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Abstract

Neural models combining representation learning
and reasoning in an end-to-end trainable man-
ner are receiving increasing interest. However,
their use is severely limited by their computa-
tional complexity, which renders them unusable
on real world datasets. We focus on the Neural
Theorem Prover (NTP) model proposed by Rock-
täschel and Riedel (2017), a continuous relaxation
of the Prolog backward chaining algorithm where
unification between terms is replaced by the sim-
ilarity between their embedding representations.
For answering a given query, this model needs to
consider all possible proof paths, and then aggre-
gate results – this quickly becomes infeasible even
for small Knowledge Bases (KBs). We observe
that we can accurately approximate the inference
process in this model by considering only proof
paths associated with the highest proof scores.
This enables inference and learning on previously
impracticable KBs.

1. Introduction
Recent advancements in deep learning intensified the long-
standing interests in integrating symbolic reasoning with
connectionist models (Shen, 1988; Ding et al., 1996; Garcez
et al., 2012; Marcus, 2018). The attraction of said inte-
gration stems from the complementing properties of these
systems. Symbolic reasoning models offer interpretability,
efficient generalisation from a small number of examples,
and the ability to leverage knowledge provided by an expert.
However, these systems are unable to handle ambiguous and
noisy high-dimensional data such as sensory inputs (Raedt
and Kersting, 2008). On the other hand, representation
learning models exhibit robustness to noise and ambiguity,
can learn task-specific representations, and achieve state-
of-the-art results on a wide variety of tasks (Bengio et al.,
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2013). However, being universal function approximators,
these models require vast amounts of training data and are
treated as non-interpretable black boxes.

One way of integrating the symbolic and sub-symbolic mod-
els is by continuously relaxing discrete operations and im-
plementing them in a connectionist framework. Recent
approaches in this direction focused on learning algorithmic
behaviour without the explicit symbolic representations of a
program (Graves et al., 2014; 2016; Kaiser and Sutskever,
2016; Neelakantan et al., 2016; Andrychowicz and Kurach,
2016), and consequently with it (Reed and de Freitas, 2016;
Bosnjak et al., 2017; Gaunt et al., 2016; Parisotto et al.,
2016). In the inductive logic programming setting, two new
models, NTPs (Rocktäschel and Riedel, 2017) and Differ-
entiable Inductive Logic Programming (∂ILP) (Evans and
Grefenstette, 2018) successfully combined the interpretabil-
ity and data efficiency of a logic programming system with
the expressiveness and robustness of neural networks.

In this paper, we focus on the NTP model proposed by Rock-
täschel and Riedel (2017). Akin to recent neural-symbolic
models, NTPs rely on a continuous relaxation of a discrete
algorithm, operating over the sub-symbolic representations.
In this case, the algorithm is an analogue to Prolog’s back-
ward chaining with a relaxed unification operator. The back-
ward chaining algorithm constructs neural networks, which
model continuously relaxed proof paths using sub-symbolic
representations. These representations are learned end-to-
end by maximising the proof scores of facts in the KB, while
minimising the score of facts not in the KB, in a link pre-
diction setting (Nickel et al., 2016). However, while the
symbolic unification checks whether two terms can repre-
sent the same structure, the relaxed unification measures the
similarity between their sub-symbolic representations.

This continuous relaxation is at the crux of NTPs’ inability
to scale to large datasets. During both training and infer-
ence, NTPs need to compute all possible proof trees needed
for proving a query, relying on the continuous unification
of the query with all the rules and facts in the KB. This
procedure quickly becomes infeasible for large datasets, as
the depth and width of the resulting computation graph grow
exponentially.

Our insight is that we can radically reduce the computational
complexity of inference and learning by generating only the
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Example Knowledge Base:
1. fatherOf(ABE, HOMER).

2. parentOf(HOMER, BART).

3. grandfatherOf(X,Y) :–
fatherOf(X, Z),
parentOf(Z,Y).

∅ 1.0

grandpaOf ABE BART

∅
1.

∅

2.

X/ABE

Y/BART

3.

3.1 fatherOf(X, Z)
3.2 parentOf(Z,Y)

fatherOf ABE

Z

X/ABE
Y/BART

Z/HOMER

3.2 parentOf(Z,Y)

1.

X/ABE
Y/BART

Z/BART

3.2 parentOf(Z,Y)

2.

FAIL

3.

parentOf HOMER BART

X/ABE
Y/BART

Z/HOMER

X/ABE
Y/BART

Z/HOMER
FAIL

1.
3.

2.

parentOf BART BART

X/ABE
Y/BART

Z/BART

X/ABE
Y/BART

Z/BART
FAIL

1.
3.

2.

Figure 1. A visual depiction of the NTP’ recursive computation graph construction, applied to a toy KB (top left). Dash-separated
rectangles denote proof states (left: substitutions, right: proof score -generating neural network). All the non-FAIL proof states are
aggregated to obtain the final proof success (depicted in Figure 2). Colours and indices on arrows correspond to the respective KB rule
application.

most promising proof paths. In particular, we show that the
problem of finding the facts in the KB that best explain a
query can be reduced to a k-nearest neighbour problem, for
which efficient exact and approximate solutions exist (Li
et al., 2016). This enables us to apply NTPs to previously
unreachable real-world datasets, such as WordNet.

2. Background
In NTPs, the neural network structure is built recursively,
and its construction is defined in terms of modules similarly
to dynamic neural module networks (Andreas et al., 2016).
Each module, given a goal, a KB, and a current proof state
as inputs, produces a list of new proof states, where the
proof states are neural networks representing partial proof
success scores.

Unification Module. In backward chaining, unification be-
tween two atoms is used for checking whether they can
represent the same structure. In discrete unification, non-
variable symbol are checked for equality, and the proof
fails if the symbols differ. In NTPs, rather than comparing
symbols, their embedding representation are compared by
means of a Radial Basis Function (RBF) kernel. This al-
lows matching different symbols with similar semantics,

such as matching relations like grandFatherOf and
grandpaOf.

1. unifyθ([ ], [ ], S) = S

2. unifyθ([ ], G, S) = FAIL

3. unifyθ(H, [ ], S) = FAIL

4. unifyθ(h :: H, g :: G, S) = unifyθ(H, G, S′)

with S′ = (S′
ψ, S

′
ρ) where:

S′
ψ =Sψ ∪

 {h/g} if h ∈ V
{g/h} if g ∈ V, h 6∈ V
∅ otherwise


S′
ρ =min

(
Sρ,

{
k (θh:,θg:) if h 6∈ V, g 6∈ V
1 otherwise

})

OR Module. This module attempts to apply rules in a KB.
The name of this module stems from the fact that a KB
can be seen as a large disjunction of rules and facts. In
backward chaining reasoning systems, the OR module is
used for unifying a goal with all facts and rules in a KB:
if the goal unifies with the head of the rule, then a series
of goals is derived from the body of such a rule. In NTPs,
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grandpaOf

abe bart

? ? X/abe

Y/bart

Z/homer

X/abe

Y/bart

Z/homer

X/abe

Y/bart

Z/bart

X/abe

Y/bart

Z/bart

1. 1.

3.
1.

1.

3.
1.

2.

3.
2.

1.

3.
2.

2.

f◊(grandpaOf(abe, bart))

max pooling

Loss: negative log-likelihood w.r.t. target proof success

Trained end-to-end using stochastic gradient descent
Vectors are learned such that proof success is high for known facts and
low for sampled negative facts

Tim Rocktäschel End-to-End Di�erentiable Proving 20/30

Figure 2. Depiction of the proof aggregation for the computation graph presented in Figure 1. Proof states resulting from the computation
graph construction are all aggregated to obtain the final success score of proving a query.

we calculate the similarity between the rule and the facts
via the unify operator. Upon calculating the continuous
unification scores, OR calls AND to prove all sub-goals in
the body of the rule.

orK
θ (G, d, S) =[S′ | S′ ∈ andK

θ (B, d,

unifyθ(H, G, S)), H :– B ∈ K]

AND Module. This module is used for proving a conjunc-
tion of sub-goals derived from a rule body. It first applies
substitutions to the first atom, which is afterwards proven
by calling the OR module. Remaining sub-goals are proven
by recursively calling the AND module.

1. andK
θ (_, _,FAIL) = FAIL

2. andK
θ (_, 0, _) = FAIL

3. andK
θ ([ ], _, S) = S

4. andK
θ (G : G, d, S) = [S′′ | S′′ ∈ andK

θ (G, d, S′)

for S′ ∈ orK
θ (substitute(G, Sψ), d− 1, S)]

For further details on NTPs and the particular implementa-
tion of these modules, see Rocktäschel and Riedel (2017)

After building all the proof states, NTPs define the final
success score of proving a query as an argmax over all the
generated valid proof scores (neural networks).
Example 2.1. Assume a KBs K, composed of |K| facts
and no rules, for brevity. Note that |K| can be impractical
within the scope of NTP. For instance, Freebase (Bollacker
et al., 2008) is composed of approximately 637 million
facts, while YAGO3 (Mahdisoltani et al., 2015) is com-
posed by approximately 9 million facts. Given a query
g , [grandpaOf, ABE, BART], NTP compares its embed-
ding representation – given by the embedding vectors of
grandpaOf, ABE, and BART – with the representation of
each of the |K| facts.

The resulting proof score of g is given by:

max
f∈K

unifyθ(g, [fp, fs, fo], (∅, ρ))

= max
f∈K

min
{
ρ, k(θgrandpaOf:,θfp:),

k(θABE:,θfs:), k(θBART:,θfo:)
}
,

(1)

where f , [fp, fs, fo] is a fact in K denoting a relationship
of type fp between fs and fo, θs: is the embedding repre-
sentation of a symbol s, ρ denotes the initial proof score,
and k( · , · ) denotes the RBF kernel.

3. Nearest Neighbourhood Search
From Example 2.1, we can see that the inference prob-
lem can be reduced to a nearest neighbour search problem.
Given a query g, the problem is finding the fact(s) in K that
maximise the unification score. This represents a computa-
tional bottleneck, since it is very costly to find the exact near-
est neighbour in high-dimensional Euclidean spaces, due
to the curse of dimensionality (Indyk and Motwani, 1998).
Exact methods are rarely more efficient than brute-force
linear scan methods when the dimensionality is high (Ge
et al., 2014; Malkov and Yashunin, 2016).

A practical solution consists in Approximate Nearest Neigh-
bour Search (ANNS) algorithms, which relax the condition
of the exact search by allowing a small number of mis-
takes. Several families of ANNS algorithms exist, such as
Locality-Sensitive Hashing (LSH) (Andoni et al., 2015),
Product Quantization (PQ) (Jégou et al., 2011), and Proxim-
ity Graphs (PGs) (Malkov et al., 2014). In this work we use
Hierarchical Navigable Small World (HNSW) (Malkov and
Yashunin, 2016; Boytsov and Naidan, 2013), a graph-based
incremental ANNS structure which can offer much better
logarithmic complexity scaling in comparison with other
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Table 1. AUC-PR results on Countries and MRR and HITS@m
on Kinship, Nations, and UMLS.

Dataset Metric Model
NTP NTP 2.0 (k = 1)

Countries
S1 AUC-PR 90.83± 15.4 97.04± 4.47
S2 AUC-PR 87.40± 11.7 90.92± 4.44
S3 AUC-PR 56.68± 17.6 85.55± 7.10

Kinship
MRR 0.60 0.65
HITS@1 0.48 0.57
HITS@3 0.70 0.69
HITS@10 0.78 0.81

Nations
MRR 0.75 0.81
HITS@1 0.62 0.73
HITS@3 0.86 0.83
HITS@10 0.99 0.99

UMLS
MRR 0.88 0.76
HITS@1 0.82 0.68
HITS@3 0.92 0.81
HITS@10 0.97 0.88

approaches.

4. Related Work
Many machine learning methods rely on efficient nearest
neighbour search for solving specific sub-problems. Given
the computational complexity of nearest neighbour search,
approximate methods, driven by advanced index structures,
hash or even graph-based approaches are used to speed up
the bottleneck of costly comparison. These algorithms have
been used to speed up various sorts of machine learning
models, from mixture model clustering (Moore, 1999), case-
based reasoning (Wess et al., 1993) to Gaussian process
regression (Shen et al., 2006), among others.

In kind, the most similar work to ours is the work of Rae
et al. (2016) who apply approximate nearest neighbours to
speed up Memory-Augmented neural networks. Similarly to
our work, they apply ANNS to query the external memory
(in our case the KB memory) for k closest words. They
present drastic savings in speed and memory usage. Though
as of this moment, our speed savings are not as drastic, the
memory savings we achieve are sufficient so that we can
train on WordNet, a dataset previously considered out of
reach of NTPs.

5. Experiments
We compared results obtained by our model, which we refer
to as NTP 2.0, with those obtained by the original NTP
proposed by Rocktäschel and Riedel (2017). Results on sev-
eral smaller datasets – namely Countries, Nations, Kinship,
and UMLS – are shown in Table 1. When unifying goals
with facts in the KB, for each goal, we use ANNS for re-

Table 2. Rules induced on WordNet, with a confidence above 0.5.
Confidence Rule

0.584 _domain_topic(X, Y) :– _domain_topic(Y, X)
0.786 _part_of(X, Y) :– _domain_region(Y, X)
0.929 _similar_to(X, Y) :– _domain_topic(Y, X)
0.943 _synset_domain_topic(X, Y) :– _domain_topic(Y, X)
0.998 _has_part(X, Y) :– _similar_to(Y, X)
0.995 _member_meronym(X, Y) :– _member_holonym(Y, X)
0.904 _domain_topic(X, Y) :– _has_part(Y, X)
0.814 _member_meronym(X, Y) :– _member_holonym(Y, X)
0.888 _part_of(X, Y) :– _domain_topic(Y, X)
0.996 _member_holonym(X, Y) :– _member_meronym(Y, X)
0.877 _part_of(X, Y) :– _domain_topic(Y, X)
0.945 _synset_domain_topic(X, Y) :– _domain_region(Y, X)
0.879 _part_of(X, Y) :– _domain_topic(Y, X)
0.926 _domain_topic(X, Y) :– _domain_topic(Y, X)
0.995 _has_instance(X, Y) :– _type_of(Y, X)
0.996 _type_of(X, Y) :– _has_instance(Y, X)

trieving the k most similar (in embedding space) facts, and
use those for computing the final proof scores. We report
results for k = 1, as we did not notice sensible differences
for k ∈ {2, 5, 10}. However, we noticed sensible improve-
ments in the case of Countries, and an overall decrease in
performance in UMLS. One possible explanation is that
ANNS (with k = 1), due to its inherently approximate na-
ture, does not always retrieve the closest fact(s) exactly: this
behaviour may be a problem in some datasets where exact
nearest neighbour search is crucial for correctly answering
queries. On the other hand, it may even improve training
in other datasets since gradients would flow through proof
paths that would not be considered otherwise.

We also evaluated NTP 2.0 on WordNet (Miller, 1995), a KB
encoding lexical knowledge about the English language. In
particular, we use the WordNet used by Socher et al. (2013)
for their experiments. This dataset is significantly larger
than the other datasets used by Rocktäschel and Riedel
(2017) – it is composed by 38.696 entities, 11 relations, and
the training set is composed by 112,581 facts.

In WordNet, the accuracies on the validation and test sets
were 65.29% and 65.72%, respectively – which is on par
with the Distance Model, a Neural Link Predictor discussed
by Socher et al. (2013), which achieves a test accuracy of
68.3%. However, we did not consider a full hyper-parameter
sweep, and did not regularise the model using Neural Link
Predictors, which sensibly improves NTPs’ predictive ac-
curacy (Rocktäschel and Riedel, 2017). A subset of the
induced rules is shown in Table 2.

6. Conclusion
We proposed a way to sensibly scale up NTPs by reducing
parts of their inference steps to ANNS problems, for which
very efficient and scalable solutions exist in the literature.
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