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ABSTRACT

There is growing interest in geometrically-inspired embeddings for learning hier-
archies, partial orders, and lattice structures, with natural applications to transitive
relational data such as entailment graphs. Recent work has extended these ideas
beyond deterministic hierarchies to probabilistically calibrated models, which en-
able learning from uncertain supervision and inferring soft-inclusions among con-
cepts, while maintaining the geometric inductive bias of hierarchical embedding
models. We build on the Box Lattice model of Vilnis et al. (2018), which showed
promising results in modeling soft-inclusions through an overlapping hierarchy of
sets, parameterized as high-dimensional hyperrectangles (boxes). However, the
hard edges of the boxes present difficulties for standard gradient based optimiza-
tion; that work employed a special surrogate function for the disjoint case, but
we find this method to be fragile. In this work, we present a novel hierarchical
embedding model, inspired by a relaxation of box embeddings into parameter-
ized density functions using Gaussian convolutions over the boxes. Our approach
provides an alternative surrogate to the original lattice measure that improves the
robustness of optimization in the disjoint case, while also preserving the desir-
able properties with respect to the original lattice. We demonstrate increased or
matching performance on WordNet hypernymy prediction, Flickr caption entail-
ment and a MovieLens-based market basket dataset. We show especially marked
improvements in the case of sparse data, where many conditional probabilities
should be low, and thus boxes should be nearly disjoint.

1 INTRODUCTION

Embedding methods have long been a key technique in machine learning, providing a natural way
to convert semantic problems into geometric problems. Early examples include the vector space
(Salton et al., 1975) and latent semantic indexing (Deerwester et al., 1990) models for information
retrieval. Embeddings experienced a renaissance after the publication of Word2Vec (Mikolov et al.,
2013), a neural word embedding method (Bengio et al., 2003; Mnih & Hinton, 2009) that could run
at massive scale.

Recent years have seen an interest in structured or geometric representations. Instead of represent-
ing e.g. images, words, sentences, or knowledge base concepts with points, these methods instead
associate them with more complex geometric structures. These objects can be density functions, as
in Gaussian embeddings (Vilnis & McCallum, 2015; Athiwaratkun & Wilson, 2017; 2018), convex
cones, as in order embeddings (Vendrov et al., 2016; Lai & Hockenmaier, 2017), or axis-aligned hy-
perrectangles, as in box embeddings (Vilnis et al., 2018; Subramanian & Chakrabarti, 2018). These
geometric objects more naturally express ideas of asymmetry, entailment, ordering, and transitive
relations than simple points in a vector space, and provide a strong inductive bias for these tasks.

In this work, we focus on the probabilistic Box Lattice model of Vilnis et al. (2018), because of its
strong empirical performance in modeling transitive relations, probabilistic interpretation (edges in
a relational DAG are replaced with conditional probabilities), and ability to model complex joint
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probability distributions including negative correlations. Box embeddings (BE) are a generalization
of order embeddings (OE) (Vendrov et al., 2016) and probabilistic order embeddings (POE) (Lai
& Hockenmaier, 2017) that replace the vector lattice ordering (notions of overlapping and enclos-
ing convex cones) in OE and POE with a more general notion of overlapping boxes (products of
intervals).

While intuitively appealing, the “hard edges” of boxes and their ability to become easily disjoint,
present difficulties for gradient-based optimization: when two boxes are disjoint in the model, but
have overlap in the ground truth, no gradient can flow to the model to correct the problem. This is of
special concern for (pseudo-)sparse data, where many boxes should have nearly zero overlap, while
others should have very high overlap. This is especially pronounced in the case of e.g. market basket
models for recommendation, where most items should not be recommended, and entailment tasks,
most of which are currently artificially resampled into a 1:1 ratio of positive to negative examples.
To address the disjoint case, Vilnis et al. (2018) introduce an ad-hoc surrogate function. In contrast,
we look at this problem as inspiration for a new model, based on the intuition of relaxing the hard
edges of the boxes into smoothed density functions, using a Gaussian convolution with the original
boxes.

We demonstrate the superiority of our approach to modeling transitive relations on WordNet, Flickr
caption entailment, and a MovieLens-based market basket dataset. We match or beat existing state
of the art results, while showing substantial improvements in the pseudosparse regime.

2 RELATED WORK

As mentioned in the introduction, there is much related work on structured or geometric embeddings.
Most relevant to this work are the order embeddings of Vendrov et al. (2016), which embed a non-
probabilistic DAG or lattice in a vector space with order given by inclusion of embeddings’ forward
cones, the probabilistic extension of that model due to Lai & Hockenmaier (2017), and the box
lattice or box embedding model of Vilnis et al. (2018), which we extend. Concurrently to Vilnis
et al. (2018), another hyperrectangle-based generalization of order embeddings was proposed by
Subramanian & Chakrabarti (2018), also called box embeddings. The difference between the two
models lies in the interpretation: the former is a probabilistic model that assigns edges conditional
probabilities according to degrees of overlap, while the latter is a deterministic model in the style of
order embeddings — an edge is considered present only if one box entirely encloses another.

Methods based on embedding points in hyperbolic space (Nickel & Kiela, 2017; Ganea et al., 2018)
have also recently been proposed for learning hierarchical embeddings. These models, similar
to order embeddings and the box embeddings of Subramanian & Chakrabarti (2018), are non-
probabilistic and optimize an energy function. Additionally, while the negative curvature of hy-
perbolic space is attractively biased towards learning tree structures (since distances between points
increase the farther they are from the origin), this constant curvature makes the models not as suit-
able for learning non-treelike DAGs.

Our approach to smoothing the energy landscape of the model using Gaussian convolution is com-
mon in mollified optimization and continuation methods, and is increasingly making its way into
machine learning models such as Mollifying Networks (Gulcehre et al., 2016b), diffusion-trained
networks (Mobahi, 2016), and noisy activation functions (Gulcehre et al., 2016a).

Our focus on embedding orderings and transitive relations is a subset of knowledge graph embed-
ding. While this field is very large, the main difference of our probabilistic approach is that we seek
to learn an embedding model which maps concepts to subsets of event space, giving our model an
inductive bias especially suited for transitive relations as well as fuzzy concepts of inclusion and
entailment.

3 BACKGROUND

We begin with a brief overview of two methods for representing ontologies as geometric objects.
First, we review some definitions from order theory, a useful formalism for describing ontologies,
then we introduce the vector and box lattices. Figure 1 shows a simple two-dimensional example of
these representations.
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(a) Ontology (b) Order Embeddings (c) Box Embeddings

Figure 1: Comparison between the Order Embedding (vector lattice) and Box Embedding represen-
tations for a simple ontology. Regions represent concepts and overlaps represent their entailment.
Shading represents density in the probabilistic case.

3.1 PARTIAL ORDERS AND LATTICES

A non-strict partially ordered set (poset) is a pair P,�, where P is a set, and � is a binary relation.
For all a, b, c ∈ P ,

Reflexivity: a � a
Antisymmetry: a � b � a implies a = b

Transitivity: a � b � c implies a � c

This generalizes the standard concept of a totally ordered set to allow some elements to be incom-
parable. Posets provide a good formalism for the kind of acyclic directed graph data found in many
knowledge bases with transitive relations.

A lattice is a poset where any subset of elements has a single unique least upper bound, and greatest
lower bound. In a bounded lattice, the set P contains two additional elements, > (top), and ⊥
(bottom), which denote the least upper bound and greatest lower bound of the entire set.

A lattice is equipped with two binary operations, ∨ (join), and ∧ (meet). a∨b denotes the least upper
bound of a, b ∈ P , and a ∧ b denotes their greatest lower bound. A bounded lattice must satisfy
these properties:

Idempotency: a ∧ a = a ∨ a = a

Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a
Associativity: a ∧ b ∧ c = a ∧ (b ∧ c) and (a ∨ b ∨ c) = a ∨ (b ∨ c)
Absorption: a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a

Bounded: ⊥ � a � >

Note that the extended real numbers, R ∪ {−∞,∞}, form a bounded lattice (and in fact, a totally
ordered set) under the min and max operations as the meet (∧) and join (∨) operations. So do sets
partially ordered by inclusion, with ∩ and ∪ as ∧ and ∨. Thinking of these special cases gives the
intuition for the fourth property, absorption.

The ∧ and ∨ operations can be swapped, along with reversing the poset relation�, to give a valid lat-
tice, called the dual lattice. In the real numbers this just corresponds to a sign change. A semilattice
has only a meet or join, but not both.

Note. In the rest of the paper, when the context is clear, we will also use ∧ and ∨ to denote min and
max of real numbers, in order to clarify the intuition behind our model.

3.2 VECTOR LATTICE

A vector lattice, also known as a Riesz space (Zaanen, 1997), or Hilbert lattice when the accompa-
nying vector space has an inner product, is a vector space endowed with a lattice structure.
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A standard choice of partial order for the vector lattice Rn is to use the product order from the
underlying real numbers, which specifies for all x,y ∈ Rn

x � y ⇐⇒ ∀i ∈ {1..n}, xi ≤ yi
Under this order, meet and join operations are pointwise min and max, which gives a lattice struc-
ture. In this formalism, the Order Embeddings of Vendrov et al. (2016) embed partial orders as
vectors using the reverse product order, corresponding to the dual lattice, and restrict the vectors to
be positive. The vector of all zeroes represents >, and embedded objects become “more specific” as
they get farther away from the origin.

Figure 1b demonstrates a toy, two-dimensional example of the Order Embedding vector lattice rep-
resentation of a simple ontology. Shading represents the probability measure assigned to this lattice
in the probabilistic extension of Lai & Hockenmaier (2017).

3.3 BOX LATTICE

Vilnis et al. (2018) introduced a box lattice, wherein each concept in a knowledge graph is associated
with two vectors, the minimum and maximum coordinates of an axis-aligned hyperrectangle, or box
(product of intervals).

Using the notion of set inclusion between boxes, there is a natural partial order and lattice structure.
To represent a box x, let the pairs (xm,i, xM,i) be the maximum and minimum of the interval at each
coordinate i. Then the box lattice structure (least upper bounds and greatest lower bounds), with ∨
and ∧ denoting max and min when applied to the scalar coordinates, is

x ∧ y = ⊥ if x and y disjoint, else

x ∧ y =
∏
i

[xm,i ∨ ym,i, xM,i ∧ yM,i]

x ∨ y =
∏
i

[xm,i ∧ ym,i, xM,i ∨ yM,i]

Here,
∏

denotes a set (cartesian) product — the lattice meet is the largest box contained entirely
within both x and y, or bottom (the empty set) where no intersection exists, and the lattice join is
the smallest box containing both x and y.

To associate a measure, marginal probabilities of (collections of) events are given by the volume of
boxes, their complements, and intersections under a suitable probability measure. Under the uniform
measure, if event x has an associated box with interval boundaries (xm, xM ), the probability p(x)
is given by

∏n
i (xM,i − xm,i). Use of the uniform measure requires the boxes to be constrained to

the unit hypercube, so that p(x) ≤ 1. p(⊥) is taken to be zero, since ⊥ is an empty set. As boxes
are simply special cases of sets, it is intuitive that this is a valid probability measure, but it can also
be shown to be compatible with the meet semilattice structure in a precise sense (Leader, 1971).

Figure 1c demonstrates a toy, two-dimensional example of the Box Embedding lattice representation
of a simple ontology.

4 METHOD

4.1 MOTIVATION: OPTIMIZATION AND SPARSE DATA

When using gradient-based optimization to learn box embeddings, an immediate problem identified
in the original work is that when two concepts are incorrectly given as disjoint by the model, no
gradient signal can flow since the meet (intersection) is exactly zero, with zero derivative. To see
this, note that for a pair of 1-dimensional boxes (intervals), the volume of the meet under the uniform
measure p as given in Section 3.3 is

p(x ∧ y) = mh(min(xM , yM )−max(xm, ym)) (1)

where mh is the standard hinge function, mh(x) = 0 ∨ x = max(0, x).
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The hinge function has a large flat plateau at 0 when intervals are disjoint. This issue is especially
problematic when the lattice to be embedded is (pseudo-)sparse, that is, most boxes should have
very little or no intersection, since if training accidentally makes two boxes disjoint there is no way
to recover with the naive measure. The authors propose a surrogate function to optimize in this case,
but we will use a more principled framework to develop alternate measures that avoid this pathology,
improving both optimization and final model quality.

4.2 RELAXED GEOMETRY

(a) Unsmoothed Indicators (b) Convolution Kernel (c) Smoothed w/ Overlap

Figure 2: One-dimensional example demonstrating two disjoint indicators of intervals before and
after the application of a smoothing kernel. The area under the purple product curve is proportional
to the degree of overlap.

The intuition behind our approach is that the “hard edges” of the standard box embeddings lead to
unwanted gradient sparsity, and we seek a relaxation of this assumption that maintains the desirable
properties of the base lattice model while enabling better optimization and preserving a geometric
intuition. For ease of exposition, we will refer to 1-dimensional intervals in this section, but the
results carry through from the representation of boxes as products of intervals and their volumes
under the associated product measures.

The first observation is that, considering boxes as indicator functions of intervals, we can rewrite the
measure of the joint probability p(x ∧ y) between intervals x = [a, b] and y = [c, d] as an integral
of the product of those indicators:

p(x ∧ y) =

∫
R
1[a,b](x)1[c,d](x)dx

since the product has support (and is equal to 1) only in the areas where the two intervals overlap.

A solution suggests itself in replacing these indicator functions with functions of infinite support. We
elect for kernel smoothing, specifically convolution with a normalized Gaussian kernel, equivalent to
an application of the diffusion equation to the original functional form of the embeddings (indicator
functions) and a common approach to mollified optimization and energy smoothing (Neelakantan
et al., 2015; Gulcehre et al., 2016b; Mobahi, 2016). This approach is demonstrated in one dimension
in Figure 2.

Specifically, given x = [a, b], we associate the smoothed indicator function

f(x; a, b, σ2) = 1[a,b](x) ∗ φ(x;σ2) =

∫
R
1[a,b](z)φ(x− z;σ2)dz =

∫ b

a

φ(x− z;σ2)dz

We then wish to evaluate, for two lattice elements x and y with associated smoothed indicators f
and g,

pφ(x ∧ y) =

∫
R
f(x; a, b, σ2

1)g(x; c, d, σ2
2)dx (2)

This integral admits a closed form solution.

Proposition 1. Let mΦ(x) =
∫

Φ(x)dx be an antiderivative of the standard normal CDF. Then the
solution to equation 2 is given by,
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pφ(x ∧ y) = σ
(
mΦ( b−cσ ) +mΦ(a−dσ )−mΦ( b−dσ )−mΦ(a−cσ )

)
(3)

≈
(
ρ soft( b−cρ ) + ρ soft(a−dρ )

)
−
(
ρ soft( b−dρ ) + ρ soft(a−cρ )

)
(4)

where σ =
√
σ2

1 + σ2
2 , soft(x) = log(1 + exp(x)) is the softplus function, the antiderivative of the

logistic sigmoid, and ρ = σ
1.702 .

Proof. The first line is proved in Appendix A, the second approximation follows from the approxi-
mation of Φ by a logistic sigmoid given in Bowling et al. (2009).

Note that, in the zero-temperature limit, as ρ goes to zero, we recover the formula

pφ(x ∧ y) = lim
ρ→0

(
ρ soft( b−cρ ) + ρ soft(a−dρ )

)
−
(
ρ soft( b−dρ ) + ρ soft(a−cρ )

)
=
(
mh(b− c) +mh(a− d)

)
−
(
mh(b− d) +mh(a− c)

)
= mh(b ∧ d− a ∨ c)

with equality in the last line because (a, b) and (c, d) are intervals. This last line is exactly our
original equation equation 1, which is expected from convolution with a zero-bandwidth kernel (a
Dirac delta function, the identity element under convolution). This is true for both the exact formula
using

∫
Φ(x)dx, and the softplus approximation.

Unfortunately, for any ρ > 0, multiplication of Gaussian-smoothed indicators does not give a valid
meet operation on a function lattice, for the simple reason that f2 6= f , except in the case of indicator
functions, violating the idempotency requirement of Section 3.1.

More importantly, for practical considerations, if we are to treat the outputs of pφ as probabilities,
the consequence is

pφ(x|x) =
pφ(x,x)

pφ(x)
=
pφ(x ∧ x)

pφ(x)
6= 1 (5)

which complicates our applications that train on conditional probabilities. However, by a modifica-
tion of equation 3, we can obtain a function p such that p(x∧x) = p(x), while retaining the smooth
optimization properties of the Gaussian model.

Recall that for the hinge function mh and two intervals (a, b) and (c, d), we have(
mh(b− c) +mh(a− d)

)
−
(
mh(b− d) +mh(a− c)

)
= mh(b ∧ d− a ∨ c) (6)

where the left hand side is the zero-temperature limit of the Gaussian model from equation 3. This
identity is true of the hinge function mh, but not the softplus function.

However, an equation with a similar functional form as equation 6 (on both the left- and right-hand
sides) is true not only of the hinge function from the unsmoothed model, but also true of the softplus.
For two intervals x = (a, b) an y = (c, d), by the commutativity of min and max with monotonic
functions, we have(

soft(b− c) ∨ soft(a− d)
)
∧
(

soft(b− d) ∨ soft(a− c)
)

= soft(b ∧ d− a ∨ c) (7)

In the zero-temperature limit, all terms in equations 3 and 7 are equivalent. However, outside of this,
equation 7 is idempotent for x = y = (a, b) = (c, d) (when considered as a measure of overlap,
made precise in the next paragraph), while equation 3 is not.

This inspires us to define the probabilities p(x) and p(x,y) using a normalized version of equation 7
in place of equation 3. For the interval (one-dimensional box) case, we define

p(x) ∝ soft(b− a)

p(x,y) ∝ soft(b ∧ d− a ∨ c)
which satisfies the idempotency requirement, p(x) = p(x,x).

Because softplus upper-bounds the hinge function, it is capable of outputting values that are greater
than 1, and therefore must be normalized. In our experiments, we use two different approaches to
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normalization. For experiments with a relatively small number of entities (all besides Flickr), we
allow the boxes to learn unconstrained, and divide each dimension by the measured size of the global
minimum and maximum (G

(i)
m , G

(i)
M ) at that dimension

m
(i)
soft(x) =

soft(xρ )

soft(Gm−Gmρ )

For data where computing these values repeatedly is infeasible, we project onto the unit hypercube
and normalize by msoft(1). The final probability p(x) is given by the product over dimensions

p(x) =
∏
i

m
(i)
soft(xM,i − xm,i)

p(x,y) =
∏
i

m
(i)
soft(xM,i ∧ yM,i − xm,i ∨ ym,i)

Note that, while equivalent in the zero temperature limit to the standard uniform probability measure
of the box model, this function, like the Gaussian model, is not a valid probability measure on the
entire joint space of events (the lattice). However, neither is factorization of a conditional probability
table using a logistic sigmoid link function, which is commonly used for the similar tasks. Our
approach retains the inductive bias of the original box model, is equivalent in the limit, and satisfies
the necessary condition that p(x,x) = p(x). A comparison of the 3 different functions is given in
Figure 3, with the softplus overlap showing much better behavior for highly disjoint boxes than the
Gaussian model, while also preserving the meet property.

(a) Standard (hinge) overlap (b) Gaussian overlap, σ ∈ {2, 6} (c) Softplus overlap

Figure 3: Comparison of different overlap functions for two boxes of width 0.3 as a function of their
centers. Note that in order to achieve high overlap, the Gaussian model must drastically lower its
temperature, causing vanishing gradients in the tails.

5 EXPERIMENTS

5.1 WORDNET

Method Test Accuracy %
transitive 88.2
word2gauss 86.6
OE 90.6
Li et al. (2017) 91.3
POE 91.6
Box 92.2
Smoothed Box 92.0

Table 4: Classification accuracy on WordNet test set.

We perform experiments on the WordNet hypernym prediction task in order to evaluate the per-
formance of these improvements in practice. The WordNet hypernym hierarchy contains 837,888-
edges after performing the transitive closure on the direct edges in WordNet. We used the same
train/dev/test split as in Vendrov et al. (2016). Positive examples are randomly chosen from the
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837k edges, while negative examples are generated by swapping one of the terms to a random word
in the dictionary. Experimental details are given in Appendix D.1.

The smoothed box model performs nearly as well as the original box lattice in terms of test ac-
curacy1. While our model requires less hyper-parameter tuning than the original, we suspect that
our performance would be increased on a task with a higher degree of sparsity than the 50/50 posi-
tive/negative split of the standard WordNet data, which we explore in the next section.

5.2 IMBALANCED WORDNET

In order to confirm our intuition that the smoothed box model performs better in the sparse regime,
we perform further experiments using different numbers of positive and negative examples from the
WordNet mammal subset, comparing the box lattice, our smoothed approach, and order embeddings
(OE) as a baseline. The training data is the transitive reduction of this subset of the mammal Word-
Net, while the dev/test is the transitive closure of the training data. The training data contains 1,176
positive examples, and the dev and test sets contain 209 positive examples. Negative examples are
generated randomly using the ratio stated in the table.

As we can see from the table, with balanced data, all models include OE baseline, Box, Smoothed
Box models nearly match the full transitive closure. As the number of negative examples increases,
the performance drops for the original box model, but Smoothed Box still outperforms OE and
Box in all setting. This superior performance on imbalanced data is important for e.g. real-world
entailment graph learning, where the number of negatives greatly outweigh the positives.

Positive:Negative Box OE Smoothed Box
1:1 0.9905 0.9976 1.0
1:2 0.8982 0.9139 1.0
1:6 0.6680 0.6640 0.9561

1:10 0.5495 0.5897 0.8800

Table 5: F1 scores of the box lattice, order embeddings, and our smoothed model, for different levels
of label imbalance on the WordNet mammal subset.

5.3 FLICKR

We conduct experiments on the Flickr entailment dataset. Flickr is a large-scale caption entailment
dataset containing of 45 million image caption pairs. In order to perform an apples-to-apples com-
parison with existing results we use the exact same dataset from Vilnis et al. (2018). In this case, we
do constrain the boxes to the unit cube, using the same experimental setup as Vilnis et al. (2018),
except we apply the softplus function before calculating the volume of the boxes. Experimental
details are given in Appendix D.3.

We report KL divergence and Pearson correlation on the full test data, unseen pairs (caption pairs
which are never occur in training data) and unseen captions (captions which are never occur in
training data). As shown in Table 6, we see a slight performance gain compared to the original
model, with improvements most concentrated on unseen captions.

5.4 MOVIELENS

We apply our method to a market-basket task constructed using the MovieLens dataset. Here, the
task is to predict users’ preference for movie A given that they liked movie B. We first collect
all pairs of user-movie ratings higher than 4 points (strong preference) from the MovieLens-20M
dataset. From this we further prune to just a subset of movies which have more than 100 user
ratings to make sure that counting statistics are significant enough. This leads to 8545 movies in our
dataset. We calculate the conditional probability P (A|B) = P (A,B)

P (B) = #rating(A,B)>4/#users
#rating(B)>4/#users

. We

1Accuracy is calculated by applying the same threshold which maximized accuracy in dev set.
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P (x|y)
Full test data KL Pearson R
POE 0.031 0.949
POE* 0.031 0.949
Box 0.020 0.967
Smoothed Box 0.018 0.969
Unseen pairs
POE 0.048 0.920
POE* 0.046 0.925
Box 0.025 0.957
Smoothed Box 0.024 0.957
Unseen captions
POE 0.127 0.696
POE* 0.084 0.854
Box 0.050 0.900
Smoothed Box 0.036 0.917

Table 6: KL and Pearson correlation between model and gold probability.

randomly pick 100K conditional probabilities for training data and 10k probabilities for dev and test
data 2.

We compare with several baselines: low-rank matrix factorization, complex bilinear factoriza-
tion (Trouillon et al., 2016), and two hierarchical embedding methods, POE (Lai & Hockenmaier,
2017) and the Box Lattice (Vilnis et al., 2018). Since the training matrix is asymmetric, we used
separate embeddings for target and conditioned movies. For the complex bilinear model, we added
one additional vector of parameters to capture the “imply” relation. We evaluate on the test set using
KL divergence, Pearson correlation, and Spearman correlation with the ground truth probabilities.
Experimental details are given in Appendix D.4.

From the results in Table 7, we can see that our smoothed box embedding method outperforms the
original box lattice as well as all other baselines’ performances, especially in Spearman correlation,
the most relevant metric for recommendation, a ranking task. We perform an additional study on the
robustness of the smoothed model to initialization conditions in Appendix C.

KL Pearson R Spearman R
Matrix Factorization 0.0173 0.8549 0.8374
Complex Bilinear Factorization 0.0141 0.8771 0.8636
POE 0.0170 0.8548 0.8511
Box 0.0147 0.8775 0.8768
Smoothed Box 0.0138 0.8985 0.8977

Table 7: Performance of the smoothed model, the original box model, and several baselines on
MovieLens.

6 CONCLUSION AND FUTURE WORK

We presented an approach to smoothing the energy and optimization landscape of probabilistic box
embeddings and provided a theoretical justification for the smoothing. Due to a decreased number
of hyper-parameters this model is easier to train, and, furthermore, met or surpassed current state-of-
the-art results on several interesting datasets. We further demonstrated that this model is particularly
effective in the case of sparse data and more robust to poor initialization.

Tackling the learning problems presented by rich, geometrically-inspired embedding models is an
open and challenging area of research, which this work is far from the last word on. This task will
become even more pressing as the embedding structures become more complex, such as unions of

2In the dev and test data, we also remove all the P (A|B) where P (B|A) appears in the training data.
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boxes or other non-convex objects. To this end, we will continue to explore both function lattices,
and constraint-based approaches to learning.
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Supplementary Material

A PROOF OF GAUSSIAN OVERLAP FORMULA

We wish to evaluate, for two lattice elements x and y, with associated smoothed indicators f and g,

f(x; a, b, σ2) = 1[a,b](x) ∗ φ(x;σ2) =

∫
R
1[a,b](z)φ(x− z;σ2)dz =

∫ b

a

φ(x− z;σ2)dz

pφ(x ∧ y) =

∫
R
f(x; a, b, σ2

1)g(x; c, d, σ2
2)dx (8)

Since the Gaussian kernel is normalized to have total integral equal to 1, so as not to change the
overall areas of the boxes, the concrete formula is

φ(z;σ2) =
1

σ
√

2π
e

−z2

2σ2

Since the antiderivative of φ is the normal CDF, this may be recognized as the difference
Φ(x; a, σ2)−Φ(x; b, σ2), but this does not allow us to easily evaluate the integral of interest, which
is the integral of the product of two such functions.

To evaluate equation 8, recall the identity (Jebara et al., 2004; Vilnis & McCallum, 2015)∫
R
φ(x− µ1;σ2

1)φ(x− µ2;σ2
2)dx = φ(µ1 − µ2;σ2

1 + σ2
2) (9)

For convenience, let τ := 1√
σ2
1+σ2

2

. Applying Fubini’s theorem and using equation 9, we have

pφ(x ∧ y) =

∫
R

∫ b

a

φ(x− y;σ2
1) dy

∫ d

c

φ(x− z;σ2
2) dz dx

=

∫ d

c

∫ b

a

φ(y − z; τ−2) dy dz

=

∫ d

c

∫ b

a

Φ′(τ(y − z))τ dy dz

=

∫ d

c

Φ(τ(b− z))− Φ(τ(a− z)) dz

=
−1

τ
(mΦ(τ(b− d))−mΦ(τ(a− d))−mΦ(τ(b− c)) +mΦ(τ(a− c)))

and therefore, with σ = τ−1,

pφ(x ∧ y) = σ
(
mΦ( b−cσ ) +mΦ(a−dσ )−mΦ( b−dσ )−mΦ(a−cσ )

)
as desired.

B MOVIELENS PSEUDOSPARSITY

The MovieLens dataset, while not truly sparse, has a large proportion of small probabilities which
make it especially suitable for optimization by the smoothed model. The rough distribution of
probabilities, in buckets of width 0.1, is shown in Figure 1.

C MOVIELENS INITIALIZATION SENSITIVITY

We perform an additional set of experiments to determine the robustness of the smoothed box model
to initialization. While the model is normally initialized randomly so that each box is a product of
intervals that almost always overlaps with the other boxes, we would like to determine the models ro-
bustness to disjoint boxes in a principled way. While we can control initialization, we cannot always
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Figure 1: Distribution of probabilities in MovieLens Dataset.

control the intermediate results of optimization, which may drive boxes to be disjoint, a condition
from which the original, hard-edged box model may have difficulty recovering. So, parametriz-
ing the initial distribution of boxes with a minimum coordinate and a positive width, we adjust the
width parameter so that approximately 0%, 20%, 50%, and 100% of boxes are disjoint at initializa-
tion before learning on the MovieLens dataset as usual. These results are presented in table 8. The
smoothed model does not seem to suffer at all from disjoint initialization, while the performance of
the original box model degrades significantly. From this we can speculate that part of the strength
of the smoothed box model is its ability to smoothly optimize in the disjoint regime.

Approx. % Disjoint KL Pearson Spearman
Box Smooth Box Smooth Box Smooth

0% 0.0147 0.0138 0.8775 0.8985 0.8768 0.8977
20% 0.0172 0.0141 0.8668 0.8917 0.8608 0.8898
50% 0.0182 0.0141 0.8613 0.8908 0.8551 0.8910

100% 0.0346 0.0142 0.8401 0.8921 0.8167 0.8947

Table 8: Performance of the original box model and smoothed box model on MovieLens, as a
function of different degrees of disjointness upon initialization.

D MODEL PARAMETERS

We give a brief overview of our methodology and hyperparameter selection methods for each ex-
periment. Detailed hyperparameter settings and code to reproduce experiments can be found at
https://github.com/Lorraine333/smoothed_box_embedding.

D.1 WORDNET PARAMETERS

For the WordNet experiments, the model is evaluated every epoch on the development set for a large
fixed number of epochs, and the best development model is used to score the test set. Baseline
models are trained using the parameters of Vilnis et al. (2018), with the smoothed model using
hyperparameters determined on the development set.

D.2 IMBALANCED WORDNET PARAMETERS

We follow the same routine as the WordNet experiments section to select best parameters. For the
12 experiments we conducted in this section, negative examples are generated randomly based on
the ratio for each batch of positive examples. We do a parameter sweep for all models then choose
the best result for each model as our final result.
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D.3 FLICKR PARAMETERS

The experimental setup uses the same architecture as Vilnis et al. (2018) and Lai & Hockenmaier
(2017), a single-layer LSTM that reads captions and produces a box embedding parameterized by
min and delta. Embeddings are produced by feedforward networks on the output of the LSTM.
The model is trained for a large fixed number of epochs, and tested on the development data at
each epoch. The best development model is used to report test set score. Hyperparameters were
determined on the development set.

D.4 MOVIELENS PARAMETERS

For all MovieLens experiments, the model is evaluated every 50 steps on the development set, and
optimization is stopped if the best development set score fails to improve after 200 steps. The best
development model is used to score the test set.
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