
conv2d (2, 16, 256) 2 16 256 PN(LReLU)
conv2d (2, 16, 256) 3 3 256 PN(LReLU)
upsample 2x2 (4, 32, 256) - - - -
conv2d (4, 32, 256) 3 3 256 PN(LReLU)
conv2d (4, 32, 256) 3 3 256 PN(LReLU)
upsample 2x2 (8, 64, 256) - - - -
conv2d (8, 64, 256) 3 3 256 PN(LReLU)
conv2d (8, 64, 256) 3 3 256 PN(LReLU)
upsample 2x2 (16, 128, 256) - - - -
conv2d (16, 128, 256) 3 3 256 PN(LReLU)
conv2d (16, 128, 256) 3 3 256 PN(LReLU)
upsample 2x2 (32, 256, 256) - - - -
conv2d (32, 256, 128) 3 3 128 PN(LReLU)
conv2d (32, 256, 128) 3 3 128 PN(LReLU)
upsample 2x2 (64,512, 128) - - - -
conv2d (64,512, 64) 3 3 64 PN(LReLU)
conv2d (64,512, 64) 3 3 64 PN(LReLU)
upsample 2x2 (128, 1024, 64) - - - -
conv2d (128, 1024, 32) 3 3 32 PN(LReLU)
conv2d (128, 1024, 32) 3 3 32 PN(LReLU)
generator output (128, 1024, 2) 1 1 2 Tanh
Discriminator

image (128, 1024, 2) - - - -
conv2d (128, 1024, 32) 1 1 32 -
conv2d (128, 1024, 32) 3 3 32 LReLU
conv2d (128, 1024, 32) 3 3 32 LReLLU
downsample 2x2 (64,512, 32) - - - -
conv2d (64,512, 64) 3 3 64 LReLU
conv2d (64, 512, 64) 3 3 64 LReLLU
downsample 2x2 (32, 256, 64) - - - -
conv2d (32, 256, 128) 3 3 128 LReLU
conv2d (32, 256, 128) 3 3 128 LReLU
downsample 2x2 (16, 128, 128) - - - -
conv2d (16, 128, 256) 3 3 256 LReLU
conv2d (16, 128, 256) 3 3 256 LReLLU
downsample 2x2 (8, 64, 256) - - - -
conv2d (8, 64, 256) 3 3 256 LReLU
conv2d (8, 64, 256) 3 3 256 LReLU
downsample 2x2 (4, 32, 256) - - - -
conv2d (4, 32, 256) 3 3 256 LReLU
conv2d (4, 32, 256) 3 3 256 LReLU
downsample 2x2 (2, 16, 256) - - - -
concat(x, minibatch std.) (2, 16, 257) - - - -
conv2d (2, 16, 256) 3 3 256 LReLU
conv2d (2, 16, 256) 3 3 256 LReLU
pitch classifier (1,1, 61) - - 61 Softmax

discriminator output

1,1, 1)
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