
Addressing Sample Complexity in Visual Tasks Using Hindsight Experience
Replay and Hallucinatory GANs

Himanshu Sahni 1 2 Toby Buckley 1 Pieter Abbeel 1 3 Ilya Kuzovkin 1

Abstract
Reinforcement Learning (RL) algorithms typi-
cally require millions of environment interactions
to learn successful policies in sparse reward set-
tings. Hindsight Experience Replay (HER) was
introduced as a technique to increase sample effi-
ciency by re-imagining unsuccessful trajectories
as successful ones by changing the originally in-
tended goals. However, HER cannot be directly
applied to visual environments where goal states
are characterized by the presence of distinct visual
features. In this work, we show how visual tra-
jectories can be hallucinated to appear successful
by altering agent observations using a generative
model trained on relatively few snapshots of the
goal. We then use this model in combination with
HER to train RL agents in visual settings. We
validate our approach on 3D navigation tasks and
a simulated robotics application and show marked
improvement over standard RL algorithms and
baselines derived from previous work.

1. Introduction
Deep Reinforcement Learning (RL) has recently demon-
strated success in a range of previously unsolved tasks, from
playing Atari and Go on a superhuman level (Mnih et al.,
2015; Silver et al., 2017) to learning control policies for
real robotics tasks (Levine et al., 2016; OpenAI, 2018; Pinto
et al., 2017). But deep RL algorithms are highly sample
inefficient for complex tasks and learning from sparse re-
wards can be challenging. In these settings, millions of
steps are wasted exploring trajectories that yield no learn-
ing signal. On the other hand, providing dense rewards
along these trajectories is a tedious job that requires sub-
stantial domain knowledge and RL expertise. Shaping the

1Offworld Inc. 2Georgia Institute of Technology
3University of California Berkeley. Correspondence to: Himan-
shu Sahni <hsahni3@gatech.edu>.

Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36 th International Conference on Machine Learning, Long
Beach, California, USA, 2019. Copyright 2019 by the author(s).

Figure 1. VHER works by using a generative model to hallucinate
the presence of goals at the end of unsuccessful trajectories. The
agent’s task is to search for a pebble randomly placed in its sur-
roundings and collect it by approaching and centering it in its view.
The top row shows a failed trajectory which ends in the agent not
finding the pebble. The bottom row replays the same trajectory
with a hallucinated visual goal inserted by HALGAN at every state
such that a pebble appears to be collected.

rewards in an attempt to make learning easier is non-trivial
and can often lead to unexpected hacking behaviour (Ng
et al., 1999; Randløv & Alstrøm, 1998). Therefore, an
important vector for RL research is towards more sample
efficient methods that minimize the number of environment
interactions, yet can be trained using only sparse rewards.
To this end, Andrychowicz et al. (2017) introduced Hind-
sight Experience Replay (HER), which can rapidly train a
goal-conditioned policy by retroactively imagining failed
trajectories as successful ones. By making use of failed at-
tempts to increase sample efficiency, HER was able to learn
a range of robotics tasks that traditional RL approaches are
unable to solve. But HER was only shown to work in non-
visual environments, where the precise goal configuration
is provided to the agent’s policy throughout training and
where it is straightforward to find a goal that is satisfied in
any state. It also relied on the use of universal value function
approximators (UVFAs) (Schaul et al., 2015) to generalize
over multiple goals. Thus, it is not directly applicable to
challenging visual domains where the agent’s observations
must be altered in order to change the goal and where the
goal location is not explicitly known a priori and must be
searched for within the environment.

Yet, we desire for RL agents to quickly learn to operate in the
uncertain visual environments that humans inhabit. Some
recent work has extended HER to visual domains where
goals are sampled from the set of possible agent states and
provided to the agent as an input (Nair et al., 2018). But
there is a wide range of visual tasks where we do not have



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

an explicit representation of a goal beforehand and where a
failed state may not easily map to a goal state. We would like
the agent to be able to perform these tasks without providing
it a specification of the goal during execution and instead
have it search for the goal in its environment. For this, the
agent must be able to infer the presence of goals from the
state image itself, automatically learning to generalize over
multiple goal configurations.

To address high sample complexity of RL in such visual
environments, we introduce a new algorithm for visual hind-
sight experience replay, which combines a hallucinatory
generative model (HALGAN) with HER to rapidly solve
tasks using only raw pixels in the state as input to the agent
policy. HALGAN minimally alters images in snippets of
failed trajectories to appear as if the desired goal is achieved
at the end. In order to retroactively hallucinate success in a
visual environment, it is necessary to alter the state images
along the entire failed trajectory to make it appear as if the
goal was present throughout (see figure 1). HALGAN is
trained using a few snapshots of near goal images, where
the relative location of the agent to the goal is known. It
is then combined with HER during reinforcement learning,
where goal location is unknown, to hallucinate goals along
unsuccessful trajectories. We make use of the assumption
that in realistic robotic applications, while it may be difficult
to obtain the explicit location of the goal throughout rein-
forcement learning, one can obtain the configuration of the
robot relative to itself easily. This can be done using SLAM
or other state tracking techniques (Montemerlo et al., 2002).
We will primarily focus on tasks where the completion of a
goal can be visually identified within the agent state.

The key contributions of this work are to expand the appli-
cability of HER to visual domains by providing a way to
retroactively transform failed visual trajectories into success-
ful ones and hence allowing the agent to rapidly generalize
across multiple goals using only the state as input to its
policy. We aim to do so in conjunction with minimizing the
amount of direct goal configuration information required
to train HALGAN. We believe that the sample complexity
reduction HALGAN provides is an important step towards
being able to train RL policies directly in the real world.

2. Background
Reinforcement Learning. In reinforcement learning, the
agent is tasked with the maximization of some notion of
a long term expected reward (Sutton & Barto, 2018). The
problem is typically modeled as a Markov decision process
(MDP). An MDP consists of a tuple < S,A,R, T, γ >,
where S is the set of states the agent can exist in, A is the
set of environment actions, R : S ×A→ R is the function
mapping states and actions to a scalar reward, T : S×A→
S is the transition function, and γ ∈ [0, 1) is a discount

factor that weighs the importance of future rewards versus
immediate ones. Stochasticity in the environment can be
present in the form of uncertainties in transition or reward.

The agent must learn a policy, π : S → A, mapping every
state to an action. The optimal policy, π∗, is often the
goal of learning. It informs the agent on an action that
typically maximizes expected value of the sum of future
discounted rewards, E[

∑
k γ

kR(st+k)], starting from any
state st. This expectation, known as the state value (V :
S → R), is over trajectories experienced under the current
policy and environment dynamics. UVFAs (Schaul et al.,
2015) approximate value functions with respect to a goal in
addition to the state, V : S ×G→ R. The optimal policy,
π∗(s; g), in this case maximizes the probability of achieving
a particular goal, g, from any state.

Off-policy RL algorithms can learn an optimal policy using
experiences from a behavior policy separate from the opti-
mal policy. In particular, off-policy algorithms can make
use of samples collected in the past, leading to more sam-
ple efficient learning. An experience replay (Lin, 1992)
is typically employed to store past transitions as tuples of
(st, at, rt, st+1). At every step of training, a minibatch of
transitions is sampled from the replay at random and a loss
on future expected return minimized. The off-policy algo-
rithms employing an experience replay used in this work
are Double Deep Q-Networks (DDQN) (Van Hasselt et al.,
2016) and Deep Deterministic Policy Gradients (DDPG)
(Lillicrap et al., 2015).

Hindsight Experience Replay. HER was shown to achieve
speedups in learning in environments where the goal con-
figuration is provided along with the agent state to the pol-
icy. The essential idea is to store each trajectory, Traji =
si0, s

i
1, ..., s

i
T , with a number of additional goals along with

the originally specified one. An off-policy algorithm em-
ploying an experience replay is used to train a UVFA which
learns a policy which generalizes across multiple goals. Dur-
ing replay, the original goals are changed to states that have
actually been achieved by the agent in the past.

The reward is also modified retroactively to reflect the new
goal being replayed. In particular, HER assumes that every
goal, g ∈ G, can be expressed as a predicate fg : S →
{0, 1}. That is to say, all states can be judged as to whether
or not a goal g has been achieved in them. Thus, while
replaying the trajectory Traji with a surrogate goal g, one
can easily reassign rewards along the entire trajectory as,

rg(s
i
t) =

{
1 iffg(s

i
t) = 1

0 otherwise.

Andrychowicz et al. (2017) report that selecting g to be a fu-
ture state from within the same (failed) episode leads to the
best results. This training approach forms a sort of implicit
curriculum for the agent. In the beginning, it encourages the



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

agent to explore further outwards along trajectories it has
visited before. Since the surrogate goal, g, is also explicitly
provided to the UVFA policy, it soon learns to also general-
ize this curriculum over unseen goals. Over time, the agent
is able to achieve any goal in G, including the real ones.

Wasserstein GANs. We employ an improved Wasserstein
ACGAN (Gulrajani et al., 2017; Odena et al., 2017) as our
generative model because of its stability, realistic looking
outputs, and ability to condition the generated images on
a desired class. A typical W-ACGAN has a generator, H ,
that takes as input a class variable and a latent vector of
random noise. It then generates an image which is fed into
the discriminator, D. D rates the image on its fidelity to the
training data and, as an auxiliary task, predicts class mem-
bership. The Wasserstein distance between the distributions
of real, pR, and generated, pH , images is used as a loss to
train the combined model. A GAN enables us to produce
realistic looking hallucinations that will allow the agent to
easily generalize from imagined goals to real ones. Realistic
insertion of goals was not an issue in HER because a new
goal could directly be substituted in a replayed transition
without any modification to the states.

3. Related Work
Generative Models in RL. In recent years, generative mod-
els have demonstrated significant improvements in the ar-
eas of image generation, data compression, denoising, and
latent-space representations, among others (Goodfellow
et al., 2014; Chen et al., 2016; Vincent et al., 2008). Rein-
forcement learning has also benefited from incorporating
generative models in the training process. Ha & Schmid-
huber (2018) synthesize a lot of prior work in the area by
proposing a Recurrent Neural Network (RNN) based gener-
ative dynamics model (Schmidhuber, 1990) of popular Ope-
nAI gym (Brockman et al., 2016) and VizDoom (Kempka
et al., 2016) environments. They employ a fairly common
procedure of encoding high dimensional visual inputs from
the environment into lower dimension embedding vectors us-
ing a Variational Auto Encoder (VAE) (Kingma & Welling,
2013) before passing it on to the RNN model. Held et al.
(2017) use a GAN to generate goals matching in difficulty
to an agent’s skill on a task. Called GoalGAN, it generates
an automatic curriculum of incrementally harder to reach
goals. But it assumes that goals can easily be set in the
environment by the agent and does not make efficient use
of trajectories that failed to achieve these objectives. Gener-
ative models have also been used in the closely related field
of imitation learning to learn from human demonstrations or
observation sequences (Ho & Ermon, 2016; Edwards et al.,
2018b; Schroecker et al., 2019). In our approach, we do
not require demonstrations of the task, or even a sequence
of observations, but relatively few random snapshots of the

goal with a known configuration which we use to speed up
reinforcement learning.

Goal Based RL. Some recent work has focused on leverag-
ing information on the goal or surrounding states to speed up
reinforcement learning. Edwards et al. (2018a) and Goyal
et al. (2018) learn a reverse dynamics model to generate
states backwards from the goal which are then added to
the agent’s replay buffer. The former assumes that the goal
configuration is known and backtracks from there, whereas
in the latter, high-value states are picked from the replay
buffer or a GoalGAN is used to generate goals. The latter
work also learns an inverse policy, π(at|st+1) to generate
plausible actions leading back from goal states. In contrast,
we focus on minimally altering states in past failed trajec-
tories to appear as if a goal has been completed in them.
This avoids having to generate entirely new trajectories and
allows us to make full use of the environment dynamics
already present in previous state transitions.

Others have focused on learning goal-conditioned policies
in visual domains using a single or few images of the goal
(Xie et al., 2018; Zhu et al., 2017). Nair et al. (2018) train a
β-VAE (Burgess et al., 2018) on state images for a threefold
purpose: (1) to sample new goals during training, (2) to use
the Euclidean distance between feature encodings of current
and goal images as a dense reward, and (3) to retroactively
alter goals with VAE generated images and reassign rewards
appropriately. The set of goals G is assumed to be the same
as the set of states S and hence they are easy to swap back
and forth. This works well for domains where the goal is
separately provided to the policy along with the agent state,
and where states do not have to be modified for changing
goals. In this work, we attempt learning in domains where
the goal image is not known beforehand and thus cannot be
provided to the agent’s policy, and where the goal may or
may not be present in a particular agent state.

4. The missing component in HER
First, we will more formally discuss what is missing from
the original HER formulation that does not allow it to readily
extend to visual domains. Then, in the next section, we will
describe in detail how the use of hallucinatory generative
models can help bridge the gap.

HER makes an assumption that “given a state swe can easily
find a goal g which is satisfied in this state” (Andrychowicz
et al., 2017). It requires a mapping, m : S → G that maps
every state s ∈ S to a goal g ∈ G that is achieved in that
state. While this mapping may be relatively straightforward
to hand design for real-valued state spaces, its analog for
visual states cannot be constructed easily. For example, if
the state space of the agent lies on the plane of real values in
R2, the goal may be to achieve a particular x-coordinate. So



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

in the agent state (x = 0.5, y = 1.0), a goal that is satisfied
is simply g : x = 0.5. Now imagine if the agent must
instead navigate to a beacon on a 2D plane using camera
images as state inputs. In order to convert any arbitrary state
into one in which a goal is satisfied, the beacon must be
visually inserted into the image itself. We call these goal
hallucinations (see figure 2).

In order to fully utilize the power of HER, not only should
the agent be able to hallucinate goals in arbitrary states, but
also consistently in the same absolute position throughout
the failed trajectory. Note that with each step along the
trajectory, the position of the goal (the beacon) changes
relative to the agent’s and thus the agent’s observation must
be correctly updated to reflect this change. The goal must
appear to have been solved in a future state along every
step of the trajectory. Only then can we make use of the
existing transitions along the entire trajectory for replay
with hallucinated as well as original goals. Thus, visual
settings require the mapping m to be extended along the
entire trajectory s0, . . . , sT ∈ STraj ; mV : ST

Traj → G,
where T is the maximum length of a trajectory and Traj
is the space of failed trajectories. Every state s along a
trajectory from Traj must be modified by the mapping into
a near-goal state that is consistent with the final goal state
of that trajectory. This work’s main contribution lies in
showing that such a mapping can be learned by a generative
model using some knowledge of the goal in the form of
goal snapshots with known relative location. We show
how the learned model mapping unsuccessful trajectories to
successful ones can be applied to training RL agents whose
policy is solely conditioned on their state image.

5. Approach
To address the shortcomings of HER in visual domains,
we adopt a two-part approach. First, a generative network,
HALGAN, is trained to modify any existing state from a
failed trajectory into a goal or near goal state. HALGAN
generates goal hallucinations conditioned on the configu-
ration of the robot in the current state relative to its own
configuration in a future state from the same episode. Note
that the choice to condition goal generation on relative loca-
tion was made in light of the focus on sample efficiency.

During reinforcement learning, random snippets of failed
trajectories experienced in the past are replayed with the fi-
nal state in the snippet designated as the target goal location.
The trained HALGAN uses the configuration of the agent
relative to itself in the future end state to modify a pair of
states to appear as if a goal was indeed achieved during this
trajectory. Details of the entire hallucinating process are
provided in the next few subsections.

Figure 2. Hallucinated images generated by our model. The origi-
nal, failed, image is on the top left. All others are including goals
generated by HALGAN. The goal distance is increased from top to
bottom and angle from left to right. This image demonstrates that
using our training approach, goal hallucinations can be generated
with high fidelity in any relative configuration.

5.1. Hallucinating Visual Goals

First, HALGAN is trained on a dataset, R, of observations
of the goal where its relative location to the agent is explic-
itly known. These snapshots of the goal can be collected
beforehand and are only used once to train the generative
model. Then, it generalizes to create thousands of hallucina-
tions along failed trajectories during reinforcement learning
using only agent configuration. These failed trajectories are
ones the agent has taken in the past and are stored in its
experience replay.

In order to “fool” the agent into thinking that it has indeed
achieved a goal, one has to insert the goal into every image
of the trajectory. Thus, the states s0, s1, ..., sT have to be
modified to s0, s1, ..., sT such that it appears as if the goal
has been achieved in sT . This is in contrast to the regular
HER approach, or the approach by Nair et al. (2018), where
the state can be directly mapped to a goal using a hand
designed mapping. The hallucinated goal location must
remain consistent throughout the replayed trajectory so as
to not appear to violate the environment’s dynamics. In
the following subsections, we describe each component of
HALGAN and then show how it fits together to generate
consistent hallucinations of the goal.

5.2. Minimal Hallucinations

One of our aims is to minimally alter a failed trajectory
in order to turn its states into goal (sT ) or near-goal
(s0, s1, . . . , sT−1) states. This makes full use of existing
trajectories and does not require HALGAN to re-imagine



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

real fake

+

failed state

tanh

Figure 3. A conditioning vector c(st; g) informs the generator, H
on the desired relative location of the goal. l is a random noise
vector drawn fromN (1, 0.1). The generated goal image is added
to a failed state and then passed through a renormalizing tanh
function. This is the final hallucinated state with the goal posi-
tioned as desired. H is trained adversarially along with D, which
is learning to rate the fakes and real near goal images from the
dataset R. D also predicts relative goal configurations in real and
fake images, which in turn incentivizes H to hallucinate goals in
the correct relative locations.

the environment dynamics or unnecessary details about the
goal state such as the background.

To this end, we train an additive model, such that the gener-
ator, H , has to produce only differences to the state image
that add in the goal. To obtain a hallucinated image st with
the goal at the final state of the trajectory, sT , we compute,

st = Tanh (st +H (c(st; sT ), l)) , (1)

where, H is the generative model function, c(st; g) is the
relative configuration of the robot to a desired goal state
g and l is a random latent conditioning vector. Tanh is
used to re-normalize the hallucinated state image to [−1, 1].
Any differentiable bounded function can be used for this
purpose. The hallucinated state, st, along with a state sr
sampled from dataset R, is then fed to the discriminator D
to compute the discriminative loss,

LD = Est∼pH
[logD(st)]− Esr∼pR

[log(D(sr))]. (2)

In addition to the discriminator loss, a gradient penalty is
employed in the improved training of Wasserstein GANs
(see Gulrajani et al. (2017) for more details).

L∇ = Eŝ∼Pŝ
(‖∇D(ŝ)‖2 − 1)

2 (3)

As a result of generating only image differences, the trained
hallucinatory model is invariant to certain visual variations,
such as background, presence of other objects, etc.

To encourage the model to generate minimal modifications
to the original failed image, we also add a L2 norm loss
on the output of H . In our experiments, this helped in
discouraging the generator from focusing on unnecessary
elements of goals such as background information or extra

objects in the environment.

LH = ‖H (c(st; sT ), l)‖2 (4)

5.3. Regression Auxiliary Task

Typical ACGANs are conditioned on a discrete set of classes,
such as flower, dog, etc (Odena et al., 2017). In our ap-
proach, the generator is conditioned on the relative config-
uration of the agent from the desired goal state, which is a
real-valued vector c(st; g) ∈ Rn. The auxiliary task for the
discriminator is to regress to the real valued relative location
of the goal seen in a training image. To train this regression
based auxiliary task, we use a mean squared error loss,

LA = ‖c(st; g)− c(st; g)‖2 (5)

where c(st; g) is the relative configuration predicted by D.
We found it helpful to add a small amount of Gaussian noise
to our auxiliary inputs for robust training, especially on
smaller datasets. We also found drawing the latent condi-
tioning vector l from a normal distribution centered around
1 lead to more accurate auxiliary regression.

5.4. HALGAN

Our final loss to the combined HALGAN is,

L = LD + αL∇ + βLH + λLA (6)

where, α, β, and λ are weighting hyperparameters, which
we set to 10, 1, and 10 respectively in all our experiments.

To summarize, the training process is as follows. The gener-
ator, conditioned on a randomly drawn relative goal location
produces a difference image which is then added to a ran-
domly selected image from a failed trajectory to create a
goal hallucination. The discriminator is provided with these
hallucinated images as well as ground truth images from R
and has to score the images on their authenticity and also
predict the relative goal location. See figure 3 for a represen-
tation of the HALGAN training process and the appendix
for more details on the network architectures and training
procedure.

For the purposes of our experiments, we collect the training
data for HALGAN, R, by using the last few states of a suc-
cessful rollout. Note that the exact data required in R are
randomly selected snapshots from near the goal with known
relative poses. Since at the end of a successful rollout, agent
configuration corresponds to goal configuration, relative
configuration for training HALGAN can be computed using
only agent configuration information. Only observations,
including the state image and agent configuration, are used,
no actions have to be provided or demonstrated. This al-
leviates the data collection burden as the human does not
have to demonstrate the optimal completion of the task and



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

snapshots can be collected in any order. For example, it
is significantly simpler to record the desired final configu-
ration of objects on a table than to record a full, optimal
demonstration of a robot arm aranging them. It also allows
the generative model to be independent of the agent and
demonstrator action spaces. We also collect a dataset of
failed trajectories using random exploration. These are to
train HALGAN by adding to the output of H and creating
hallucinated near goal states. Most off-policy RL methods
that employ an experience replay have a replay warmup
period where actions are taken randomly to fill the replay
to a minimum before training begins. This dataset of failed
trajectories can be the same as the replay warmup and no
extra exploration is required.

5.5. Visual HER

During reinforcement learning, the agent explores its en-
vironment as normal. Every time a batch is sampled for
training, a few of the data points from it are augmented with
goal hallucinations. The detailed process is explained in
algorithm 1. The result is that the agent encounters halluci-
nated near goal states with a much higher frequency than
if it were randomly exploring. This in turn encourages the
agent to explore further from near goal states.

Algorithm 1 Visual Hindsight Experience Replay
1: Given: Trained hallucinatory model H , Reward reas-

signment strategy rg(s).
2: Initialize off-policy Algorithm A. {eg. DDQN, DDPG}
3: Initialize Experience Replay E by random exploration.
4: for step= 1, N do
5: Sample an action according to behavior policy at ←

π(st) in current state.
6: Execute at in the environment and observe state st+1,

reward rt.
7: Store tuple 〈st, at, rt, st+1〉 in E.
8: Sample minibatch B from E for training.
9: for e = 〈si, ai, ri, si+1〉 in B do

10: Sample c ∼ Bern(p) {p = hallucination prob.}
11: if c then
12: Sample d ∼ Unif({0, 1, ..., D}) {distance to

goal state}
13: Compute relative configurations c(si; si+d) and

c(si+1; si+d). {Setting si+d as the goal state}
14: si ← si +H(c(si+d; si), l)
15: si+1 ← si+1 +H(c(si+d; si+1), l)
16: ri ← rsi+d

(si+1)
17: end if
18: end for
19: Perform one step of optimization using A on the

modified minibatch B.
20: end for

An important consideration is the retroactive reassignment
of rewards. As a reminder, HER uses a manually defined
function fg(s) which decides if the goal g is satisfied in a
state s to designate rewards during hindsight replay. This
sort of retroactive reward function is hard to hand design
in visual environments. Comparing state and goal images
pixel by pixel is typically ineffective. Fortunately, for the
purposes of reward reassignment during hindsight replay,
one need only compare the agent state to a future one in
the same episode. Hence, a similar function, fs : S × S →
{0, 1}, which decides whether a pair of states are the same
for the purpose of goal completion, can also be used to
reassign rewards. As mentioned in section 3, Nair et al.
(2018) use a trained β-VAE as fs to reassign rewards in a
dense manner. Here, we make use of the access to the robot’s
own configuration to design a similar function, fc, where
c is the robot configuration at a particular state. We then
assume that any goal satisfied in c must also be satisfied in
any other state with a similar enough configuration. During
retroactive reward reassignment, we compare the relative
configurations of the agent in the current and final state, and
hallucinate a reward if they are the same.

6. Experiments
We test our method on two first person visual environments.
In a modified version of MiniWorld (Chevalier-Boisvert,
2018), we design two tasks. The first one is to navigate to
a red box located in an enclosed room (figure 4 left). The
second task is to successively navigate, first to the red box,
picking it up by visually centering it, and then carrying it
to a green box somewhere else in the room (see figure 4
center).

The second environment is a more visually realistic simu-
lated robotics domain, where a TurtleBot2 (Wise & Foote)
equipped with an RGB camera is simulated within Gazebo
(Koenig & Howard, 2004). We use gym-gazebo (Zamora
et al., 2016) to interface with Gazebo. In this environment,
the agent must collect a pebble scattered randomly on a road
by approaching and centering it in its visual field (figure 4
right). The episode ends and the agent is reset to the starting
location if it wanders too far.

(a) (b) (c)

Figure 4. Example of a near goal state in Turtlebot (left) and Mini-
World navigate (center) and pick-and-place (right) environments.

Figure 4 depicts near goal states in all of our tasks. The



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

goal is randomly spawned a small distance away from the
agent. The environment only provides a sparse reward of
1 for achieving the goal. No reward shaping is done for
either the RL baselines or our approach. Encountering the
goal during exploration is extremely rare and standard RL
is sample inefficient or completely ineffective. The size of
the near goal dataset, R, for the Turtlebot, navigation and
successive navigation tasks is 6840, 2000, and 6419 images
with relative goal configurations respectively. Though, we
show that the effect of reduction in the amount of near goal
states leads to little performance degradation in the Turtlebot
environment (figure 6).

In the Turtlebot and MiniWorld navigation tasks, the config-
uration of the agent is simply it’s 〈x, y, yaw〉. In successive
navigation, an additional binary field indicates whether the
red box is held by the agent. The agent’s relative configu-
ration is calculated with respect to the red box before it is
picked up, and the green box afterwards. Hallucinations are
generated for the agent approaching both boxes. Halluci-
nated reward issued by HALGAN is also sparse, +1 only if
the hallucinated state happens to be a goal state. We found
it helpful to anneal the amount of hallucinations in a batch
over time as the agent starts filling the replay with real re-
ward. Details of the annealing rate and other experimental
hyperparameters are provided in the appendix.

Comparisons. There is no prior work that attempts HER in
visual domains without explicit goal conditioning. Hence,
we compare our approach to multiple extensions of a close
existing approach and standard RL baselines. First, a naive
extension of HER into the visual domain, her, simply re-
wards the agent for states at the end of failed trajectories
during replay without hallucinating. Hence, the agent re-
ceives hindsight rewards, but the sampled trajectories still
seem to end in failures. This tests out the approach without
the presence of HALGAN to establish a baseline without
hallucinations.

A second baseline is derived from Nair et al. (2018)’s work
(RIG) in training goal-conditioned policies with a dense
reward based on the distance between the embedding of the
sampled state and that of a goal image. RIG’s retroactive
reassignment of goals relies on the use of UVFAs, which
is not possible for our domains where the goal image is
unknown. Therefore, we test two variants of this baseline
where we attempt to find a suitable comparison. We first
train a VAE on data available to HALGAN, i.e. near goal
images in R and failed state images collected by random
exploration. Then, during RL, vae-her simply sets the final
image in a failed trajectory, without any hallucinations, as
the goal and uses the trained VAE to compute reward for
a transition along that trajectory. This baseline evaluates
the effectiveness of dense reward shaping in our domains
without the use of hallucinations from HALGAN.

Next, rig- follows a similar dense reward shaping strategy,
but computes distance of a state to a randomly sampled goal
image in R, filtered for using the agent’s relative config-
uration. Hence, rig- rewards the agent for being in states
that look similar to goal states in retrospect. Note that these
extensions to RIG only do dense reward shaping and no
goal reassignment as RIG is only designed for goal condi-
tioned tasks. As we show in the results, using HALGAN
to hallucinate goals allows us to train better agents while
keeping the rewards sparse. All baselines used the exact
same hyperparameters as our approach.

For the the distance based rewards provided by the VAE in
rig- to be the same order of magnitude as the environment
rewards, it was necessary to re-scale them. The scaling
factor in all our experiments was set to 0.02.

Discrete and Continuous Control. An advantage of our
method is that HALGAN is agnostic to the agent’s action
space as a result of directly conditioning on the relative
location of the robot to a state in the future. Hence we can
apply our method easily to both discrete and continuous
control tasks. In the discrete TurtleBot environment, the
action space is back and forth movement and turning (4
actions). The base off-policy algorithm used is Double DQN
(Van Hasselt et al., 2016). For the continuous MiniWorld
environments, actions are the linear and rotational velocities
of the agent at the next step, capped at a fixed amount. A
penalty on the L2 norm of the output actions is applied at
each step to simulate energy step cost. Otherwise, the agent
is only provided the sparse task completion reward. The
base algorithm used in this setting is DDPG (Lillicrap et al.,
2015). We employ deep convolutional neural networks as
function approximators that take in the state image as input
and outputs the desired control actions or values.

7. Results
In all of our experiments, HALGAN trained agent begins
learning immediately (figure 5). This is due to the realistic
looking hallucinated goals being quickly identified as desir-
able states. This is in contrast to standard RL which rarely
encounters reward and must explore at length to encounter
random rewards in order to begin learning, if at all.

In the discrete TurtleBot pebble collection domain (figure
5 left), the naive HER strategy provides a good enough ex-
ploration bonus for the agent to explore further and quicker
than standard DDQN. It begins learning by 100K steps.
HALGAN agent, by contrast, starts learning to navigate to
real goals immediately.

For the continuous control experiments in MiniWorld (fig-
ure 5 center, right), only HALGAN agent is able to learn to
complete the task. Note that achieving a reward of 0 in this
environment is relatively easy, it is only positive rewards



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

Figure 5. In all tasks, VHER starts learning immediately whereas the baselines needs to explore far more to randomly encounter positive
rewards. In the Turtlebot pebble collection task (left), all algorithms eventually learn an optimal policy but VHER begins learning
immediately and converges quickly. In the harder, continuous control MiniWorld navigate task (middle), neither DDPG nor naive-HER
are able to learn to complete the task. Only the rig- baseline somewhat learns the task eventually on three of the five random seeds. In the
final pick-and-place task, only VHER learns the optimal policy in four out of five random seeds.

that indicate achievement of goal. DDPG never encounters
any reward during exploration and hence learns to simply
minimize its actions in order to avoid movement penalty.
Naive her initially encourages exploration and hence incurs
a heavy penalty, but doesn’t learn to associate the halluci-
nated rewards it receives with the presence of a goal. Some
of the random seeds eventually converge to the same de-
generate policy as DDPG. vae-her, the augmentation of her
with dense rewards from a trained VAE, also proves unsuc-
cessful for either task, demonstrating that dense rewards
without hallucinated or real goals in failed trajectories are
also ineffective for learning in these domains. Only the rig-
strategy of providing dense rewards relative to random goal
images eventually learns to complete the navigation task
for some of the seeds. For the successive navigation task,
rig- only learns a working policy on a single seed and the
other baselines perform similarily or worse. Interestingly,
rig’s dense reward reassignment can be readily combined
with our approach of state modification by hallucination,
providing directions for future work.

Finally in figure 6, we show the change in performance on
the TurtleBot pebble collection task due to using fewer train-
ing samples in R. The effect is only slightly slower learning
even for the largely reduced dataset of only 1000 images.
The minimalistic hallucinations created by HALGAN re-
quire a relatively small amount of data to train well enough
to provide a significant boost in reinforcement learning.

8. Discussion
A major impediment to training RL agents in the real world
is the amount of data an agent must collect before it can
start drawing inference on which actions lead to rewards
and which ones are to be avoided. High sample complex-
ity makes problems such as fragility of physical systems,
energy consumption, speed of robots and sensor errors man-

Figure 6. Reinforcement learning using VHER in TurtleBot task
with varying size of training dataset for HALGAN. The curves
being similar is a positive result that shows only minor variance of
RL agent performance with training data available for HALGAN
from 6800 (original) down to 1000 near goal training samples.

ifest themselves acutely when one attempts running the
reinforcement learning process in the real world.

In this work, we have shown that Hindsight Experience Re-
play can be extended to visual scenarios by retroactively
hallucinating goals into agent observations. We empirically
prove that by utilizing failed trajectories in such a way, the
agent can begin learning to solve tasks immediately. HAL-
GAN+HER trained agent converges faster than standard RL
techniques on two navigation tasks in a 3D environment and
a simulated robotics application. HALGAN requires rela-
tively few snapshots of near goal images with known goal
configurations, in contrast to standard HER which assumes
knowledge of goal location throughout training. In certain
environments, this dataset could be generated online as the
agent learns, or supplied from orthogonal techniques such
as GoalGAN (Held et al., 2017). We leave this as an avenue
for future work.



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. Hindsight experience replay. In Advances
in Neural Information Processing Systems 30, pp. 5048–
5058. Curran Associates, Inc., 2017.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Burgess, C. P., Higgins, I., Pal, A., Matthey, L., Watters,
N., Desjardins, G., and Lerchner, A. Understanding dis-
entangling in β-vae. arXiv preprint arXiv:1804.03599,
2018.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,
I., and Abbeel, P. Infogan: Interpretable representation
learning by information maximizing generative adversar-
ial nets. In Advances in neural information processing
systems, pp. 2172–2180, 2016.

Chevalier-Boisvert, M. gym-miniworld environment for
openai gym. https://github.com/maximecb/
gym-miniworld, 2018.

Edwards, A. D., Downs, L., and Davidson, J. C.
Forward-backward reinforcement learning. CoRR,
abs/1803.10227, 2018a. URL http://arxiv.org/
abs/1803.10227.

Edwards, A. D., Sahni, H., Schroecker, Y., and Isbell,
C. L. Imitating latent policies from observation. CoRR,
abs/1805.07914, 2018b. URL http://arxiv.org/
abs/1805.07914.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672–2680, 2014.

Goyal, A., Brakel, P., Fedus, W., Lillicrap, T. P., Levine, S.,
Larochelle, H., and Bengio, Y. Recall traces: Backtrack-
ing models for efficient reinforcement learning. CoRR,
abs/1804.00379, 2018. URL http://arxiv.org/
abs/1804.00379.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Advances in Neural Information Processing Systems
30, pp. 5767–5777. Curran Associates, Inc., 2017.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Held, D., Geng, X., Florensa, C., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. CoRR,
abs/1705.06366, 2017. URL http://arxiv.org/
abs/1705.06366.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems, pp. 4565–4573, 2016.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and
Jaśkowski, W. Vizdoom: A doom-based ai research plat-
form for visual reinforcement learning. In Computational
Intelligence and Games (CIG), 2016 IEEE Conference
on, pp. 1–8. IEEE, 2016.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Koenig, N. P. and Howard, A. Design and use paradigms for
gazebo, an open-source multi-robot simulator. In IROS,
volume 4, pp. 2149–2154. Citeseer, 2004.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, L.-J. Self-improving reactive agents based on reinforce-
ment learning, planning and teaching. Machine learning,
8(3-4):293–321, 1992.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al.
Fastslam: A factored solution to the simultaneous local-
ization and mapping problem. Aaai/iaai, 593598, 2002.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and
Levine, S. Visual reinforcement learning with imagined
goals. In Advances in Neural Information Processing
Systems, pp. 9209–9220, 2018.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, volume 99, pp. 278–287, 1999.

Odena, A., Olah, C., and Shlens, J. Conditional image
synthesis with auxiliary classifier gans. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 2642–2651. JMLR. org, 2017.

OpenAI. Learning dexterous in-hand manipulation. CoRR,
abs/1808.00177, 2018. URL http://arxiv.org/
abs/1808.00177.

https://github.com/maximecb/gym-miniworld
https://github.com/maximecb/gym-miniworld
http://arxiv.org/abs/1803.10227
http://arxiv.org/abs/1803.10227
http://arxiv.org/abs/1805.07914
http://arxiv.org/abs/1805.07914
http://arxiv.org/abs/1804.00379
http://arxiv.org/abs/1804.00379
http://arxiv.org/abs/1705.06366
http://arxiv.org/abs/1705.06366
http://arxiv.org/abs/1808.00177
http://arxiv.org/abs/1808.00177


Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W.,
and Abbeel, P. Asymmetric actor critic for image-based
robot learning. CoRR, abs/1710.06542, 2017. URL
http://arxiv.org/abs/1710.06542.

Randløv, J. and Alstrøm, P. Learning to drive a bicycle using
reinforcement learning and shaping. In ICML, volume 98,
pp. 463–471. Citeseer, 1998.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Univer-
sal value function approximators. In Proceedings of the
32nd International Conference on Machine Learning, vol-
ume 37 of Proceedings of Machine Learning Research,
pp. 1312–1320, Lille, France, 07–09 Jul 2015. PMLR.

Schmidhuber, J. Making the world differentiable: On us-
ing self-supervised fully recurrent neural networks for
dynamic reinforcement learning and planning in non-
stationary environments. 1990.

Schroecker, Y., Vecerik, M., and Scholz, J. Generative pre-
decessor models for sample-efficient imitation learning.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=SkeVsiAcYm.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354, 2017.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In AAAI, volume 2,
pp. 5. Phoenix, AZ, 2016.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103. ACM,
2008.

Wise, M. and Foote, T. Rep: 119-specification for turtlebot
compatible platforms, dec. 2011.

Xie, A., Singh, A., Levine, S., and Finn, C. Few-shot goal
inference for visuomotor learning and planning. CoRR,
abs/1810.00482, 2018. URL http://arxiv.org/
abs/1810.00482.

Zamora, I., Lopez, N. G., Vilches, V. M., and Cordero,
A. H. Extending the openai gym for robotics: a toolkit
for reinforcement learning using ros and gazebo. arXiv
preprint arXiv:1608.05742, 2016.

Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-
Fei, L., and Farhadi, A. Target-driven visual navigation
in indoor scenes using deep reinforcement learning. In
Robotics and Automation (ICRA), 2017 IEEE Interna-
tional Conference on, pp. 3357–3364. IEEE, 2017.

http://arxiv.org/abs/1710.06542
https://openreview.net/forum?id=SkeVsiAcYm
https://openreview.net/forum?id=SkeVsiAcYm
http://arxiv.org/abs/1810.00482
http://arxiv.org/abs/1810.00482


Appendix

A. Experimental Hyperparameters
Refer to table below for environment specific hyperparame-
ters.

HYPERPARAMETER TURTLEBOT MINIWORLD NAVIGATE MINIWORLD PICK-AND-PLACE

REPLAY WARMUP 10,000 10,000 10,000
REPLAY CAPACITY 100,000 100,000 100,000
INITIAL EXPLORATION ε 1.0 1.0 1.0
FINAL EXPLORATION ε 0.5 0.5 0.5
ε ANNEAL STEPS 100,000 100,000 250,000
DISCOUNT (γ) 0.99 0.99 0.99
OFF-POLICY ALGORITHM DDQN DDPG DDPG
POLICY OPTIMIZER ADAM ADAM ADAM
LEARNING RATE 1e−3 1e−5 (ACTOR), 1e−4 (CRITIC) 1e−5 (ACTOR), 1e−4 (CRITIC)
SIZE OF R FOR HALGAN 6,840 2,000 6,419
HALLUCINATION START % 20% 30% 30%
HALLUCINATION END % 0% 0% 0%
MAX FAILED TRAJECTORY LENGTH 16 32 16
IMAGE SIZE 64X64 64X64 64X64
RANDOM SEEDS 75839, 69045, 47040 75839, 69045, 47040, 75839, 69045, 47040,

60489, 11798 60489, 11798

Table 1. Environment Specific Hyperparameters

Refer to table below for HALGAN specific hyperparameters.

HYPERPARAMETER VALUE

LATENT VECTOR SIZE 128
LATENT SAMPLING DISTRIBUTION N (1, 0.1)
AUXILIARY TASK WEIGHT 10
GRADIENT PENALTY WEIGHT 10
L2 LOSS ON H WEIGHT 1
OPTIMIZER ADAM
LEARNING RATE 1e− 4
ADAM β1 0.5
ADAM β2 0.9
D ITERS PER H ITER 5

Table 2. Hyperparameters involved in training HALGAN



Addressing Sample Complexity in Visual Tasks Using HER and Hallucinatory GANs

B. Network Architectures
Refer to table below for details on the network architecture
for DDQN. LeakyReLu’s were used as activations through-
out except for the output layer where no activation was used.

LAYER SHAPE FILTERS #PARAMS

IMAGE INPUT 64X64 3 0
CONV 1 5X5 4 304
CONV 2 5X5 8 808
CONV 3 5X5 16 3216
CONV 4 5X5 32 12832
DENSE 1 32 - 16416
DENSE 2 4 (nbactions) - 132
TOTAL - - 33708

Table 3. Network Architecture for DDQN Agent

Refer to table below for details on the network architecture
for actor for DDPG. LeakyReLu’s were used as activations
throughout except for the output layer where a Tanh was
used.

LAYER SHAPE FILTERS #PARAMS

IMAGE INPUT 64X64 3 0
CONV 1 5X5 4 304
CONV 2 5X5 8 808
CONV 3 5X5 16 3216
CONV 4 5X5 32 12832
DENSE 1 32 - 16416
DENSE 2 2 (nbactions) - 66
TOTAL - - 33642

Table 4. Network Architecture for DDPG Actor

Refer to table below for details on the network architecture
for critic for DDPG. LeakyReLu’s were used as activations
throughout except for the output layer where no activation
was used.

LAYER SHAPE FILTERS #PARAMS

IMAGE INPUT 64X64 3 0
CONV 1 5X5 4 304
CONV 2 5X5 8 808
CONV 3 5X5 16 3216
CONV 4 5X5 32 12832
DENSE 1 32 - 16416
DENSE 2 1 - 33
TOTAL - - 33673

Table 5. Network Architecture for DDPG Critic

Refer to table below for details on the network architecture
for the generator in HALGAN. LeakyReLu’s were used as

activations throughout except immediately after the condi-
tioning layer where no activation was used and the output
where tanh was used.

LAYER SHAPE FILTERS #PARAMS

CONFIG INPUT 3 - 0
DENSE 1 128 - 384
CONDITIONING INPUT 128 - 0
MULTIPLY 128 - 0
RESHAPE 1X1 128 0
UPSAMPLE + CONV 1 4X4 64 131136
BATCHNORM 2X2 64 256
UPSAMPLE + CONV 2 4X4 64 65600
BATCHNORM 4X4 64 256
UPSAMPLE + CONV 3 4X4 64 65600
BATCHNORM 8X8 64 256
UPSAMPLE + CONV 4 4X4 32 32800
BATCHNORM 16X16 32 256
UPSAMPLE + CONV 5 4X4 32 16416
BATCHNORM 32X32 32 128
UPSAMPLE + CONV 6 4X4 16 8028
BATCHNORM 64X64 16 64
CONV 7 4X4 8 2056
BATCHNORM 64X64 8 32
CONV 8 4X4 3 387
TOTAL - - 323707

Table 6. Network Architecture HALGAN Generator

Refer to table below for details on the network architecture
for the discriminator in HALGAN. LeakyReLu’s were used
as activations throughout except at the output where no
activation was used.

LAYER SHAPE FILTERS #PARAMS

IMAGE INPUT 64X64 3 0
CONV 1 4X4 32 1568
CONV 2 4X4 32 16416
CONV 3 4X4 32 16416
CONV 4 4X4 64 32832
CONV 5 4X4 64 65600
CONV 6 4X4 64 65600
CONV 7 4X4 128 131200
DENSE (AUX) 2 - 129
DENSE (REAL/FAKE) 1: - 258
TOTAL - - 330019

Table 7. Network Architecture for HALGAN Discriminator


