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Abstract
We show that information about whether a neural
network’s output will be correct or incorrect is
present in the outputs of the network’s intermedi-
ate layers. To demonstrate this effect, we train a
new ”meta” network to predict from either the fi-
nal output of the underlying ”base” network or the
output of one of the base network’s intermediate
layers whether the base network will be correct or
incorrect for a particular input. We find that, over
a wide range of tasks and base networks, the meta
network can achieve accuracies ranging from 65%
- 85% in making this determination.

1. Introduction
What do neural networks know and where do they know it?
At what stage of a network’s processing does a ”decision”
get made and are there reliable markers of a correct or in-
correct decision either in the output or during a network’s
operation at one of its intermediate layers? To begin this
investigation, we ask where in a neural network’s operation
it becomes possible to determine whether the network might
be correct or incorrect in its output for a particular input.
We feed a second, ”meta” network the outputs of either an
intermediate or final layer of the first, ”base”, network and
train the meta network to predict whether the base network
will be correct for an individual input. We call the second
network a meta or metacognitive network because humans
and other animals are known to make so-called metacogni-
tive judgments to assess their confidence in the correctness
of their beliefs or actions (Metcalfe et al., 1994).

We find that the meta network is able to predict whether
a base network will be correct or incorrect on previously
unseen inputs with up to 69% accuracy for base networks
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Figure 1. Meta network pipeline: the Meta network receives as
input the output of one of the base network’s layers for a particular
input and predicts whether the base network will be correct.

classifying ImageNet images and 85% accuracy for a base
network classifying CIFAR 10 images. As these two exam-
ples suggest, the accuracy of the meta network is higher for
simpler underlying tasks in our experiments.

The usefulness of the layers’ outputs for predicting the ac-
curacy of the network is lowest at the earliest layers in the
network and increases to be highest either at the last hidden
layer or, in most cases, the final output. Meta networks
trained on different layers’ outputs have significant but not
complete overlap in which examples they are able to cor-
rectly predict will go on to be accurately or inaccurately
classified, suggesting that there is slightly different informa-
tion at each level which can be used to make assessments of
accuracy.

2. Method
Our approach has two main stages. First, we run example
images or text passages through a pretrained base network
and save the final and intermediate outputs of that base net-
work. We use PyTorch and save intermediate layer outputs
using its hook feature (Paszke et al., 2017). For each exam-
ple for which we save the output of intermediate stages, the
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Table 1. Meta accuracy for networks on ImageNet: Percentage accuracy of meta networks in predicting whether the base model is
correct or incorrect on particular inputs when given either the final output of the base network or one of its intermediate layers’ outputs.
Broken out for cases when the base network was correct and incorrect. The underlying accuracy of the base model used is also given.

MODEL AND LAYER BASE MODEL ACCURACY BASE CORRECT BASE INCORRECT

RESNET152 OUTPUT 79 63.82 64.63
RESNET152 LAST 79 63.72 63.27
DENSENET OUTPUT 77 63.61 63.40
DENSENET LAST 77 61.78 62.70
VGG16 OUTPUT 74 69.23 70.07
VGG16 LAST 74 68.46 69.78
VGG16 PENULTIMATE 74 67.38 66.84
RESNET18 OUTPUT 70 67.45 69.15
RESNET18 LAST 70 68.17 69.36
ALEXNET OUTPUT 57 65.35 66.03
ALEXNET LAST 57 64.17 65.10
ALEXNET PENULTIMATE 57 63.24 63.21

base network has to be either correct or incorrect for that ex-
ample. We therefore categorize these intermediate outputs
as ”base correct” if the base network’s eventual output is
correct and ”base incorrect” if the base network’s output is
incorrect. Then, we train a meta classifier to predict whether
the base network will be correct or incorrect from one of the
intermediate or final layer outputs. Perhaps surprisingly, the
meta network performs as well on previously unseen test
set examples when trained on the intermediate outputs from
examples which the base network was trained on as it does
with intermediate outputs from examples previously unseen
by the base network. We therefore train the meta network
using examples from the training set of the base network.

Given the relatively high accuracy of the base models in our
experiments, it would easy for the meta classifier to ”cheat”
by predicting that the base network is always correct. To
prevent this, we balance the classes at training time and
choose our models based on the best and most balanced
accuracy on the validation set. During training we define
this combination of highest accuracy and balance to be the
geometric mean of the meta network’s accuracy on ”base
correct” (C) and ”base incorrect” (I) classes minus the
absolute value of their difference:

2
√
C ∗ I − |C − I|

All numbers reported here are from a held out test set of in-
puts previously unseen by both the base and meta networks.

To determine how general and widely occurring is the phe-
nomenon we are investigating, we train and test meta net-
works on a variety of tasks and base networks. Most of
our testing is done on base networks which are trained for
image classification tasks; we use six networks available
in the PyTorch library. To assess the accuracy of networks
trained on ImageNet (Russakovsky et al., 2015), we use
AlexNet, Resnet 18, VGG 16, DenseNet 161, and ResNet

152 networks. For these networks we save and use for train-
ing the network’s final outputs, the output of the last hidden
layer (referred to as ”last” in the tables”), and in some cases
the output of the penultimate hidden layer (”penultimate” in
the tables).

For CIFAR 100 (Krizhevsky & Hinton, 2009) we use and
train a VGG 16 network; for CIFAR 10 we train and use a
VGG 19 network. For these models we train meta networks
on the final output and the output of the last hidden layer,
the penultimate hidden layer, the last convolutional layer, a
middle convolutional layer (the fifth in VGG16, the eighth
in VGG19), and the first convolutional layer. Our base
networks for CIFAR 100 and CIFAR 10 had an accuracy of
71.5% and 91.1% on their respective test sets.

To test whether intermediate layers can be predictive of
accuracy on a non-vision task, we use a Bi-Directional At-
tention Flow (BiDAF) model (Seo et al., 2016) pretrained on
the Stanford Question Answering Dataset (SQuAD) version
1.1 (Rajpurkar et al., 2016). The SQuAD task gives a base
network a context passage and a question, and requires the
network to output where in the passage the answer to the
question starts and ends. We run each example passage and
question pair in the SQuAD 1.1 dataset through a pretrained
model available in the AllenNLP library (Gardner et al.,
2018). This base model has an exact match accuracy (where
both the start and end locations of the answer predicted by
the model exactly match the ground truth) of 68.03%. Fur-
ther details of the BiDAF model can be found in Figure 3 in
the Appendix.

3. Results
3.1. Images: ImageNet, CIFAR 100, and CIFAR 10

Accuracy numbers for the meta networks trained on various
models classifying ImageNet images are found in Table 1.
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For any particular layer, the meta networks display balanced
accuracies when the base network as correct and incorrect,
ranging from 63% to 70%.

Results for meta networks for a VGG16 network trained
on CIFAR 100 can be found in Table 2; results for meta
networks for a VGG19 model trained on CIFAR 10 are in
Table 3.

There is a clear pattern: when a meta network is trained on
the outputs of the first and middle convolutional layers, its
accuracy is at best only somewhat better than chance (for
CIFAR 100) and at worst no better than chance on average
and very unbalanced (for CIFAR 10). Trained on the final
outputs, a meta network reaches 77% accuracy averaged
between the two classes for the CIFAR 100 base network
and 85% for the CIFAR 10 network. Between these two
extremes is a gradual increase in accuracy as meta networks
are trained on later stages of the base network.

Table 2. Meta accuracy for VGG16 on CIFAR 100: Percentage
accuracy of meta networks in predicting whether the base model is
correct or incorrect on particular inputs when given either the final
output of the base VGG network or one of its intermediate layers’
outputs. Broken out for cases when the base VGG16 network was
correct and incorrect.

LAYER BASE CORRECT BASE INCORRECT

OUTPUT 75.31 78.67
LAST FC 68.42 68.56
PENULTIMATE FC 63.77 63.57
LAST CONV LAYER 57.06 56.78
MIDDLE CONV LAYER 52.19 53.88
FIRST CONV LAYER 50.76 58.24

Table 3. Meta accuracy for VGG19 on CIFAR 10: Percentage
accuracy of meta networks in predicting whether the base model is
correct or incorrect on particular inputs when given either the final
output of the base VGG network or one of its intermediate layers’
outputs. Broken out for cases when the base VGG19 network was
correct and incorrect.

LAYER BASE CORRECT BASE INCORRECT

OUTPUT 83.65 86.71
LAST FC 85.76 81.31
FIRST FC 84.52 78.15
LAST CONV LAYER 75.18 76.80
MIDDLE CONV LAYER 99.9 0.23
FIRST CONV LAYER 84.92 25.00

3.2. Text: SQuAD

Accuracy numbers for the meta networks trained on inter-
mediate and final outputs of a BiDAF model for the SQuAD

1.1 dataset are found in Table 4. The output layer is the
concatenation of the output prediction of the start and end
locations of the answer. The pattern seen in meta network
accuracies for networks trained on vision tasks is not ev-
ident here: the highest accuracy is not reached when the
meta network is trained on the final outputs. Instead, the
best meta network accuracy is found when classifying the
output of the Modeling layer composed of Long Short Term
Memory (LSTM) units just before the final output layer of
the BiDAF model.

Table 4. Meta accuracy on SQuAD BiDAF model: Accuracy of
meta networks in predicting whether the base model is correct or
incorrect on particular inputs when given either the final output
of the base network or one of its intermediate layers’ outputs.
Percentage accuracies are reported for when the base BiDAF model
is entirely correct (both the start and end points of the answer are
correct) and entirely incorrect (both the start and end points of the
answer are incorrect) except for the last two rows which consider
whether the predicted start or end points are correct independent
of each other.

LAYER BASE CORRECT BASE INCORRECT

OUTPUT 66.09 68.41
MODELING 72.95 75.94
QUERY2CONTEXT 42.93 63.03
CONTEXT2QUERY 46.76 55.80
OUTPUT: START 61.92 58.11
OUTPUT: END 66.12 66.95

3.3. Overlaps between layers

We have seen that meta networks trained on the last few
layers of network achieve similar accuracies. A natural
question to ask about the use of many layers for a meta
network, then, is whether the meta networks are getting
nearly all of the same examples right even when looking at
different layers’ outputs. We found that while there was con-
siderable overlap, a significant percentage (approximately
20%, depending on which layers we compare) of examples
were correctly classified by a meta network looking at one
layer of a VGG16 network, but not by a different meta net-
work looking at another layer. In other words, it was not
the case that the meta networks’ verdicts for each exam-
ple were the same no matter which layer was considered,
suggesting that there might be different information about
the accuracy of the base network present at different layers.
Table 5 shows the overlaps of a meta network’s verdicts for
the outputs of the VGG16 network trained on CIFAR 100.

A similar result was evident in the meta classification results
when trained on the BiDAF model for the SQuAD dataset.
The overlap between correct meta network predictions of
accuracy was 73.2% on examples for which the base net-
work was correct and 75.7% for those examples which were



Predicting the accuracy of neural networks from final and intermediate layer outputs

originally incorrect coming out of the base network.

Table 5. Overlap of meta classifications when base is correct
or incorrect: Overlaps of meta network accuracy when the base
network is correct (upper right corner) and incorrect (lower left
corner, in italics). Base network was a VGG16 network trained on
CIFAR 100.
.

INCORRECT

CORRECT
OUTPUT LAST FC PENULTIMATE

OUTPUT 84.8 78.1
LAST FC 77.4 78.9
PENULTIMATE 82.2 77.1

4. Discussion
It is clear that the meta networks are able to learn something
about the intermediate and final outputs which are indicative
of the networks’ accuracy. Just what that is and whether it
can be useful in improving or interpreting the networks is
as yet unclear.

It is difficult to estimate the accuracy of a neural network
at runtime. On tasks that involve a choice between discrete
options, the value of the highest output after it is put through
a softmax is often considered to represent the network’s con-
fidence or estimate of the probability of the corresponding
class’s being correct. However, it is not clear that this inter-
pretation is warranted. Recent work has shown that these
outputs are not reliable (Guo et al., 2017). It is interesting,
then, to consider whether when a meta network is trained
on the final outputs it learns to simply classify those outputs
in which the predicted class has very high values as cor-
rect and those with relatively low values as incorrect. This
would correspond to the general intuition that high values
for predicted classes indicate meaningfully high confidence.

Figure 2 graphically illustrates the outputs of a ResNet18
network trained on ImageNet, with sample outputs of the
highest confidence class arrayed along the x axis (a similar
chart for outputs of the BiDAF model is found in the Ap-
pendix). It shows that while there is certainly a correlation
between a base network’s accuracy and the value of the
output corresponding to the highest predicted class, it is not
a simple or completely reliable one. On average, the base
network indeed tends to be more confident in its correct
answers than its wrong answers, and the set of examples the
meta network is correct on shows this pattern clearly while
the examples the meta network gets wrong show less distinct
base ”confidence” numbers. However, it is apparent that the
base network is often very ”confident” of a wrong answer
and not confident of a correct answer. From inspecting the
plots it is clear that the meta network is not judging the net-

Figure 2. Examples of maximum values (arrayed along the x axis)
output by a Resnet18 network on ImageNet after the softmax
function. The meta network is correct in both cases in the top
row and incorrect in the bottom row; the Resnet base classifier is
correct on the left and incorrect on the right in both rows. The
mean value in each category is given. This shows that the meta
network does not learn to simply classify the output based on the
value of the class prediction, which is often interpreted as the
network’s ’confidence’.

work’s output simply by learning a threshold ”confidence”
level above which it predicts it will be correct and below
which it predicts it will be incorrect. This is evident by the
large number of incorrect high ”confidence” outputs of the
base network which the meta network accurately marks as
incorrect, as well as the correct low ”confidence” outputs
which the meta networks finds correct. Further study will be
required to better understand what features the meta network
has learned to look for to measure accuracy.

Neural networks designed for a classification-type task are
generally trained to give an answer, not to also indicate
whether they are likely to be right or wrong. While there has
has certainly been work to address this, notably that involv-
ing Bayesian networks (Gal, 2016), the present work and
its future extensions may point in other fruitful directions
for characterizing a network’s likely accuracy at runtime.
There may also be interesting connections to work studying
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neural networks from an information theoretic perspective
(Shwartz-Ziv & Tishby, 2017).
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A. Appendix: Additional Details
A.1. Maximum values and entropy plots from outputs

of BiDAF model

The BiDAF model contains two linear output layers – each
responsible for the start and end locations at which answer
for the question given is predicted to lie. In the following
graphs, we extend the investigation from Figure 2 to the
SQuAD task and visualize the maximum values and en-
tropies of the end output layer. The outputs were processed
to convert them from logits to softmax-ed probabilities. On
the one hand, these graphs are consistent with the observa-
tion from Figure 2 in the main text that the meta network
is not simply learning to classify the outputs based on the
value of the class prediction. On the other hand, in the vision
task, the set of outputs the meta network was correct for had
very different average maximum values for the predicted
class and less distinguishable average values for the set of
examples the meta network got wrong. However, in the NLP
task, the difference in the maximum probabilities is only
evident between the two classes in which the base network
was correct or incorrect, regardless of the meta network.

A.2. BiDAF model

Details of the BiDAF model and a visual illustration of
which intermediate layers the meta networks were trained
on can be found in Figure 3

A.3. Meta network architectures

Table 1. Meta network architecture: Dimensions of parameters
in the meta network layer by layer. FC is a fully connected layer
followed in all cases but the final layer by batch normalization.
Dropout applied after layers 2 and 4 in the vision meta network
and layers 1, 2, 3, 4, and 5 in the NLP meta network.

LAYER VISION META NLP META

LAYER 1: FC 1024 1024
LAYER 2: FC 1024 1750

LAYER 3: FC 1024 512

LAYER 4: FC 512 128

LAYER 5: FC 512 128

LAYER 6: FC 64 16

LAYER 7: FC 2 2
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Figure 1. Examples of maximum values (arrayed along the x axis)
output by the end output layer of the BiDAF model on SQuAD
1.1. The meta network’s predictions on the correctness of the base
network were based on the output layers (concatenated).

Figure 2. Examples of maximum values (arrayed along the x axis)
end output by the end output layer of the BiDAF model on SQuAD
1.1 after the softmax function. The meta network’s predictions
on the correctness of the base network were based on the output
layers (concatenated).

Figure 3. We train meta networks to judge whether a base network
is correct or incorrect on particular inputs by feeding the meta
network outputs, final or intermediate, from the base network.
The blue arrows show which outputs of the base Bi-Directional
Attention Flow model the meta network examines when classifying
the base network’s output as accurate or inaccurate. Image adapted
from (Seo et al., 2016)


