
Under review as a conference paper at ICLR 2020

MEM2MEM: LEARNING TO SUMMARIZE LONG TEXTS
WITH MEMORY-TO-MEMORY TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce the Mem2Mem mechanism, a conditional memory-to-memory
mechanism that can be appended to general sequence-to-sequence frameworks,
and demonstrate its effectiveness in improving long text neural abstractive sum-
marization. Mem2Mem seamlessly transfers “memories” via readable/writable
external memory modules that augment both the encoder and decoder. By en-
abling a memory transfer, Mem2Mem uses representations of highly salient input
sentences and performs an implicit sentence extraction step. By allowing the de-
coder to read and write over encoded input memories, the models learn to store
information about the input sequence while keeping track of what has been gen-
erated by the decoder. We evaluate Mem2Mem on abstractive text summarization
and surpass the current state-of-the-art with less model capacity than competing
models and with a full end-to-end training setup. To our knowledge, Mem2Mem
is the first mechanism that can effectively use and update memory cells filled with
different contextual information.

1 INTRODUCTION

Automatic summarization is the automated process of reducing the size of an input text while pre-
serving its most relevant information content and its core semantics. Abstractive text summarization
requires a source document to be understood, the most important parts to be prioritized and key
concepts to be paraphrased into coherent sentences. Most recent approaches to solving abstractive
summarization tasks have relied on the sequence-to-sequence (seq2seq) paradigm (Sutskever et al.,
2014), with an encoder that generates vector representations of the input tokens and a decoder that
generates an output text conditioned on the encoded representations. Advances in the conditional
Natural Language Generation (NLG) of seq2seq architectures have typically focused on improv-
ing the decoder and have been particularly successful when applied to problems such as machine
translation (Cho et al., 2014; Bahdanau et al., 2014), abstractive summarization (Rush et al., 2015;
Nallapati et al., 2016; See et al., 2017) and semantic parsing (Dong & Lapata, 2016).

Several attention-based encoder-decoders were introduced to tackle varying text generation issues
of standalone seq2seq models. Gu et al. (2016) proposed a copy mechanism to address difficulties
in generating out-of-vocabulary words and named entities. See et al. (2017) used both a pointer
mechanism (Vinyals et al., 2015) and a coverage mechanism (Tu et al., 2016) to address repeti-
tive generation of word sequences in abstractive summarization. For very large input documents,
however, such attention based techniques can still suffer from uninformative encoding. It is well
studied that Recurrent Neural Networks (RNN) trained with stochastic gradient descent have diffi-
culty learning long-term dependencies encoded in the input sequences due to vanishing gradients
(Hochreiter, 1998; Pascanu et al., 2013). While attention mechanisms (Bahdanau et al., 2014; Lu-
ong et al., 2015) in the decoder provide more precise conditioning and facilitate gradient flow into
the encoder, it is still unclear how trained encoders improve over word embeddings and how lin-
guistic information of the input text is effectively represented (Wieting & Kiela, 2019; Park et al.,
2019). Memory-Augmented Neural Networks (MANN) and Memory-Augmented Encoder-Decoder
(MAED) have also been seen as potential solutions to long term dependency issues in RNNs and
seq2seqs respectively (Wang et al., 2016; Yogatama et al., 2018; Ma & Prı́ncipe, 2018; Le et al.,
2018). Using differentiable read and write operations to an external module, MAED can represent
non-local context of RNNs using its larger memory capacity. Such models are able to store tempo-

1

Under review as a conference paper at ICLR 2020

rally distant information of large input sequences. However, the role in memory for input encoding
and sequence generation had not yet been fully understood or exploited.

Geared towards generating concise summaries and focusing summary generation on the most rel-
evant information, alternative ideas introduced an intermediate sentence extraction step. Most re-
cently, hybrid abstractive and extractive architectures (Chen & Bansal, 2018; Subramanian et al.,
2019) were proposed and have proven to outperform competing methods on a number of summa-
rization datasets. In such set-ups, a downstream attention based model first selects salient sentences
and then rewrites them abstractively without relying on the encoded input representation. However,
the two-step approach not only makes strong assumptions that all of the information necessary to
generate a summary is contained within a subset of sentences, but it also relies on suboptimal labels
(i.e. individual sentence level ROUGE scores) to identify high saliency sentences during the extrac-
tion step. Such targets for the extractive step do not necessarily ensure minimal content overlap and
maximal ROUGE scores on the whole set of extracted sentences (Narayan et al., 2018). Further-
more, it is assumed that the performances of the extractive model is independent of the behavior
of the abstractive model. In experiments by Chen & Bansal (2018); Subramanian et al. (2019) for
instance, most if not all of the training cycles were performed separately for the abstractive and
extractive models.

In this paper, we propose a memory based end-to-end approach trained from scratch that implic-
itly performs an extraction step without needing extraction labels. The architecture, that is called
Mem2Mem, was inspired by the reconsolidation hypothesis, which states that the incorporation of
new information can happen when memory is recalled in the brain (Sara, 2000; Coccoz et al., 2011).
To our knowledge, Mem2Mem is the first MAED that creates a long term memory of the encoded
input and that allows the decoder to modify its “memories” during the summary generation pro-
cess. We empirically demonstrate the merits of this approach by setting a new state of the art on
long text abstractive summarization results on the Pubmed dataset (Cohan et al., 2018). Our results
show large improvements on all ROUGE scores, especially on ROUGE-L, the longest common sub-
sequence and “a means of assessing fluency” (Narayan et al., 2018) over competing models. We
further provide evidence that our new memory-based technique performs an implicit extraction step
by choosing sentence representations to add to memory and to use during summary generation. Our
contributions are three folds:

1. We introduce a novel mechanism, called Mem2Mem, to transfer memories created during
the encoding process to the decoder, that is able to read and modify memory contents.

2. We show that Mem2Mem performs an implicit information retrieval step akin to extractive
summarization, without needing extraction labels.

3. We achieve state-of-the art results with a fully differentiable model trained end-to-end.

2 BACKGROUND

The methodology proposed in this paper can be attached to general seq2seq models that have either
RNN or Convolutional encoder/decoders. Since we are interested in solving very long text sum-
marization, we adopt a baseline seq2seq model based on the hierarchical recurrent encoder-decoder
structure (HRED) from Nallapati et al. (2016) and Cohan et al. (2018).

The hierarchical recurrent encoder has two encoder GRUs: a sentence encoder and a document
encoder. Given an input sentence of length N , the sentence encoder takes a sequence of token
embeddings x and transforms it into a sequence of hidden states.

h
(w)
1 ,h

(w)
1 , . . .h

(w)
N = GRUsen(x1,x2, . . . ,xN) (1)

The last hidden state of the sentence encoder is used as a corresponding sentence embedding s. Note
that the sentence encoder is shared across every sentence in the input document. The sequence of
sentence embeddings s are then processed by the document encoder.

h
(s)
1 ,h

(s)
1 , . . .h

(s)
L = GRUdoc(s1, s2, . . . , sL) (2)

where sj is the j th sentence embedding, h(s)
j is the associated document encoder hidden state and

L is the total number of sentences in the document.

2

Under review as a conference paper at ICLR 2020

The decoder GRU generates a target summary one token at a time. At each decoding step t, the
decoder creates a decoder hidden state h

(d)
t . The decoder then obtains the context vector ct:

ct =

Nd∑
i=1

γtih
(w)
i (3)

where γti is the attention weight that represents the alignment between h
(w)
i and h

(d)
t . γti is com-

puted by combining token level attention α and sentence level attention β.

αti = Attn(h(d)
t ,h

(w)
i) (4)

βtj = Attn(h(d)
t ,h

(s)
j) (5)

γti =
βtm(i)αti∑Nd

l=1 βtm(l)αtl

(6)

m(l) denotes the index of the sentence corresponding to the l th word, and Nd is the total number of
tokens in the input document. Attn in equation (4) and (5) is defined as in Bahdanau et al. (2014):

Attn(q,k) = softmax(v> tanh(Wqq+Wkk)) (7)

Finally, the pointer generator and decoder coverage method in See et al. (2017) are used for the
baseline HRED. More details of the baseline architecture can be found in Appendix.

3 CONDITIONAL MEMORY-TO-MEMORY MECHANISM (MEM2MEM)

In this section, we describe the external memory modules that extend the baseline HRED to create
Mem2Mem. Mem2Mem has three main features. (1) An encoder memory bank that compresses
a large set of encoder hidden representations into a smaller subset of mutually exclusive represen-
tations. (2) Read/write operations that allow the decoder to update the encoder memory bank with
new information during summary generation. (3) Word generation that is conditioned on the en-
coded sentence representations accessed from the dynamic memory. In essence, the whole process
can be seen as extraction followed by generation. The architecture is depicted in Figure 1.

3.1 NEURAL ENCODER MEMORY BANK

The aim of having an external memory on the encoder is to create a fixed size representation that
reduces the set of L hidden representations from GRUdoc to a subset of r representations. From a se-
quence of sentence-level document encoder hidden representations h(s)

1 ,h
(s)
1 , . . .h

(s)
L , we construct

an intermediate 2-D matrix H ∈ RL×d, where d is the document encoder hidden size.

H =

h
(s)
1

h
(s)
2
. . .

h
(s)
L

 (8)

A smaller sized memory bank is generated by taking a linear combination of each row in H. The
weight vector for the linear combination a is computed with self-attention mechanism.

a = softmax(wT
a1tanh(Wa2H

T)) (9)

where wa1 ∈ Rda , Wa2 ∈ Rda×d, and da is the size of the hidden layer which is a hyperparameter.
To capture various aspects of the input document, a is extended to a multi-headed attention matrix
A with r heads.

A = softmax(Wa1tanh(Wa2H
T)) (10)

where Wa1 ∈ Rr×da and r is a hyperparameter. This results in r different weighted sums of H,
which gives us the final multi-headed encoder memory matrix M(e) ∈ Rr×d.

M(e) = AH (11)

3

Under review as a conference paper at ICLR 2020

Figure 1: The proposed Mem2Mem architecture for abstractive summarization. Sentence-level representa-
tions from the document encoder hidden states are concatenated and reduced to a fix sized memory M0. Mi is
read using a RAM like mechanism. The memory readout vector is used to condition word-level attention. The
decoder hidden states modulated by word-level attention is then used to update the memory state Mi+1 via a
gated write operation (zi).

Lin et al. (2017) used a similar approach to create multiple types of sentence embeddings for one
particular sentence with a ”structured self-attentive sentence embedding” matrix. Different from
their work, we use the external memory block with r number of slots to store a smaller set (much less
than L) sentence representations. We further integrate the memory module onto the baseline HRED
architecture. Additionally, in our approach, the memory representation M gets updated dynamically
by the decoder while the ”structured self-attentive sentence embedding” matrix remains static.

To ensure that attention weights of different heads are not redundant, a regularization term P is
added to the cross entropy training objective to encourage diversity of memorized encoded states.
Similar to Lin et al. (2017), we use the following regularization loss to constrain the attention weight
matrix A:

P = ||(AAT − I)||F
2

(12)

where || • ||F is the Frobenius norm. The regularization loss P achieves two goals simultaneously:
(1) It promotes diversity over the r representations stored in memory, thereby reducing the risk
of storing redundant information. (2) It ”hardens” the attention probabilities by reducing variance
across the categorical attention distribution, thereby assuring that each memory slot is associated
to approximately one sentence representation. As a result, the encoder memory M(e) essentially
performs implicit extraction over the encoder hidden states. Note that no supervision exists on this
extractive step. In Section 5, we will demonstrate that the encoder memory bank learns to choose
amongst a large set of input sentences representations, using only the back-propagated error signals
from the target summary generation objective as a guide.

3.2 READABLE/WRITABLE DECODER MEMORY

Most MAED architectures are not equipped with a Decoder memory but only query the Encoder
Memory. Our MAED stores decoder hidden states with a write operation that is different than the
one described in the previous section 3.1. As a first step, the encoder memory matrix M(e) is

4

Under review as a conference paper at ICLR 2020

transferred to the decoder and used as an initial state of the decoder memory M(d). At every time
step t, the decoder reads from the memory and generates a memory read vector mt. Specifically,
the decoder takes the weighted sum over r memory slots via a RAM like attention mechanism:

ψtk = Attn(h(d)
t ,M(d)

k) (13)

mt =

r∑
k=1

ψtkM(d)
k (14)

where M(d)
k is the vector representation of the k th slot of M (d). To condition the decoder attention

mechanism on the memory read, h(d)
t is combined with mt and generate a memory augmented

decoder hidden state h
(m)
t .

h
(m)
t =Wm[h

(d)
t ;mt] (15)

h
(d)
t in the equation (4) and (5) of the baseline system is then replaced with h

(m)
t . Similarly, the

probability distribution of the next target word yt is estimated using the memory augmented decoder
hidden state h

(m)
t and the context vector ct, such that:

P (yt|y1:t−1) = softmax(V (Wv[h
(m)
t , ct])) (16)

As a consequence, the attention over the source text and the prediction of the target token are condi-
tioned on the memory read mt, a weighted sum of the memorized sentence representations. There
is a direct link between the contents of the memory and text generation. The training loss L is the
average negative log likelihood of the target word yt over the whole ground truth summary of length
T . The semantics of the source sequence that is kept in the decoder memory can also be modified
during the conditional text generation process. The decoder memory write operation outlined below
removes and adds information using a gated mechanism to “forget” past memories and “update”
each memory slot. Essentially, the memory write operation enables the memory to log the history
of what has been attended and generated. The gating mechanism is conditioned on the the memory
content M(d), the sentence level context vector c(s)t , and the decoder hidden state h

(d)
t+1:

c
(s)
t =

∑
j=1

βtjh
(s)
j (17)

ztk = σ(Wz1h
(d)
t+1 +Wz2c

(s)
t +Wz3M(d)

k) (18)

ut = tanh
(
Wu1

h
(d)
t+1 +Wu2

c
(s)
t +Wu3

M(d)
k

)
(19)

M(d)
k := ztk �M(d)

k + (1− ztk)� ut (20)

A similar memory write mechanism, called scratchpad, has been proposed in Benmalek et al.
(2019). The write operation updates all encoder hidden states given the decoder hidden state and
the context vector. In our work, we condition updates on memory-augmented context and content.
Moreover, the scratchpad mechanism scales linearly with the input document length and output
summary length. To be more precise, the complexity of scratchpad is O(NT) where N and T are
the length of the input text and the target summary respectively. Our Mem2Mem, however, isO(rT)
where r is the number of memory slots. Given that r is a fixed hyperparameter and typically r � N ,
our method is an ideal candidate for large output text generation conditioned on even larger input
documents.

4 RELATED WORK

Memory based models have been used in several NLG tasks. Sukhbaatar et al. (2015), using a con-
tinuous memory representation similar to Graves et al. (2014)’s Neural Turing Machines, show the
importance of allowing multiple reads and writes to memory between inputs in language modeling

5

Under review as a conference paper at ICLR 2020

experiments. Yogatama et al. (2018) further improved on such experiments by using an LSTM lan-
guage model equipped with a multihop adaptive continuous stack memory. When experimenting
with the multihop adaptive continuous stack memory for abstractive summarization in a HRED con-
text1, we have found two issues (1) only the top 2 slots of the encoder’s stack memory were filled
(2) the decoder memory stack rarely used or mixed memories transferred from the encoder.

Other MAED have been proposed for conditional NLG, such as machine translation (Kaiser et al.,
2017), image captioning (Park et al., 2017), QA (Sukhbaatar et al., 2015; Kumar et al., 2015; Miller
et al., 2016; Na et al., 2017; Han et al., 2019). In summarization, MAED have been used on ex-
tractive summarization (Singh et al., 2017) and on short text abstractive summarization (Kim et al.,
2018). These approaches excel at tasks where it is necessary to store some parts of a sequential input
in a representation that can later be precisely queried. We found however that most MAED innova-
tions focused on improving long term memories of the encoded input or read/write operations. In
this work, we suggest solutions in these areas: (1) a memory creation mechanism that condenses
the encoded input akin to an extraction step; (2) a conditional read/write mechanism that allows the
decoder to use/update encoder memories. Further, we propose another feature — Mem2Mem trans-
fers memories from different context. The encoder memory stores input sentence-level information
while the decoder updates are conditioned on output word-level information.

5 RESULTS AND DISCUSSION

We evaluate Mem2Mem on PubMed (Cohan et al., 2018) which is a large scale summarization
dataset comprised of biomedical literature. The average lengths of source documents and target
summaries are 3016 and 203 respectively. In comparison, the widely used CNN/DailyMail sum-
marization dataset (Hermann et al., 2015; See et al., 2017) is almost 4 times smaller with average
lengths of source documents and target summaries at 781 and 56 respectively. Our pre-processing
and training details are identical to Cohan et al. (2018). The readers are encouraged to refer to the
appendix for training and evaluation details. For the quantitative evaluation, we use the ROUGE
metric (Lin, 2004) and report full-length F-1 ROUGE scores.

Table 1 recaps the ROUGE scores of Mem2Mem along with a baseline model and previous works.
We first note that the baseline HRED outperforms similar hierarchical recurrent encoder summa-
rization model suggested in Cohan et al. (2018)2. The results also show that Mem2Mem surpasses
the state of the art for abstractive summarization on the PubMed dataset. Mem2Mem even outper-
forms the hybrid extractive-abstractive TLM-I+E (Subramanian et al., 2019) on all scores except
for ROUGE-1. We may say that Mem2Mem is much more ”fluent” than TLM-I+E as evidence
by the 13.2 percentage point gain in ROUGE-L scores. Interestingly, Mem2Mem achieves such
performances over TLM-I+E while needing 6 times less parameters (14.7M vs. 93.3M). TLM-I+E
also benefits from a language modeling step on its input text that can be considered a form of pre-
processing. We train our model from scratch. Finally, we reiterate that Mem2Mem is trained com-
pletely end-to-end while TLM requires separate training for the extractive model and the conditional
transformer language model.

5.1 ABLATION STUDY

To assess the importance of different components in Mem2Mem, we conduct an ablation study on
PubMed dataset results. Table 2 shows the affects of adding various Mem2Mem features on ROUGE
scores . Encoder Mem is the baseline HRED augmented with the neural encoder memory bank de-
scribed in Section 3.1. The result demonstrates that the memory context indeed enhances the quality
of generated summaries. Furthermore, it can be observed that discouraging redundancies in the en-
coder memory cells via the regularization loss P leads to additional improvements on all ROUGE
scores. Figure 2 shows the effect of regularization on the encoder memory selection of encoded
sentence representations. We observe that each memory head attends to a single sentence of the

1We used a GRU with a stack memory on the sentence encoder and decoder. More details can be found in
the appendix.

2The difference may arise from employing a different hierarchical structure: Ours used the word-sentence
hierarchy while Cohan et al. (2018) used the word-section discourse. We also trained more epochs (15) than
their work (10) to build a strong baseline model.

6

Under review as a conference paper at ICLR 2020

Model Type # of ROUGE
params. 1 2 3 L

SumBasic Extractive - 37.15 11.36 5.42 33.43
LexRank Extractive - 39.19 13.89 7.27 34.59

Ptr-Gen-Seq2Seq (Cohan et al., 2018) Abstractive - 35.86 10.22 7.60 29.69
Discourse-aware (Cohan et al., 2018) Abstractive 14.3M 38.93 15.37 9.97 35.21

TLM-I (Subramanian et al., 2019) Abstractive 71.2M 36.63 11.67 5.40 21.00
TLM-I+E (Subramanian et al., 2019) Hybrid 93.3M 41.43 15.89 8.62 24.32

Baseline HRED Abstractive 14.0M 40.02 15.82 9.30 36.28
Mem2Mem (our model) Abstractive 14.7M 41.35 16.09 9.00 37.53

Table 1: Results on the PubMed dataset. TLM uses a GPT-like transformer language models (Rad-
ford et al., 2019) conditioned on introduction (I) and with extracted sentences (E). The highest
ROUGE scores for abstractive methods are bold-faced. Hybrid refers to models that use two-step
extractive-abstractive summarization.

Model ROUGE
1 2 3 L

Baseline HRED 40.02 15.82 9.30 36.28
+ Encoder Mem 40.39 16.00 9.39 36.58
+ Regularize Mem 40.72 16.06 9.53 36.90
+ Decoder Mem 41.09 16.00 9.02 37.34
+ Mem Transfer 41.35 16.09 9.00 37.53

Table 2: Model ablation study on the PubMed dataset. With Encoder Mem, the baseline HRED is
augmented with a neural encoder memory bank as described in Section 3.1. We then regularize the
encoder memory, Regularize Mem, using the equation (12). We also experiment with the Decoder
Mem that performs read/write mechanism described in Section 3.2 without memory transfer. Finally,
with Mem Transfer, we obtain the whole Mem2Mem setup.

input. This is due to the regularization term P that encourages sparse, non-redundant attention dis-
tributions over different memory heads or slots. Analysing multiple test samples, a trend emerges.
The encoder memory typically attends to first and last few encoded sentences representations. This
aligns with known statistic that existing summarization datasets tend to have key information at the
front (i.e. the introduction) and last parts (i.e. the conclusion) of the document (Kim et al., 2018).
Decoder Mem is a writable decoder memory but without memory transfer. In this case, the encoder
memory is no longer used to initialize the decoder memory state at the start of the summary genera-
tion process. The decoder memory is simply initialized with zeros. With over one percentage point
increases in both ROUGE-1 and ROUGE-L scores, the result shows that read/write mechanism on
the decoder brings substantial improvements even without leveraging encoded sentence representa-
tions. This shows that the summary generation process largely benefits from accessing long term
contextual information of the output text. The sparsity of the chosen content as seen Figure 2 (a)
encourages us to think that presenting the decoder with a small subset of input sentence informa-
tion helps summary generation in similar way to models that use a hybrid extractive-abstractive
approach. Adding the memory transfer further improves ROUGE scores, which could imply that
the soft extractive step of the encoder memory remains effective even with write operations on the
decoder.

5.2 IMPLICIT EXTRACTION IN THE ENCODER MEMORY

Our initial hypothesis was that the neural encoder memory bank would automatically pick a subset
of the most salient sentences for a given task. To confirm this hypothesis, we analyze the quality of
the sentences chosen by the encoder memory. As seen in equation (16), the Markovian probability
of output tokens is conditioned on both the previous token and the decoder memory read mt. In
Mem2Mem, the memory content is initialised with a sparse set of encoded sentence representations
(see Figure 2). As explained previously, the encoder memory attention A is the mechanism used to

7

Under review as a conference paper at ICLR 2020

s_
0

s_
2

s_
4

s_
6

s_
8

s_
10

s_
12

s_
14

s_
16

s_
18

s_
20

s_
22

s_
24

s_
26

s_
28

s_
30

s_
32

s_
34

s_
36

s_
38

s_
40

s_
42

s_
44

s_
46

s_
48

s_
50

s_
52

input_sentences

mem_slot_0

mem_slot_1

mem_slot_2

mem_slot_3

mem_slot_4

mem_slot_5

mem_slot_6

mem_slot_7

mem_slot_8

mem_slot_9
0.0

0.2

0.4

0.6

0.8

(a) With regularization

s_
0

s_
2

s_
4

s_
6

s_
8

s_
10

s_
12

s_
14

s_
16

s_
18

s_
20

s_
22

s_
24

s_
26

s_
28

s_
30

s_
32

s_
34

s_
36

s_
38

s_
40

s_
42

s_
44

s_
46

s_
48

s_
50

s_
52

input_sentences

mem_slot_0

mem_slot_1

mem_slot_2

mem_slot_3

mem_slot_4

mem_slot_5

mem_slot_6

mem_slot_7

mem_slot_8

mem_slot_9
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(b) Without regularization

Figure 2: An example of encoder memory attention A. Rows denote different memory slots and
columns indicate input sentence representations with indices. Note that the regularization loss re-
moves the redundancy on different memory slots and helps each slot to focus on a single sentence.

Model ROUGE
1 2 3 L

Lead-10 37.45 14.19 8.26 34.07
LexRank 39.19 13.89 7.27 34.59

Mem2Mem Encoder Memories 40.11 15.56 8.99 31.90
Gold Ext 47.76 20.36 11.52 39.19

Table 3: Rouge scores of unsupervised extracted input sentences with respect to the ground truth
summaries. For Mem2Mem Encoder Memories, we used the sentences that had encoder memory
attention A above 80%. Gold Ext is the gold extracted ROUGE scores of all sentences selected by
a greedy selection from the input article that have the highest per-sentence ROUGE scores, as in
Subramanian et al. (2019).

choose a subset of sentence representations. To better understand the link between encoder memory
creation and the summary generation process, we compute the ROUGE scores of input sentence
tokens that had above 80% probability encoder memory attention A. That is, we calculated in
Table 3 the ROUGE scores of input sentences whose representation was the most likely stored in the
encoder memory bank.

Table 3 shows the ROUGE scores of different unsupervised extractive summarization methods on
the PubMed dataset. The summaries generated with extracted sentences outperform existing unsu-
pervised extractive summarization baselines on Pubmed. The result demonstrates that the encoder
memory bank is able to prioritize amongst a large set of input sentences.

6 CONCLUSION

In this paper, we proposed a novel framework called Mem2Mem, which augments existing hier-
archical seq2seq architectures and validated its efficacy on abstractive summarization task. From
a long source document, the encoder memory learns to locate salient information without explicit
labels for the extraction. The decoder memory, which is transferred from the encoder memory, en-
hances the quality of generated summaries by means of memory-augmented attention and hidden
representations. The proposed Mem2Mem established new state of the art results on the challenging
long-text summarization PubMed dataset. We also provided in-depth analyses of different features
of Mem2Mem and show that the decoder memory along with memory transfer has the largest impact
on performance.

The Mem2Mem’s notion of implicit extraction followed by generation can be generalized to a wide
range of seq2seq tasks such as question generation and answering. In future work, we would like to
extend this approach and validate the strength of memory transfer on a variety of sequential learning
tasks.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Ryan Benmalek, Madian Khabsa, Suma Desu, Claire Cardie, and Michele Banko. Keeping notes:
Conditional natural language generation with a scratchpad encoder. In Proceedings of the 57th
Conference of the Association for Computational Linguistics, pp. 4157–4167, 2019.

Yen-Chun Chen and Mohit Bansal. Fast abstractive summarization with reinforce-selected sentence
rewriting. CoRR, abs/1805.11080, 2018. URL http://arxiv.org/abs/1805.11080.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

Vilma Coccoz, Hector J. Maldonado, and Alejandro Delorenzi. The enhancement of reconsolidation
with a naturalistic mild stressor improves the expression of a declarative memory in humans.
Neuroscience, 185:61–72, 2011.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. CoRR, abs/1804.05685, 2018. URL http://arxiv.org/abs/1804.05685.

Li Dong and Mirella Lapata. Language to logical form with neural attention. CoRR, abs/1601.01280,
2016. URL http://arxiv.org/abs/1601.01280.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401,
2014. URL http://arxiv.org/abs/1410.5401.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating copying mechanism in
sequence-to-sequence learning. CoRR, abs/1603.06393, 2016. URL http://arxiv.org/
abs/1603.06393.

Moonsu Han, Minki Kang, Hyunwoo Jung, and Sung Ju Hwang. Episodic memory reader: Learning
what to remember for question answering from streaming data. CoRR, abs/1903.06164, 2019.
URL http://arxiv.org/abs/1903.06164.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In Advances in
neural information processing systems, pp. 1693–1701, 2015.

Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and problem
solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):
107–116, 1998.

Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio. Learning to remember rare events.
CoRR, abs/1703.03129, 2017. URL http://arxiv.org/abs/1703.03129.

Byeongchang Kim, Hyunwoo Kim, and Gunhee Kim. Abstractive summarization of reddit posts
with multi-level memory networks. arXiv preprint arXiv:1811.00783, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Bradbury, Robert English, Brian Pierce, Peter On-
druska, Ishaan Gulrajani, and Richard Socher. Ask me anything: Dynamic memory networks for
natural language processing. CoRR, abs/1506.07285, 2015. URL http://arxiv.org/abs/
1506.07285.

Hung Le, Truyen Tran, Thin Nguyen, and Svetha Venkatesh. Variational memory encoder-decoder.
CoRR, abs/1807.09950, 2018. URL http://arxiv.org/abs/1807.09950.

Chin-Yew Lin. Looking for a few good metrics: Automatic summarization evaluation-how many
samples are enough? In NTCIR, 2004.

9

http://arxiv.org/abs/1805.11080
http://arxiv.org/abs/1804.05685
http://arxiv.org/abs/1601.01280
http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1603.06393
http://arxiv.org/abs/1603.06393
http://arxiv.org/abs/1903.06164
http://arxiv.org/abs/1703.03129
http://arxiv.org/abs/1506.07285
http://arxiv.org/abs/1506.07285
http://arxiv.org/abs/1807.09950

Under review as a conference paper at ICLR 2020

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130, 2017.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.

Ying Ma and José C. Prı́ncipe. A taxonomy for neural memory networks. CoRR, abs/1805.00327,
2018. URL http://arxiv.org/abs/1805.00327.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason
Weston. Key-value memory networks for directly reading documents. CoRR, abs/1606.03126,
2016. URL http://arxiv.org/abs/1606.03126.

Seil Na, Sangho Lee, Jisung Kim, and Gunhee Kim. A read-write memory network for movie
story understanding. CoRR, abs/1709.09345, 2017. URL http://arxiv.org/abs/1709.
09345.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization
using sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Ranking sentences for extractive summariza-
tion with reinforcement learning. CoRR, abs/1802.08636, 2018. URL http://arxiv.org/
abs/1802.08636.

Cesc Chunseong Park, Byeongchang Kim, and Gunhee Kim. Attend to you: Personalized image
captioning with context sequence memory networks. CoRR, abs/1704.06485, 2017. URL http:
//arxiv.org/abs/1704.06485.

Jaehong Park, Jonathan Pilault, and Christopher Pal. On the impressive performance of randomly
weighted encoders in hierarchical encoder decoder models. In Association for Computational
Linguistics, 2019.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. pp. 1310–1318, 2013.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. CoRR, abs/1509.00685, 2015. URL http://arxiv.org/abs/
1509.00685.

Susan J Sara. Commentaryreconsolidation: Strengthening the shaky trace through retrieval. Nature
Reviews Neuroscience, 1(3):212, 2000.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. CoRR, abs/1704.04368, 2017. URL http://arxiv.org/abs/
1704.04368.

Abhishek Kumar Singh, Manish Gupta, and Vasudeva Varma. Hybrid memnet for extractive sum-
marization. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, pp. 2303–2306. ACM, 2017.

Sandeep Subramanian, Raymond Li, Jonathan Pilault, and Christopher Pal. On extractive and
abstractive neural document summarization with transformer language models. arXiv preprint
arXiv:1909.03186, 2019.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly supervised memory
networks. CoRR, abs/1503.08895, 2015. URL http://arxiv.org/abs/1503.08895.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
pp. 3104–3112, 2014.

10

http://arxiv.org/abs/1805.00327
http://arxiv.org/abs/1606.03126
http://arxiv.org/abs/1709.09345
http://arxiv.org/abs/1709.09345
http://arxiv.org/abs/1802.08636
http://arxiv.org/abs/1802.08636
http://arxiv.org/abs/1704.06485
http://arxiv.org/abs/1704.06485
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1509.00685
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1503.08895

Under review as a conference paper at ICLR 2020

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Coverage-based neural machine
translation. CoRR, abs/1601.04811, 2016. URL http://arxiv.org/abs/1601.04811.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2692–2700, 2015.

Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun Liu. Memory-enhanced decoder for neural
machine translation. CoRR, abs/1606.02003, 2016. URL http://arxiv.org/abs/1606.
02003.

John Wieting and Douwe Kiela. No training required: Exploring random encoders for sentence clas-
sification. CoRR, abs/1901.10444, 2019. URL http://arxiv.org/abs/1901.10444.

Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling, Adhiguna Kuncoro, Chris Dyer, and Phil
Blunsom. Memory architectures in recurrent neural network language models. 2018.

11

http://arxiv.org/abs/1601.04811
http://arxiv.org/abs/1606.02003
http://arxiv.org/abs/1606.02003
http://arxiv.org/abs/1901.10444

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 BASELINE ARCHITECTURE

In addition to the hierarchical recurrent encoder-decoder (HRED) architecture described in Sec-
tion 2, following features are used for both baseline and Mem2Mem architecture.

A.1.1 POINTER GENERATOR NETWORK

In order to handle out-of-vocabulary (OOV) token predictions, pointer generator in See et al. (2017)
is used to copy words directly from the input document. At each step t, the decoder decides whether
to predict the next target word from the generation the pointer generator computes zt which denotes
the probability of choosing Pg for sampling the next target word.

zt = σ(wT
c ct + wT

d h
(d)
t + wT

x x
′

t) (21)

The probability zt is used as a variable for soft switch between generating a word from the vocabu-
lary (Pg) or directly copying from the source document (Pc). The probability of copying a word w
from the source text is calculated based on the attention weights γ.

Pc(yt = w|y1:t−1) =
∑

i:xi=w

γti (22)

Note that Pc(yt = w|y1:t−1) = 0 if w does not exist in the source document. Likewise, Pg(yt =
w|y1:t−1) = 0 if w is an out of vocabulary word. Combining two probability distributions, the final
probability of the next word yt being w is as follows.

P (yt = w|y1:t−1) = ztPg(yt = w|y1:t−1) + (1− zt)Pc(yt = w|y1:t−1) (23)

A.1.2 DECODER COVERAGE

It is well known that sequence-to-sequence models tend to suffer from repeated phrases when gen-
erating long target sequences. See et al. (2017) tackled this issue by keeping track of the attention
coverage. More concretely, the coverage vector covt at decoding step t is computed by taking the
summation of the token-level attention weights α until the last step t− 1.

covt =

t−1∑
t′=0

αt′ (24)

To inform the decoder of the history of attention weights, the coverage vector is fed into the token-
level attention mechanism, which modifies the equation (4) to the following equation.

αti = softmax(v> tanh
(
Weh

(e)
k +Wdh

(d)
t + wc cov

T
t

)
) (25)

A.2 TRAINING DETAILS

For pre-processing, we constrain the maximum number of sections to 4 and the maximum number
of tokens for each section to 500. The length of the target summary is limited to 200 tokens.

Single-layer bidirectional GRUs (Cho et al., 2014) are used for sentence and document encoders.
The decoder is also a single layer GRU. All GRUs have hidden size of 256. The dimensionality of
token embeddings is 128 and embeddings are trained from scratch. The vocabulary size is limited
to 50,000. Batch size is 16 and Adam (Kingma & Ba, 2014) with learning rate 2e−4 is used for
training. Maximum gradient norm is set to 2. We train all models for 15 epochs. At the test time,
beam search with the beam size 4 is used for decoding.

For Mem2Mem hyperparameters, the number of heads for the encoder memory module is 10 and
the self-attention hidden size is 64. The weight for the regularization P is 0.01.

12

	Introduction
	Background
	Conditional Memory-to-Memory Mechanism (Mem2Mem)
	Neural Encoder Memory Bank
	Readable/Writable Decoder Memory

	Related Work
	Results and Discussion
	Ablation Study
	Implicit Extraction in the Encoder Memory

	Conclusion
	Appendix
	Baseline Architecture
	Pointer Generator network
	Decoder coverage

	Training Details

