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ABSTRACT

In this paper we use the geometric properties of the optimal transport (OT) problem
and the Wasserstein distances to define a prior distribution for the latent space
of an auto-encoder. We introduce Sliced-Wasserstein Auto-Encoders (SWAE),
that enable one to shape the distribution of the latent space into any samplable
probability distribution without the need for training an adversarial network or
having a likelihood function specified. In short, we regularize the auto-encoder
loss with the sliced-Wasserstein distance between the distribution of the encoded
training samples and a samplable prior distribution. We show that the proposed
formulation has an efficient numerical solution that provides similar capabilities to
Wasserstein Auto-Encoders (WAE) and Variational Auto-Encoders (VAE), while
benefiting from an embarrassingly simple implementation. We provide extensive
error analysis for our algorithm, and show its merits on three benchmark datasets.

Scalable generative models that capture the rich and often nonlinear distribution of high-dimensional
data, (i.e., image, video, and audio), play a central role in various applications of machine learning,
including transfer learning Isola et al. (2017); Murez et al. (2018), super-resolution Ledig et al. (2016);
Kolouri & Rohde (2015), image inpainting and completion Yeh et al. (2017), and image retrieval
Creswell & Bharath (2016), among many others. The recent parametric generative models, including
Generative Adversarial Networks (GANs) Goodfellow et al. (2014); Radford et al. (2015); Arjovsky
et al. (2017); Berthelot et al. (2017) and Variational auto-encoders (VAE) Kingma & Welling (2013);
Mescheder et al. (2017); Bousquet et al. (2017) enable an unsupervised and end-to-end modeling of
the high-dimensional distribution of the training data.

Learning such generative models boils down to minimizing a dissimilarity measure between the data
distribution and the output distribution of the generative model. To this end, and following the work
of Arjovsky et al. (2017) and Bousquet et al. (2017), we approach the problem of generative modeling
from the optimal transport point of view. The optimal transport problem Villani (2008); Kolouri et al.
(2017) provides a way to measure the distances between probability distributions by transporting
(i.e., morphing) one distribution into another. Moreover, and as opposed to the common information
theoretic dissimilarity measures (e.g., f -divergences), the p-Wasserstein dissimilarity measures that
arise from the optimal transport problem: 1) are true distances, and 2) metrize a weak convergence of
probability measures (at least on compact spaces). Wasserstein distances have recently attracted a lot
of interest in the learning community Frogner et al. (2015); Gulrajani et al. (2017); Bousquet et al.
(2017); Arjovsky et al. (2017); Kolouri et al. (2017) due to their exquisite geometric characteristics
Santambrogio (2015). See the supplementary material for an intuitive example showing the benefit of
the Wasserstein distance over commonly used f -divergences.

In this paper, we introduce a new type of auto-encoders for generative modeling (Algorithm 1), which
we call Sliced-Wasserstein auto-encoders (SWAE), that minimize the sliced-Wasserstein distance
between the distribution of the encoded samples and a samplable prior distribution. Our work is most
closely related to the recent work by Bousquet et al. (2017) and more specifically the follow-up work
by Tolstikhin et al. (2017). However, our approach avoids the need to perform adversarial training
in the encoding space and is not restricted to closed-form distributions, while still benefiting from a
Wasserstein-like distance measure in the latent space. Calculating the Wasserstein distance can be
computationally expensive, but our approach permits a simple numerical solution to the problem.
Finally, we note that there has been several concurrent papers, including the work by Deshpande et al.
(2018) and Şimşekli et al. (2018), that also looked into the application of sliced-Wasserstein distance

1



Published as a conference paper at ICLR 2019

in generative modeling. Regardless of the concurrent nature of these papers, our work remains novel
and is distinguished from these methods. Deshpande et al. (2018) use the sliced-Wasserstein distance
to match the distributions of high-dimensional reconstructed images, which require large number of
slices, O(104), while in our method and due to the distribution matching in the latent space we only
need O(10) slices. We also note that Deshpande et al. (2018) proposed to learn discriminative slices
to mitigate the need for a very large number of random projections that is in essence similar to the
adversarial training used in GANs, which contradicts with our goal of not using adversarial training.
Şimşekli et al. (2018), on the other hand, take an interesting but different approach of parameter-free
generative modeling via sliced-Wasserstein flows.

1 NOTATION AND PRELIMINARIES

Let X denote the compact domain of a manifold in Euclidean space and let xn ∈ X denote an
individual input data point. Furthermore, let ρX be a Borel probability measure defined on X . We
define the probability density function pX(x) for input data x to be:

dρX(x) = pX(x)dx

Let φ : X → Z denote a deterministic parametric mapping from the input space to a latent space Z
(e.g., a neural network encoder). To obtain the density of the push forward of ρX with respect to φ,
i.e., ρZ = φ∗(ρX), we use Random Variable Transformation (RVT) Gillespie (1983)). In short, the
probability density function of the encoded samples z can be expressed in terms of φ and pX by:

pZ(z) =

∫
X

pX(x)δ(z − φ(x))dx, (1)

where δ denotes the Dirac distribution function. Similar to variational Auto-Encoders (VAEs) Kingma
& Welling (2013) and the Wasserstein Auto-Encoders (WAE) Tolstikhin et al. (2017), our main
objective is to encode the input data points x ∈ X into latent codes z ∈ Z such that: 1) x can be
recovered/approximated from z, and 2) the probability density function of the encoded samples, pZ ,
follows a prior distribution qZ . Let ψ : Z → X be the decoder that maps the latent codes back to the
original space such that

pY (y) =

∫
X

pX(x)δ(y − ψ(φ(x)))dx, (2)

where y denotes the decoded samples. It is straightforward to see that when ψ = φ−1 (i.e. ψ(φ(·)) =
id(·)), the distribution of the decoder pY and the input distribution pX are identical. Hence, in its
most general form, the objective of such auto-encoders simplifies to learning φ and ψ, so that they
minimize a dissimilarity measure between pY and pX , and between pZ and qZ . In what follows, we
briefly review the existing dissimilarity measures for these distributions.

1.1 MINIMIZING DISSIMILARITY BETWEEN pX AND pY
We first emphasize that the VAE often assumes stochastic encoders and decoders Kingma & Welling
(2013), while we consider the case of only deterministic mappings. Although, we note that, similar to
WAE, SWAE can also be formulated with stochastic encoders. Different measures have been used pre-
viously to compute the dissimilarity between pX and pY . Most notably, Nowozin et al. (2016) showed
that for the general family of f -divergences, Df (pX , pY ), (including the KL-divergence, Jensen-
Shannon, etc.), using the Fenchel conjugate of the convex function f and minimizing Df (pX , pY )
leads to a min-max problem that is equivalent to the adversarial training widely used in the generative
modeling literature Goodfellow et al. (2014); Makhzani et al. (2015); Mescheder et al. (2017).

Others have utilized the rich mathematical foundation of the OT problem and Wasserstein distances
Arjovsky et al. (2017); Gulrajani et al. (2017); Bousquet et al. (2017); Tolstikhin et al. (2017) to
define a distance between pX and pY . In Wasserstein-GAN, Arjovsky et al. (2017) utilized the
Kantorovich-Rubinstein duality for the 1-Wasserstein distance, W1(pX , pY ), and reformulated the
problem as a min-max optimization that is solved through an adversarial training scheme.

Inspired by the work of Bousquet et al. (2017) and Tolstikhin et al. (2017), it can be shown that (see
supplementary material for a proof):

Wc(pX , pY ) ≤W ‡c (pX , pY ) := EpX (c(x, ψ(φ(x)))) (3)

=

∫
X

c(x, ψ(φ(x)))pX(x)dx,
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Furthermore, the r.h.s. of equation 3 supports a simple implementation where for i.i.d samples of the
input distribution, {xn}Nn=1, the upper bound can be approximated as:

W ‡c (pX , pY ) ≈ 1

N

N∑
n=1

c(xn, ψ(φ(xn))) (4)

The r.h.s of equation 3 and equation 4 take advantage of the existence of pairs xn and yn = ψ(φ(xn)),
which make f(·) = ψ(φ(·)) a transport map between pX and pY (but not necessarily the optimal
transport map). In this paper, we minimize W ‡c (pX , pY ) following equation 4 to minimize the
discrepancy between pX and pY . Next, we focus on the discrepancy measures between pZ and qZ .

1.2 MINIMIZING DISSIMILARITY BETWEEN pZ AND qZ

If qZ is a known distribution with an explicit formulation (e.g. Normal distribution) the most
straightforward approach for measuring the (dis)similarity between pZ and qZ is the log-likelihood
of z = φ(x) with respect to qZ , formally:

supφ

∫
X

pX(x)log(qZ(φ(x)))dx (5)

maximizing the log-likelihood is equivalent to minimizing the KL-divergence between pZ and qZ ,
DKL(pZ , qZ) (see supplementary material for more details and derivation of Equation equation 5).
This approach has two major limitations: 1) The KL-Divergence and in general f -divergences do
not provide meaningful dissimilarity measures for distributions supported on non-overlapping low-
dimensional manifolds Arjovsky et al. (2017); Kolouri et al. (2018) (see supplementary material),
which is common in hidden layers of neural networks, and therefore they do not provide informative
gradients for training φ, and 2) we are limited to distributions qZ that have known explicit formulations,
which is restrictive as it eliminates the ability to use the much broader class of samplable distributions.

Various alternatives exist in the literature to address the above-mentioned limitations. These methods
often sample Z̃ = {z̃j}Nj=1 from qZ and Z = {zn = φ(xn)}Nn=1 from pX and measure the
discrepancy between these sets (i.e. point clouds). Note that there are no one-to-one correspondences
between z̃js and zns. In their influential WAE paper, Tolstikhin et al. (2017) proposed two different
approaches for measuring the discrepancy between Z̃ and Z , namely the GAN-based and the
maximum mean discrepancy (MMD)-based approaches. The GAN-based approach proposed in
Tolstikhin et al. (2017) defines a discriminator network,DZ(pZ , qZ), to classify z̃js and zns as coming
from ‘true’ and ‘fake’ distributions correspondingly, and proposes a min-max adversarial optimization
for learning φ and DZ . The MMD-based approach, utilizes a positive-definite reproducing kernel
k : Z × Z → R to measure the discrepancy between Z̃ and Z . The choice of the kernel and its
parameterization, however, remain a data-dependent design parameter.

An interesting alternative approach is to use the Wasserstein distance between pZ and qZ . Following
the work of Arjovsky et al. (2017), this can be accomplished utilizing the Kantorovich-Rubinstein
duality and through introducing a min-max problem, which leads to yet another adversarial training
scheme similar to the GAN-based method in Tolstikhin et al. (2017). Note that, since elements of Z̃
and Z are not paired, an approach similar to equation 4 could not be used to minimize the discrepancy.
In this paper, we propose to use the sliced-Wasserstein metric, Rabin & Peyré (2011); Rabin et al.
(2011); Bonneel et al. (2015); Kolouri et al. (2016b); Carriere et al. (2017); Kolouri et al. (2018), to
measure the discrepancy between pZ and qZ . We show that using the sliced-Wasserstein distance
ameliorates the need for training an adversary network or choosing a data-dependent kernel (as in
WAE-MMD), and provides an efficient, stable, and simple numerical implementation.

Before explaining our proposed approach, it is worthwhile to point out the major difference between
learning auto-encoders as generative models and GANs. In GANs, one needs to minimize a distance
between {ψ(z̃j)|z̃j ∼ qZ}Mj=1 and {xn}Mn=1, which are high-dimensional point clouds for which there
are no correspondences between ψ(z̃j)s and xns. For the auto-encoders, on the other hand, there exists
correspondences between the high-dimensional point clouds {xn}Mn=1 and {yn = ψ(φ(xn))}Mn=1,
and the problem simplifies to matching the lower-dimensional point clouds {φ(xn)}Mn=1 and {z̃j ∼
qZ}Mj=1. In other words, the encoder performs a nonlinear dimensionality reduction, that enables us
to solve a simpler problem compared to GANs. Next we introduce the details of our approach.
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2 PROPOSED METHOD

In what follows we first provide a brief review of the necessary equations to understand the Wasserstein
and sliced-Wasserstein distances and then present our Sliced Wasserstein auto-encoder (SWAE).

2.1 WASSERSTEIN DISTANCES

The Wasserstein distance between probability measures ρX and ρY , with corresponding densities
dρX = pX(x)dx and dρY = pY (y)dy is defined as:

Wc(pX , pY ) = infγ∈Γ(ρX ,ρY )

∫
X×Y

c(x, y)dγ(x, y) (6)

where Γ(ρX , ρY ) is the set of all transportation plans (i.e. joint measures) with marginal densities
pX and pY , and c : X × Y → R+ is the transportation cost. equation 6 is known as the Kantorovich
formulation of the optimal mass transportation problem, which seeks the optimal transportation plan
between pX and pY . If there exist diffeomorphic mappings, f : X → Y (i.e. transport maps) such
that y = f(x) and consequently,

pY (y) =

∫
X

pX(x)δ(y − f(x))dx
When f is−−−−−−−−−→

a diffeomorphism
pY (y) = det(Df−1(y))pX(f−1(y)) (7)

where det(D·) is the determinant of the Jacobian, then the Wasserstein distance could be defined
based on the Monge formulation of the problem (see Villani (2008) and Kolouri et al. (2017)) as:

Wc(pX , pY ) = minf∈MP

∫
X

c(x, f(x))dρX(x) (8)

where MP is the set of all diffeomorphisms that satisfy equation 7. As can be seen from equation 6
and equation 8, obtaining the Wasserstein distance requires solving an optimization problem. We
note that various efficient optimization techniques have been proposed in the past (e.g. Cuturi (2013);
Solomon et al. (2015); Oberman & Ruan (2015)) to solve this optimization. For one-dimensional
probability densities, pX and pY , however, the Wasserstein distance has a closed-form solution. Let
PX and PY be the cumulative distributions of one-dimensional probability distributions pX and pY ,
correspondingly. The Wassertein distance can then be calculated as below (see Kolouri et al. (2017)
for more details):

Wc(pX , pY ) =

∫ 1

0

c(P−1
X (τ), P−1

Y (τ))dτ, (9)

This closed-form solution motivates the definition of sliced-Wasserstein distances.

2.2 SLICED-WASSERSTEIN DISTANCES

Sliced-Wasserstein distance has similar qualitative properties to the Wasserstein distance, but it is
much easier to compute. The sliced-Wasserstein distance was used in Rabin & Peyré (2011); Rabin
et al. (2011) to calculate barycenter of distributions and point clouds. Bonneel et al. (2015) provided a
nice theoretical overview of barycenteric calculations using the sliced-Wasserstein distance. Kolouri
et al. (2016b) used it to define positive definite kernels for distributions and Carriere et al. (2017) to
define a kernel for persistence diagrams. Sliced-Wasserstein was recently used for learning Gaussian
mixture models in Kolouri et al. (2018), and it was also used as a measure of goodness of fit for
GANs in Karras et al. (2017).

The main idea behind the sliced-Wasserstein distance is to slice (i.e., project) higher-dimensional
probability densities into sets of one-dimensional marginal distributions and compare these marginal
distributions via the Wasserstein distance. The slicing/projection process is related to the field of
Integral Geometry and specifically the Radon transform (see Helgason (2011)). The relevant result to
our discussion is that a d-dimensional probability density pX can be uniquely represented as the set
of its one-dimensional marginal distributions following the Radon transform and the Fourier slice
theorem Helgason (2011). These one dimensional marginal distributions of pX are defined as:

RpX(t; θ) =

∫
X

pX(x)δ(t− θ · x)dx, ∀θ ∈ Sd−1, ∀t ∈ R (10)

where Sd−1 is the d-dimensional unit sphere. Note that for any fixed θ ∈ Sd−1, RpX(·; θ) is a
one-dimensional slice of distribution pX . In other words,RpX(·; θ) is a marginal distribution of pX
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that is obtained from integrating pX over the hyperplane orthogonal to θ.Utilizing these marginal
distributions in equation 10, the sliced Wasserstein distance could be defined as:

SWc(pX , pY ) =

∫
Sd−1

Wc(RpX(·; θ),RpY (·; θ))dθ (11)

Given thatRpX(·; θ) andRpY (·; θ) are one-dimensional, the Wasserstein distance in the integrand
has a closed-form solution (see equation 9). Moreover, it can be shown that SWc is a true metric
(Bonnotte (2013) and Kolouri et al. (2016a)), and it induces the same topology as Wc, at least on
compact sets Santambrogio (2015). A natural transportation cost that has extensively studied in
the past is the `22, c(x, y) = ‖x− y‖22, for which there are theoretical guarantees on existence and
uniqueness of transportation plans and maps (see Santambrogio (2015) and Villani (2008)). When
c(x, y) = ‖x− y‖pp for p ≥ 2, the following upper bound hold for the SW distance:

SW p
p (pX , pY ) ≤ αd,pW p

p (pX , pY ) (12)

where, αd,p = 1
d

∫
Sd−1 ‖θ‖ppdθ ≤ 1. Chapter 5 in Bonnotte (2013) proves this inequality. In our

paper, we are interested in p = 2, for which αp,d = 1
d , and we have:

SW2(pX , pY ) ≤ 1√
d
W2(pX , pY ) (13)

In the Numerical Implementation Section, we provide a numerical experiment to compare W2 and
SW2, that confirms the above equation.

2.3 SLICED-WASSERSTEIN AUTO-ENCODER (SWAE)
Our proposed formulation for the SWAE is as follows:

argminφ,ψW
‡
c (pX , pY ) + λSWc(pZ , qZ) (14)

where φ is the encoder, ψ is the decoder, pX is the data distribution, pY is the data distribution after
encoding and decoding ( equation 2), pZ is the distribution of the encoded data ( equation 1), qZ is a
predefined samplable distribution, and λ indicates the relative importance of the loss functions. To
further clarify why we use the sliced-Wasserstein distance to measure the difference between pZ and
qZ , we reiterate that due to the lack of correspondences between z̃is and zjs, one cannot minimize
the upper-bound in equation 4, and calculation of the Wasserstein distance requires an additional
optimization step to obtain the optimal coupling between pZ and qZ . To avoid this additional
optimization, while maintaining the favorable characteristics of the Wasserstein distance, we use the
sliced-Wasserstein distance to measure the discrepancy between pZ and qZ .

3 NUMERICAL IMPLEMENTATION

We now describe the numerical details of our approach.

3.1 NUMERICAL IMPLEMENTATION OF THE WASSERSTEIN DISTANCE IN 1D
The Wasserstein distance between two one-dimensional probability densities pX and pY is obtained
from equation 9. The integral in equation 9 can be numerically estimated using the midpoint Riemann
sum, 1

M

∑M
m=1 am, where am = c(P−1

X (τm), P−1
Y (τm)) and τm = 2m−1

2M (see Fig. 1). In scenarios
where only samples from the distributions are available, xm ∼ pX and ym ∼ pY , the empirical den-
sities can be estimated as pX ≈ pX,M = 1

M

∑M
m=1 δxm and pY ≈ pY,M = 1

M

∑M
m=1 δym , where

δxm is the Dirac delta function centered at xm. Therefore the corresponding empirical distribution
function of pX is PX(t) ≈ PX,M (t) = 1

M

∑M
m=1 u(t−xm) where u(.) is the step function (PY,M (t)

is defined similarly). From Glivenko-Cantelli Theorem we have that supt |PX,M (t)−PX(t)| a.s.−−→ 0,
where the convergence behavior is achieved via Dvoretzky–Kiefer–Wolfowitz inequality bound:
Prob(supt |PX,M (t)− PX(t)| > ε) ≤ 2 exp (−2Mε2). Calculating the Wasserstein distance with
the empirical distribution function is computationally attractive. Sorting xms in an ascending order,
such that xi[m] ≤ xi[m+1] and where i[m] is the index of the sorted xms, it is straightforward
to see that P−1

X,M (τm) = xi[m] (see Fig. 1 for a visualization). The Wasserstein distance can be
approximated by first sorting xms and yms and then calculating:

Wc(pX , pY ) ≈Wc(pX,M , pY,M ) =
1

M

M∑
m=1

c(xi[m], yj[m]) (15)
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Figure 1: The Wasserstein distance for one-dimensional probability distributions pX and pY (top
left) is calculated based on equation 9. For a numerical implementation, the integral in equation 9 is
substituted with 1

M

∑M
m=1 am where, am = c(P−1

X (τm), P−1
Y (τm)) (top right). When only samples

from the distributions are available xn ∼ pX and yn ∼ Y (bottom left), the Wasserstein distance is
approximated by sorting xms and yms and letting am = c(xi[m], yj[m]), where i[m] and j[m] are the
sorted indices (bottom right).

The problem of calculating the Wasserstein distance between samples from one-dimensional densities
simplifies to solving two sorting problems (solved in O(M)/O(Mlog(M)) best/worst case).

We need to address one final question here. How well does equation 15 approximate the Wasserstein
distance, Wc(pX , pY )? We first note that the rates of convergence of empirical distributions, for the
p-Wasserstein metric (i.e., c(x, y) = |x− y|p) of order p ≥ 1, have been extensively studied in the
mathematics and statistics communities (see for instance Bobkov & Ledoux (2014) and Dedecker
et al. (2015)). A detailed description of these rates is, however, beyond the scope of this paper,
especially since these rates are dependent on the choice of p. In short, for p = 1 it can be shown
that E(W1(pX,M , pX) ≤ C√

M
where C is an absolute constant. Similar results are achieved for

E(Wp(pX,M , pX)) and (E(W p
p (pX,M , pX)))

1
p , although under more strict assumptions on pX (i.e.,

slightly stronger assumptions than having a finite second moment). Using the triangle inequality
together with the convergence rates of empirical distributions with respect to the p-Wasserstein
distance, see Bobkov & Ledoux (2014), for W1(pX,M , pX) (or more generally Wp(pX,M , pX)) we
can show that (see supplementary material):

E(W1(pX , pY )−W1(pX,M , pY,M )) ≤ C√
M

(16)

for some absolute constant, C. We reiterate that similar bounds could be found for Wp although with
slightly more strict assumptions on pX and pY .

3.2 SLICING EMPIRICAL DISTRIBUTIONS

In scenarios where only samples from the d-dimensional distribution, pX , are available, xm ∼ pX ,
the empirical density can be estimated as pX,M = 1

M

∑M
m=1 δxm . Following equation 10 it is

straightforward to show that the marginal densities (i.e. slices) are obtained from:

RpX(t, θ) ≈ RpX,M (t, θ) =
1

M

M∑
m=1

δ(t− xm · θ), ∀θ ∈ Sd−1, and ∀t ∈ R (17)

see the supplementary material for a proof. The Dvoretzky–Kiefer–Wolfowitz upper bound holds for
RpX(t, θ) andRpX,M (t, θ).

3.3 MINIMIZING SLICED-WASSERSTEIN VIA RANDOM SLICING

Minimizing the sliced-Wasserstein distance (i.e., as in the second term of 14) requires an integration
over the unit sphere in Rd, i.e., Sd−1. In practice, this integration is approximated by using a
simple Monte Carlo scheme that draws uniform samples from Sd−1 and replaces the integral with a
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finite-sample average,

SWc(pZ , qZ) ≈ 1

|Θ|
∑
θl∈Θ

Wc(RpZ(·; θl),RqZ(·; θl))

Figure 2: SW approximations (scaled by 1.22
√
d) of the W-

distance in different dimensions, d ∈ {2n}10
n=1, and different

number of random slices, L.

Such Monte Carlo estimation was
used in Rabin & Peyré (2011),
and later used in Bonneel et al.
(2015); Kolouri et al. (2018);
Şimşekli et al. (2018); Deshpande
et al. (2018). Moreover, the
global minimum for SWc(pZ , qZ)
is also a global minimum for
each Wc(RpZ(·; θl),RqZ(·; θl)).
Note that SWc(pZ , qZ) =
ES(d−1)(Wc(RpZ(·; θ),RqZ(·; θ))).
A fine sampling of Sd−1, however, is
required for a good approximation of
SWc(pZ , qZ). Intuitively, if pZ and
qZ are similar, then their projections
with respect to any finite subset of
Sd−1 would also be similar. This
leads to a stochastic gradient descent scheme where in addition to the random sampling of the input
data, we also random sample the projection angles from Sd−1.

A natural question arises on the effect of the number of random slices, L = |Θ|, on the approximation
of the SW distance. Here, we devised a simple experiment that demonstrates the effect of L on
approximating the SW distance. We generated two random multi-variate Gaussian distributions in
a d-dimensional space, where d ∈ {2n}10

n=1, to serve as pX = N (µX ,ΣX) and pX = N (µY ,ΣY ).
The Wasserstein distance for the two Gaussian distributions has a closed form solution,

W 2
2 (pX , pY ) = ‖µX − µY ‖22 + trace(ΣX + ΣY − 2(Σ

1
2

XΣY Σ
1
2

X)
1
2 ),

which served as the ground-truth distance between the distributions. We then measured the SW
distance between M = 1000 samples generated from the two Gaussian distributions using L ∈
{1, 10, 50, 100, 500, 1000} random slices. We repeated the experiment for each L and d, a thousand
times and report the means and standard deviations in Figure 2. Following equation 13 we scaled
the SW distance by

√
d. Moreover we found out empirically that 1.22

√
dE(SW2(pX,M , pY,M )) ≈

W2(pX , pY ). It can be seen from Figure 2 that the expected value of the scaled SW -distance closely
follows the true Wasserstein distance. A more interesting observation is that the variance of estimation
increases for higher dimensions d and decreases as the number of random projections, L, increases.
Hence, calculating the SW distance in the image space, as in Deshpande et al. (2018), requires a very
large number of projections L to get a less variant approximation of the distance.

3.4 PUTTING IT ALL TOGETHER

To optimize the proposed SWAE objective function in equation 14 we use a stochastic gradient
descent scheme as described here. In each iteration, let {xm ∼ pX}Mm=1 and {z̃m ∼ qZ}Mm=1 be i.i.d
random samples from the input data and the predefined distribution, qZ , correspondingly. Let {θl}Ll=1

be randomly sampled from a uniform distribution on Sd−1. Then using the numerical approximations
described in this section, the loss function in equation 14 can be rewritten as:

L(φ, ψ) =
1

M

M∑
m=1

c(xm, ψ(φ(xm))) +
λ

LM

L∑
l=1

M∑
m=1

c(θl · z̃i[m], θl · φ(xj[m])) (18)

where i[m] and j[m] are the indices of sorted θl ·z̃ms and θl ·φ(xm) with respect tom, correspondingly.
The steps of our proposed method are presented in Algorithm 1. It is worth pointing out that sorting
is by itself an optimization problem (which can be solved very efficiently), and therefore the sorting
followed by the gradient descent update on φ and ψ is in essence a min-max problem, which is
being solved in an alternating fashion. Finally, we point out that each iteration of SWAE costs
O(LMlog(M)) operations.
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Algorithm 1 Sliced-Wasserstein Auto-Encoder (SWAE)
Require: Regularization coefficient λ, and number of random projections, L.

Initialize the parameters of the encoder, φ, and decoder, ψ
while φ and ψ have not converged do

Sample {x1, ..., xM} from training set (i.e. pX )
Sample {z̃1, ..., z̃M} from qZ
Sample {θ1, ..., θL} from SK−1

Sort θl · z̃M such that θl · z̃i[m] ≤ θl · z̃i[m+1]

Sort θl · φ(xm) such that θl · φ(xj[m]) ≤ θl · φ(xj[m+1])

Update φ and ψ by descending:
∑M

m=1 c(xm, ψ(φ(xm))) + λ
∑L

l=1

∑M
m=1 c(θl · z̃i[m], θl · φ(xj[m]))

end while

4 EXPERIMENTS

In our experiments we used three image datasets, namely the MNIST dataset by LeCun (1998), the
CelebFaces Attributes Dataset (CelebA) by Liu et al. (2015), and the LSUN Bedroom Dataset by
Yu et al. (2015). For the MNIST dataset we used a simple auto-encoder with mirrored classic deep
convolutional neural networks with 2D average poolings, leaky rectified linear units (Leaky-ReLu) as
the activation functions, and upsampling layers in the decoder. For the CelebA and LSUN datasets
we used the DCGAN Radford et al. (2015) architecture similar to Tolstikhin et al. (2017).

To test the capability of our proposed algorithm in shaping the latent space of the encoder, we started
with the MNIST dataset and trained SWAE to encode this dataset to a two-dimensional latent space
(for the sake of visualization) while enforcing a match between pX and pY and pZ and qZ . We
chose four different samplable distributions as shown in Figure 3. It can bee seen that SWAE can
successfully embed the dataset into the latent space while enforcing pZ to closely follow qZ . In
addition, we sample the two-dimensional latent spaces on a 25× 25 grid in [−1, 1]2 and decode these
points to visualize their corresponding images in the digit/image space.

To get a sense of the convergence behavior of SWAE, and similar to the work of Karras et al. (2017),
we calculate the Sliced Wasserstein distance between pZ and qZ as well as pX and pY at each batch
iteration where we used p-LDA Wang et al. (2011) to calculate projections (See supplementary
material). We compared the convergence behavior of SWAE with the closest related work, WAE
Tolstikhin et al. (2017) (specifically WAE-GAN) where an adversarial training is used to match pZ to
qZ , while the loss function for pX and pY remains exactly the same between the two methods. We
repeated the experiments 100 times and report the summary of results in Figure 4. We mention that
the exact same models and optimizers were used for both methods in this experiment. An interesting
observation, here is that while WAE-GAN provides good or even slightly better generated random
samples for MNIST (lower sliced-Wasserstein distance between pX and pY ), it fails to provide a
good match between pZ and qZ for the choice of the prior distribution reported in Figure 4. This
phenomenon seems to be related to the mode-collapse problem of GANs, where the adversary fails
to sense that the distribution is not fully covered. Finally, in our experiments we did not notice a
significant difference between the computational time for SWAE and WAE-GAN. For the MNIST
experiment and on a single NVIDIA Tesla P100 GPU, each batch iteration (batchsize=500) of WAE-
GAN took 0.2571± 0.0435(sec) while SWAE (with L = 50 projections) took 0.2437± 0.0391(sec).

Figure 5: Interpolation in the latent space, ψ(tφ(I0) + (1− t)φ(I1)) for t ∈ [0, 1].
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Dataset Iteration ·10−4 Model log SW(pz, qz) log SW(px, py) NLL(Z|qz) · 10−4

CelebA

1

SWAE −0.81± 0.05 −2.19± 0.04 3.14± 0.05

WAE-GAN −0.78± 0.05 −2.04± 0.05 3.25± 0.15

WAE-MMD(IMQ) −1.44± 0.19 −2.51± 0.05 3.66± 0.12

WAE-MMD(RBF) 3.26± 0.02 −2.60± 0.02 2392± 89

5

SWAE −1.80± 0.03 −2.63± 0.03 3.22± 0.02

WAE-GAN −1.37± 0.12 −2.42± 0.05 3.47± 0.13

WAE-MMD(IMQ) −2.15± 0.02 −2.86± 0.01 3.51± 0.04

WAE-MMD(RBF) 3.28± 0.02 −2.89± 0.02 2469± 79

10

SWAE −2.01± 0.04 −2.75± 0.03 3.24± 0.00

WAE-GAN −2.33± 0.14 −2.55± 0.06 3.42± 0.04

WAE-MMD(IMQ) −2.23± 0.00 −2.97± 0.01 3.50± 0.01

WAE-MMD(RBF) 3.23± 0.02 −2.99± 0.02 2227± 88

LSUN
Bedroom

1

SWAE −0.98± 0.17 −1.88± 0.06 3.12± 0.07

WAE-GAN −1.18± 0.16 −1.90± 0.07 3.31± 0.16

WAE-MMD(IMQ) −1.72± 0.07 −2.13± 0.02 3.61± 0.04

WAE-MMD(RBF) 3.45± 0.02 −2.16± 0.04 3446± 152

5

SWAE −1.94± 0.12 −2.34± 0.04 3.22± 0.02

WAE-GAN −2.34± 0.04 −2.30± 0.04 3.40± 0.08

WAE-MMD(IMQ) −2.21± 0.02 −2.47± 0.02 3.48± 0.04

WAE-MMD(RBF) 3.53± 0.03 −2.47± 0.02 4009± 258

10

SWAE −2.08± 0.11 −2.46± 0.03 3.23± 0.01

WAE-GAN −2.49± 0.02 −2.41± 0.03 3.35± 0.05

WAE-MMD(IMQ) −2.25± 0.02 −2.59± 0.02 3.50± 0.01

WAE-MMD(RBF) 3.48± 0.04 −2.60± 0.02 3624± 282

Table 1: Quantitative comparison of the SWAE and WAE-GAN using the sliced-Wasserstein distance
with discriminant slices in the latent space, SW (pZ , qZ), and the output space, SW (pX , pY ). The
distribution in the 64-dimensional latent space, qZ , was set to Normal. We also report the negative
log-likelihood of {zi = φ(xi)} with repect to qZ for 1000 testing samples for both datasets. We did
not use Nowizin’s trick for the GAN models.

Model FID - CelebA FID - LSUN Bedroom
SWAE 79± 6 225± 7

WAE-GAN 53± 2 232± 2

WAE-MMD(IMQ) 55± 1 226± 2

WAE-MMD(RBF) 363± 17 378± 12

True Data 2 3

Table 2: FID score statistics (N = 5) at final
iteration of training. Lower is better. Scores
were computed with 104 random samples from
the testing set against an equivalent amount of
generated samples.

The CelebA face and the LSUN bedroom datasets contain higher degrees of variations compared
to the MNIST dataset and therefore a two-dimensional latent-space does not suffice to capture the
variations in these datasets (See supplementary material for more details on the dimensionality
of the latent space). We used a K = 64 dimensional latent spaces for both the CelebA and the
LSUN Bedroom datasets, and also used a larger auto-encoder (i.e., DCGAN, following the work of
Tolstikhin et al. (2017)). For these datasets SWAE was trained with qZ being the Normal distribution
to enable the calculation of the negative log likelihood (NLL). Table 1 shows the comparison between
SWAE and WAE for these two datasets. We note that all experimental parameters were kept the
same to enable an apples to apples comparison. Finally, Figure 5 demonstrates the interpolation
between two sample points in the latent space, i.e. ψ(tφ(I0) + (1 − t)φ(I1)) for t ∈ [0, 1], for all
three datasets.

5 CONCLUSIONS

We introduced Sliced Wasserstein auto-encoders (SWAE), which enable one to shape the distribution
of the encoded samples to any samplable distribution without the need for adversarial training or
having a likelihood function specified. In addition, we provided a simple and efficient numerical
scheme for this problem, which only relies on few inner products and sorting operations in each SGD
iteration. We further demonstrated the capability of our method on three image datasets, namely the
MNIST, the CelebA face, and the LSUN Bedroom datasets, and showed competitive performance, in
the sense of matching distributions pZ and qZ , to the techniques that rely on additional adversarial
trainings. Finally, we envision SWAE could be effectively used in transfer learning and domain
adaptation algorithms where qZ comes from a source domain and the task is to encode the target
domain pX in a latent space such that the distribution follows the distribution of the target domain.
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Figure 3: The results of SWAE on the MNIST dataset with a two-dimensional embedding space for
four different distributions as ,qZ , namely the ring distribution (top left), the uniform distribution
(bottom left), the uniform polar distribution (top right), and a custom polar distribution (bottom right).
Note that the far right visualization demonstrates the decoding of a 25× 25 grid in [−1, 1]2.

Figure 4: Sample convergence behavior for our method compared to the WAE-GAN, where qZ is set
to a ring distribution (Figure 3, top left). The columns represent batch iterations (batchsize= 500).
The top half of the table shows results of ψ(z) for z ∼ qZ , and the bottom half shows z ∼ qZ and
φ(x) for x ∼ pX . It can be seen that the adversarial loss in the latent space does not provide a full
coverage of the distribution, which is a similar problem to the well-known ‘mode collapse’ problem
in the GANs. It can be seen that SWAE provides a superior match between pZ and qZ while it does
not require adversarial training.
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Figure 6: These plots show W1(p, qτ ) and JS(p, qτ ) where p is a uniform distribution around zero
and qτ (x) = p(x − τ). It is clear that JS divergence does not provide a usable gradient when
distributions are supported on non-overlapping domains.

SUPPLEMENTARY MATERIAL

COMPARISON OF DIFFERENT DISTANCES

Following the example by Arjovsky et al. (2017) and later Kolouri et al. (2018) here we show a
simple example comparing the Jensen-Shannon divergence with the Wasserstein distance. First note
that the Jensen-Shannon divergence is defined as,

JS(p, q) = KL(p,
p+ q

2
) +KL(q,

p+ q

2
)

where KL(p, q) =
∫
X
p(x)log(p(x)

q(x) )dx is the Kullback-Leibler divergence. Now consider the
following densities, p(x) be a uniform distribution around zero and let qτ (x) = p(x− τ) be a shifted
version of the p. Figure 6 show W1(p, qτ ) and JS(p, qτ ) as a function of τ . As can be seen the JS
divergence fails to provide a useful gradient when the distributions are supported on non-overlapping
domains.

LOG-LIKELIHOOD

To maximize (minimize) the similarity (dissimilarity) between pZ and qZ , we can write :

argmaxφ

∫
Z

pZ(z)log(qZ(z))dz =

∫
Z

∫
X

pX(x)δ(z − φ(x))log(qZ(z))dxdz

=

∫
X

pX(x)log(qZ(φ(x)))dx

where we replaced pZ with equation 1. Furthermore, it is straightforward to show:

argmaxφ

∫
Z

pZ(z)log(qZ(z))dz = argmaxφ

∫
Z

pZ(z)log(
qZ(z)

pZ(z)
)dz

= argminφDKL(pZ , qZ)

PROOF OF EQUATION 3

The Wasserstein distance between the two probability measures ρX and ρY with respective densities
pX and pY , can be measured via the Kantorovich formulation of the optimal mass transport problem:

Wc(pX , pY ) = infγ∈Γ

∫
X

∫
Y

c(x, y)γ(x, y)dxdy

where Γ := {γ : X × Y → R+|
∫
Y
γ(x, y)dy = pX(x),

∫
X
γ(x, y)dx = pY (y)} is the set of

all transportation plans (i.e., couplings or joint distributions) over pX and pY . Now, note that the
two step process of encoding pX into the latent space Z and decoding it to pY , provides a unique
decomposition of γ as γ0(x, y) = δ(y − ψ(φ(x)))pX(x) ∈ Γ.
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Figure 7: The optimal coupling (i.e., transport plan) between pX and pY could be equal or different
from γ(x, y) = δ(y−ψ(φ(x)))pX(x). This leads to the scenario on the right whereWc(pX , pY ) = 0
but W ‡c (pX , pY ) > 0.

Therefore we can write:

Wc(pX , pY ) = infγ∈Γ

∫
X

∫
Y

c(x, y)γ(x, y)dxdy ≤

W ‡c (pX , pY ) :=

∫
X

∫
Y

c(x, y)γ0(x, y)dxdy =

∫
X

c(x, ψ(φ(x)))pX(x)dx

which proves equation 3. Finally, taking the infimum of the two sides of the inequality, with respect
to φ and ψ, we have:

infψ,φWc(pX , pY ) = infψ,φ infγ∈Γψ,φ

∫
X

∫
Y

c(x, y)γ(x, y)dxdy ≤

infψ,φW
‡
c (pX , pY ) = infψ,φ

∫
X

c(x, ψ(φ(x)))pX(x)dx

where Γψ,φ := {γ|
∫
Y
γ(x, y)dy = pX(x),

∫
X
γ(x, y)dx =

∫
X
pX(x)δ(y − ψ(φ(x)))dx}. Fig-

ure 7 demonstrates a simple scenario were the Wasserstein distance, Wc(pX , pY ), is zero how-
ever, W ‡c (pX , pY ) is non-zero. Finally, we note that ψ(φ(·)) = id(·) is a global optima for both
Wc(pX , pY ) and W ‡c (pX , pY ).

SLICING EMPIRICAL DISTRIBUTIONS

Following equation 10 a distribution can be sliced via:

RpX(t, θ) =

∫
X

pX(x)δ(t− θ · x)dx

Figure 8 visualizes two sample slices for an example distribution pX . Here we calculate a Radon
slice of the empirical distribution pX(x) = 1

M

∑M
m=1 δ(x− xm) with respect to θ ∈ Sd−1. Using

the definition of the Radon transform in equation 10 and RVT in equation 1 we have:

RpX(t, θ) =
1

M

M∑
m=1

∫
X

δ(x− xm)δ(t− θ · x)dx

=
1

M

M∑
m=1

δ(t− θ · xm)
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Figure 8: Visualization of the slicing process defined in equation 10

Figure 9: Trained SWAE outputs for sample input images with different embedding spaces of size
K = 2 and K = 128.

DIMENSIONALITY OF THE LATENT SPACE

Figure 9 demonstrates the outputs of trained SWAEs with K = 2 and K = 128 for sample input
images. The input images were resized to 64× 64 and then fed to our auto-encoder structure. This
effect can also be seen for the MNIST dataset as shown in Figure 10. When the dimensionality of
the latent-space (i.e. information bottleneck) is too low the latent space will not contain enough
information to reconstruct crisp images. Increasing the dimensionality of the latent space leads to
crisper images.

CALCULATING THE SLICED WASSERSTEIN DISTANCE AS A MEASURE OF GOODNESS OF FIT

In this paper we also used the sliced Wasserstein distance as a measure of goodness of fit (for
convergence analysis). To provide a fair comparison between different methods, we avoided random
projections for this comparison. Instead, we calculated a discriminant subspace to separate ψ(z)
from ψ(φ(x)) for z ∼ qZ and x ∼ pX , and set the projection parameters θs to the calculated
discriminant components. This will lead to only slices that contain discriminant information. We
point out that the linear discriminant analysis (LDA) is not a good choice for this task as it only leads
to one discriminant component (because we only have two classes). We used the penalized linear
discriminant analysis (p-LDA) that utilizes a combination of LDA and PCA. In short, p-LDA solves
the following objective function:

argmaxθ
θTST θ

θT (SW + αI)θ

s.t. ‖θ‖ = 1
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Figure 10: Interpolation results for on the MNIST dataset with various dimensions of the latent space.
The parameter t ∈ [0, 1] indicates the interpolation parameter.

where SW is the within class covariance matrix, ST is the data covariance matrix, I is the identity
matrix, and α identifies the interpolation between PCA and LDA (i.e. α = 0 leads to LDA and
α→∞ leads to PCA).

ERROR ANALYSIS OF WASSERSTEIN DISTANCE

For p ≥ 1 we can use the triangle inequality and write

Wp(pX , pY ) ≤ Wp(pX , pX,M ) +Wp(pY , pX,M )

≤ Wp(pX , pX,M ) +Wp(pY , pY,M ) +Wp(pX,M , pY,M )

which leads to

Wp(pX , pY )−Wp(pX,M , pY,M ) ≤ Wp(pX , pX,M ) +Wp(pY , pY,M )

Taking the expectation of both sides of the inequality and using the empirical convergence bounds of
Wp (in this case W1) we have,

E(W1(pX , pY )−W1(pX,M , pY,M )) ≤ E(W1(pX , pX,M )) + E(W1(pY , pY,M ))

≤ C√
M

for some absolute constant C, where the last line comes from the empirical convergence bounds of
distributions with respect to the Wasserstein distance, see Bobkov & Ledoux (2014).
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