
Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

TRACES: TRAJECTORY BASED CREDIT ASSIGNMENT
FROM SPARSE SAFETY FEEDBACK

Siow Meng Low & Akshat Kumar
School of Computing and Information Systems
Singapore Management University
Singapore
smlow.2020@phdcs.smu.edu.sg,akshatkumar@smu.edu.sg

ABSTRACT

In safe reinforcement learning (RL), auxiliary safety costs are used to align the
agent to safe decision making. In practice, safety constraints, including cost func-
tions and budgets, are unknown or hard to specify, as it requires anticipation of all
possible unsafe behaviors. We therefore address a general setting where the true
safety definition is unknown, and has to be learned from sparsely labeled data.
Our key contributions are: first, we design a safety model that performs credit
assignment to estimate each decision step’s impact on the overall safety using a
dataset of diverse trajectories and their corresponding binary safety labels (i.e.,
whether the corresponding trajectory is safe/unsafe). Second, we illustrate the ar-
chitecture of our safety model to demonstrate its ability to learn a separate safety
score for each timestep. Third, we reformulate the safe RL problem using the
proposed safety model and derive an effective algorithm to optimize a safe yet
rewarding policy. Finally, our empirical results corroborate our findings and show
that this approach is effective in satisfying unknown safety definition, and scalable
to various continuous control tasks.

1 INTRODUCTION

The Markov Decision Process (MDP) is a widely used framework to model and reason about the
uncertainty of sequential decision making (Puterman, 1994). MDPs are the underlying model
for reinforcement learning (RL) (Sutton et al., 1998), and have a wide range of applications in
robotics (LaValle, 2006), path planning (Kiran et al., 2021), energy management (Zhang et al.,
2019) among others. In complex real-world systems, the decision maker is often faced with opti-
mizing multiple objectives, e.g., in traffic control, the goal is to optimize traffic signal timings to
reduce congestion and travel times while ensuring safety and compliance with traffic regulations.
Such problems are naturally modeled as constrained MDPs (Altman, 1998) where we optimize a
primary objective subject to constraint. This enforces the agent to avoid undesirable behaviors.

Constraints require specification of cost values for each state-action pair. Typically, such cost func-
tions are either assumed to be known in the planning context (Altman, 1998), or the environment
simulator returns numerical costs during RL (Achiam et al., 2017; Tessler et al., 2018; Chow et al.,
2018; Stooke et al., 2020; Ha et al., 2021). However, in several real world settings, information
about precise cost function and budget may be lacking. This may be due to the incomplete MDP
model of the environments (Saisubramanian et al., 2021), which is often the case for complex real
world settings, or the inherent difficulty in explicitly specifying the constraints in a mathematical
form (Malik et al., 2021) involving cost and budget. This is similar to the challenges encountered
in reward specification design (Ng et al., 2000; Ray et al., 2019). In Chou et al. (2019; 2020), the
authors illustrate the challenges in exhaustively programming all possible constraints. To address
these challenges, our work targets a setting where both the cost function and tolerance threshold (i.e.
budget) are unknown; only a trajectory dataset is provided, containing state-action trajectories with
associated binary labels (constraint satisfied, not satisfied). Next, we review prior work in this area.

Related work In standard constrained RL, contemporary work focuses on modeling constraint
costs as a function of state and action (Achiam et al., 2017; Tessler et al., 2018; Chow et al., 2018;

1



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Stooke et al., 2020; Ha et al., 2021). As costs are unknown in our setting, such methods cannot be
directly applied without learning the constraint. For unknown constraint setting, inverse constrained
RL (ICRL) framework is proposed (Chou et al., 2019; Malik et al., 2021; Liu et al., 2023). In ICRL,
demonstration dataset from an expert is required that contains both safe and reward-maximizing
trajectories. Collecting such an expert dataset is challenging; in practical settings, demonstration
dataset may contain both sub-optimal (reward-wise) and unsafe trajectories.

Other related works focus on learning the cost function from human feedback (Saisubramanian
et al., 2022; 2021; Zhang et al., 2018; Chirra et al., 2024). Most of these approaches introduce the
concept of negative side effects (NSEs), which are undesirable, unintended side effects that arise
when agents operate based on incomplete model specifications. To avoid such NSEs in the future,
a dataset from human (or expert) feedback is collected that specifies whether a given state-action
pair incurs NSE or not. This dataset is then used for cost function learning. A key limitation of this
approach is requirement of finegrained safety feedback at the state level. Such feedback may not be
readily available for an unknown constraint which is difficulty to specify. The RLSF (Chirra et al.,
2024) method attempts to address this by learning to assign safety credit to individual states based on
trajectory-level safety feedback. This reduces the difficulty in dataset collection. However, RLSF
still requires full knowledge of how many safety constraints need to be enforced, and the safety
budget for each such constraint. Other works, involving human feedback, include inferring implicit
human preferences from initial state configuration (Shah & Krasheninnikov, 2019), and nudging
agent in preserving flexibility metrics such as reachability measure or attainable utility (Krakovna
et al., 2018; Turner et al., 2020a;b).

Contributions We address key limitations of previous works in unknown constraint settings. We
assume only binary safety labels are associated with trajectories, without any knowledge of cost
functions, safety budget, or the number of constraints. Our safety model assigns safety credit score
to state-action pairs at each time step despite sparse safety data. The dataset contains diverse and
possibly sub-optimal trajectories and their associated safety labels.

More precisely, first, we design a constraint model and associated loss function to learn the unknown
constraint from the (sparsely) labeled safety dataset. Our constraint model specifically performs
credit assignment to assess contributions of each state-action pair on constraint satisfaction. This
safety credit assignment is important to facilitate safe RL. Second, we approximate and reformulate
the safe RL problem using the safety credit assignment module. Third, we devise a safe RL method
which optimizes total reward while respecting the learned constraint. This method is an extension to
PPO-Lagrangian (Schulman et al., 2017; Tessler et al., 2018), and we name it TraCeS – trajectory
based credit assignment for safe RL. Lastly, our empirical results on a variety of continuous control
domains demonstrate the applicability of our method to a wide range of RL problems with unknown
constraint, with performance close to the oracle PPO-Lagrangian method which has full knowledge
of the underlying true constraints.

2 BACKGROUND INFORMATION

2.1 CONSTRAINED MDPS

Markov Decision Processes (MDPs) (Sutton et al., 1998) are widely used to model sequential deci-
sion making problem under uncertainty. Constrained reinforcement learning (CRL) methods utilize
an extended MDP model, called Constrained Markov Decision Processes (CMDPs) (Altman, 1998).
CMDPs allow specifying secondary objectives (e.g., safety, risk, resource budget) as constraints in
the problem formulation; CRL algorithms seek policy which optimizes reward while respecting the
specified constraints.

A CMDP is defined by tuple (S,A, T , R, C, b, γ). We consider a general setting with continuous
state and action spaces (S ⊆ Rn, A ⊆ Rm). The environment state transition is characterized by the
function p(st+1|st, at)=T (st, at, st+1). The reward function R : S ×A→ R maps a state, action
to a scalar reward value. Similarly, a constraint function C : S × A → R maps a state, action to a
scalar cost value and b is the associated bound on this cost. Lastly, 0 ≤ γ ≤ 1 is the discount rate;
τ = ⟨s0, a0, s1, a1, ..., sT−1, aT−1⟩ denotes the state-action sequence for a trajectory of arbitrary
length T .

2



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

A CRL problem solves for a policy π (parameterized by θ) which maximizes the expected sum of
rewards subject to the specified constraint:

max
θ
JR(πθ) = Eτ∼πθ [

∞∑
t=0

γtR(st, at)]

s.t. Jc(πθ) = Eτ∼πθ [

∞∑
t=0

γtC(st, at)] ≤ b

(1)

In this paper, we assume both the cost function C(·, ·) and budget b are unknown and must be
learned. This is different from RLSF (Chirra et al., 2024) where the budget b is assumed to be
known and the learned cost is assumed to be binary. Our method TraCeS includes two constraint
models to learn this information pertaining to safety constraints.

2.2 SAFETY FEEDBACK DATASET

Many contemporary works propose to learn the cost function from human expert giving state-level
safety feedback (i.e., whether each (s, a) pair is safe/unsafe). This type of data can be prohibitively
expensive to collect, and therefore our safety feedback dataset is only sparsely labeled. A trajectory
τ0:t of length t + 1 is provided with a single binary label, 0 or 1. We denote the true labeling
function as Ψ(·). In our problem setting, the (unknown) true labeling function Ψ(τ) inspects the
total true cost incurred in τ . If the total cost incurred is above the ground-truth budget, it outputs 0,
i.e. Ψ(τ) = 0. Otherwise, label 1 is given, i.e. Ψ(τ) = 1. Note that this true labeling function is
not known and we are only provided with the trajectory data sparsely labeled by the true labeling
function. When multiple constraints are to be enforced, Ψ(τ) = 1 indicates satisfaction of all the
constraints.

The safety labeling function is unknown in general and has to be learned from data. A dataset of
labeled (possibly partial) trajectories {(τ it1:t2 , ψ

i)} with safety label ψi ∈ {0, 1} is used to facilitate
learning of such a safety constraint model. Each trajectory τ i can be of variable length and the
labeled trajectories need not be expert trajectories, and some can be unsafe or safe. This is different
from some prior works where demonstration trajectories from an expert are provided.

In practical implementation, the observed trajectories during training are stored in a buffer, and
the safety constraint models are continually retrained using the safety label data for some selected
trajectories from this buffer. In our experiments, a script implementing the true labeling function
is used to label the trajectories. We highlight again that this true labeling criterion is unknown to
constrained models or TraCeS.

3 SAFETY CONSTRAINT MODELS

This paper focuses on CRL problem in equation 1 where the safety constraint is specified using
(unknown) state-action costs C(s, a) and total budget b. Given binary-labeled trajectories τ0:t of
variable length t in the safety feedback dataset, safety constraint models learn to approximate the
safety constraint. The learned information will then be used to facilitate safe RL. We introduce two
such models next. To aid our discussion, we adopt the following definition.

Definition 3.1. For a trajectory τ of length t, the probability estimate P̂ (ψ0:t−1 = 1|τ0:t−1) from
the constraint model, is defined as the estimated probability of trajectory τ0:t−1 being safe.

3.1 COST & BUDGET MODEL

The first model is the cost & budget model (C&B Model), which is a trajectory classification model.
Its model architecture and reformulated problem are described in appendix B. We use this as a
baseline safety model before detailing our main credit assignment based safety model.

3.2 SAFETY SUMMARY VECTOR MODEL

While C&B model provides a straightforward way to estimate costs and budget, it can be tricky
to have an accurate estimate as there could be many possible combinations of b̂ and ĉ(s, a) which

3



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

𝑠! 𝑎! 𝑠" 𝑎" 𝑠#$" 𝑎#$"

�̂�(&	,&) �̂�(&	,&) �̂�(&	,&)…… ……

+

*𝑏

𝜎 *𝑏 −.
%&!

#$"
�̂�(𝑠% , 𝑎%)

*𝑃(𝜓!:#$" = 1|𝜏!:#$")

(a) Cost & Budget Model

𝑠! 𝑎! 𝑠" 𝑎" 𝑠#$" 𝑎#$"

𝑓!(#,#,#) 𝑓!(#,#,#) 𝑓!(#,#,#)……

+

𝑒∑!"#
$%& "#$ %&!∆

#𝑃(𝜓!:#$" = 1|𝜏!:#$")

ℎ! ℎ" ℎ& ℎ#ℎ#$"

Decoder 
Module

Decoder 
Module

Decoder 
Module

log #𝑃!∆ log #𝑃"∆ log #𝑃#$"∆

(b) Safety Summary Vector Model

Figure 1: Safety Model Architectures: (a) Cost & Budget model; (b) Safety Summary Vector Model

minimize the binary cross entropy loss (Bishop & Nasrabadi, 2006; Goodfellow et al., 2016). Say a
constant k is added to b̂, the estimated probability σ(b̂−

∑Ti−1
t=0 ĉ(st, at)), will be unchanged if the

same constant k is added to
∑Ti−1

t=0 ĉ(st, at). Note that σ(·) is the sigmoid function used in C&B
model.

For this reason, we propose a more general model named Safety Summary Vector (SSV) model,
which can handle sparsely-labeled trajectory data more effectively. First, we observe that instead of
predicting a single probability estimate for the entire trajectory, we can decompose it into a series of
learnable probability scores, one per timestep.

3.2.1 SAFETY CREDIT ASSIGNMENT

Recall from Definition 3.1 that for a trajectory of length T , P̂ (ψ0:t−1 = 1|τ0:t−1) refers to the
estimated probability of entire trajectory being safe. From this definition, we can define T different
probability estimate, one for each sub-segment within the trajectory τ0:t−1.

Definition 3.2. For a trajectory τ0:t−1 of length t, we define T probability estimates P̂ (ψ0:t′−1 =
1|τ0:t′−1), 1 ≤ t′ ≤ t. Each of these refers to the probability estimate that a subsegment contained
within τ0:t−1 is safe.

Safety Credit Assignment With the T different probability estimates in Definition 3.2, the ob-
jective of safety credit assignment is to assign safety credit to each timestep (we denote it as P̂∆

t , a
learned per-timestep multiplicative safety score). Intuitively, this safety credit can act as pseudo-cost
when we perform safe RL, and it is available for each time step, which allows us to apply standard
safe RL methods. We next illustrate how such credit assignment safety variable can be learned.

Proposition 3.3. A probability estimate P̂ (ψ0:T−1 = 1|τ0:T−1) can be broken down into a series
of T different score estimates P̂∆

t , 0 ≤ t ≤ T − 1 such that:

P̂ (ψ0:T−1 = 1|τ0:T−1) ≜
∏T−1

t=0
P̂∆
t (2)

Proof. We represent P̂ (ψ0:T−1 = 1|τ0:T−1) using the probability estimate of each subsegment:

P̂ (ψ0:T−1 = 1|τ0:T−1) =
P̂ (ψ0:0 = 1|τ0:0)

1

∏T−1

t=1

P̂ (ψ0:t = 1|τ0:t)
P̂ (ψ0:t−1 = 1|τ0:t−1)

(3)

In the above ratio-based expression, only the last term P̂ (ψ0:T−1 = 1|τ0:T−1) remains; rest are
canceled out. We then define our safety variable P̂∆

t .

P̂∆
0 ≜

P̂ (ψ0:0 = 1|τ0:0)
1

and P̂∆
t ≜

P̂ (ψ0:t = 1|τ0:t)
P̂ (ψ0:t−1 = 1|τ0:t−1)

, 1 ≤ t ≤ T − 1 (4)

The overall probability of safety can now be represented using the safety variables:

4



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

P̂ (ψ0:T−1 = 1|τ0:T−1) ≜
∏T−1

t=0
P̂∆
t (5)

The key importance of Proposition 3.3 lies in showing that instead of learning a single P̂ (ψ0:T−1 =

1|τ0:T−1) for the entire trajectory, we can learn a series of T estimates P̂∆
t , 0 ≤ t ≤ T − 1 and

each P̂∆
t is interpreted as the multiplicative changes in the probability of being safe after observing

state-action (st, at) at timestep t.

P̂∆
t as safety credit score: We next analyze why P̂∆

t can be treated as a safety credit score for
(st, at). When P̂∆

t = 1 (its maximum value) for a time step t, it means the safety probability of
segment τ0:t remains the same as the last segment τ0:t−1. Even though both τ0:t and τ0:t−1 can
be unsafe, given P̂∆

t = 1 implies that the state-action (st, at) at time step t in τ0:t did not incur
any additional cost over the last time step t − 1, and can be considered safe even though the entire
trajectory τ0:t might be unsafe. This reasoning also applies when P̂∆

t is high (or close to 1); we
can consider such (st, at) as safe in the sense that cost incurred C(st, at) is low (compared to the
remaining budget), thus such (st, at) have high safety score P̂∆

t . In contrast, when P̂∆
t is low (or

close to zero), it means τ0:t is significantly more unsafe relative to the previous segment τ0:t−1.
Thus, cost incurred in (st, at) must be high. Thus, we assign low safety score to such (st, at).

Learning P̂ (ψ|τ): To learn P̂ (ψ|τ), we can use standard binary cross entropy loss for classifica-
tion (Bishop & Nasrabadi, 2006; Goodfellow et al., 2016):

Eτi∼D[ψi log P̂ (ψi = 1|τi) + (1− ψi) log(1− P̂ (ψi = 1|τi)] (6)

where the probability of τi being safe, P̂ (ψi = 1|τi), is given as in proposition 3.3, and D refers to
the feedback dataset containing N + 1 safety-labeled trajectories {τi}Ni=0.

3.2.2 PROBLEM REFORMULATION

A key benefit of the estimating scores P̂∆
t is that it can be treated as proxy variable for safety at each

timestep. An important difference between P̂∆
t and ĉ in C&B model is that P̂∆

t is the multiplicative
changes in the probability of trajectory being safe after observing state-action at timestep twhere ĉ is
a scalar, representing the nominal cost incurred at timestep t. Consequently, we need to restructure
the constraint threshold when using P̂∆

t to estimate safety. Recall that the true safety labeling
function Ψ(τ) outputs 1 for safe τ and 0 for unsafe τ . We can therefore impose the following safety
constraint instead:

Eτ∼πθ [Ψ(τ)] ≥ d, 0 ≤ d ≤ 1 (7)

This constraint is imposing that the proportion of safe trajectories among all trajectories τ generated
by policy πθ is at least d (empirically, we set d to a high value 0.9; setting d = 1 will make the
policy highly conservative). With this constraint, we can then reformulate our CRL program using
the probability estimates.

Lemma 3.4. With the safety scores P̂∆
t output by the model, the constraint equation 7 in the CRL

program is approximated as: Eτ∼πθ
[
∏T−1

t=0 P̂
∆
t ] ≥ d.

Proof. Given the loss function in equation 6, it is a maximum likelihood estimator (Bishop &
Nasrabadi, 2006; Goodfellow et al., 2016). As training sample size tends to infinity, the approx-
imation Eτ∼πθ

[P̂ (ψ = 1|τ)] ≈ Eτ∼πθ
[Ψ(τ)] becomes more and more precise. With equation 5, we

can approximate the constraint Eτ∼πθ
[Ψ(τ)] ≈ Eτ∼πθ

[
∏T−1

t=0 P̂
∆
t ] ≥ d.

Reformulated program The constrained RL program can be reformulated using the safety score
P̂∆
t output by the model:

max
θ

JR(πθ) = Eτ∼πθ [

∞∑
t=0

γtR(st, at)]

s.t. Eτ∼πθ [
∑∞

t=0
γt log P̂∆

t ] ≥ log d

(8)

5



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

We now elaborate on the reformulation steps. From Lemma 3.4, the LHS of the constraint is
Eτi∼πθ

[
∏Ti−1

t=0 P̂∆
t ] = Eτi∼πθ

[e
∑Ti−1

t=0 log P̂∆
t ]. The constraint is thus: logEτi∼πθ

[e
∑Ti−1

t=0 log P̂∆
t ] ≥

log d. This term is hard to estimate directly, since the log is outside the expectation. Therefore, to
address this in a principled manner, we derive a tractable lower bound using Jensen’s inequality:

logEτi∼πθ [e
∑Ti−1

t=0 log P̂∆
t ] ≥ Eτi∼πθ [log e

∑Ti−1
t=0 log P̂∆

t ]

Let Eτi∼πθ [log e
∑Ti−1

t=0 log P̂∆
t ] ≥ log d

Then Eτi∼πθ [
∑Ti−1

t=0
log P̂∆

t ] ≥ log d

(9)

By constraining the lower bound expression to be greater or equal to log d, the original constraint is
also satisfied, i.e. greater or equal to log d. Once trained, the model output P̂∆

t can infer the safety
score at arbitrary timestep t even for t→ ∞. To make the sum of log P̂∆

t finite, we apply the same
discount rate to this sum:

Eτ∼πθ [
∑∞

t=0
γt log P̂∆

t ] ≥ log d (10)

With the safety constraint reformulated via the sum of log safety scores in equation 10, the con-
strained RL program is reformulated to equation 8.
Corollary 3.5. The program in equation 8 reformulated the constrained RL program in a standard
CRL form: objective is to maximize the discounted sum of reward while constraint specifies the
discounted sum of safety variables is above a specified threshold log d. As a result, standard CRL
techniques, such as PPO-Lagrangian, can be employed to solve this CRL program.

Assumption 3.6. Revisiting the definition P̂ (ψ0:T−1 = 1|τ0:T−1) ≜
∏T−1

t=0 P̂
∆
t in Proposition 3.3.

It implies that the multiplication in the RHS,
∏T−1

t=0 P̂
∆
t , must remain a probability and be in the

range of [0, 1]. As a result, 0 ≤ P̂∆
t ≤ 1,∀t and 1 ≥ P̂ (ψ0:0 = 1|τ0:0) ≥ P̂ (ψ0:1 = 1|τ0:1) ≥ · · · ≥

P̂ (ψ0:T−1 = 1|τ0:T−1) ≥ 0.
Remark 3.7. The interpretation of Assumption 3.6 is that the probability of being safe can only stay
the same or decrease as more and more timesteps are observed. We argue that this is not restrictive.
In most safety-critical setting, an unsafe action in the past cannot be undone by future actions. In the
context of standard CRL program which specifies constraint as budget and costs, Assumption 3.6
requires the cost to be non-negative so that future actions cannot produce a negative cost and bring
an unsafe trajectory back to safety. We found this assumption not restrictive since the widely-used
safe RL simulators (Ji et al., 2023; Gronauer, 2022) all model cost as non-negative.

3.2.3 SAFETY MODEL ARCHITECTURE

Proposition 3.3 tells us that, in order to accurately estimate the safety variable P̂∆
t at timestep t, the

pertinent safety features, contained in both trajectory segments τ0:t−1 and τ0:t, have to be included
as input. In our proposed safety summary vector (SSV) model, we train a compact summary vector
ht+1 to encapsulate the safety features contained in trajectory segment τ0:t. Figure 1b illustrates our
model architecture: a neural network function approximator (fw(·, ·, ·), where w is its list of param-
eters, summarizes the history and outputs the updated safety summary vector ht+1. The decoder
module compares ht (which contains information pertinent to safety in trajectory segment τ0:t−1)
with ht+1 (which contains information pertinent to safety in trajectory segment τ0:t) for the purpose
of estimating the safety variable log P̂∆

t at timestep t.

The main reason why we employ this architecture is due to its ability to summarize past information
into a compact vector ht+1. In this architecture, the safety proxy variable log P̂∆

t is a function of ht
and ht+1. As depicted in Figure 1b, ht+1 is a function of (st, at, ht). The safety variable log P̂∆

t
is thus a function of (st, at, ht). In model-free constrained RL method, such as PPO-Lagrangian, a
safety critic (Ha et al., 2021) is often required and it needs to estimate the safety variable at timestep
t from the observed input (st, at, ht). To make our proposed safe RL method highly scalable, a
compact summary vector ht is required as it serves as an augmented state variable. We designed our
SSV model architecture to support these.

Further elaborating on the point of augmented state variable, our SSV models log P̂∆
t as a function

of (ht, ht+1). By extension, log P̂∆
t depends on (st, ht, at). Modification are required before em-

ploying PPO-Lagrangian to solve this CRL program: the MDP state is expanded to accommodate

6



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Table 1: Safe RL Performance Comparison (Evaluation Environment) in Safety Gymnasium. Safe policies in
bold black color, and best among all safe in blue color; all others in grey. Numbers in () are standard deviations.

Task Metric PPO-Lagrangian RLSF C&B + CRL (Ours) SSV + TraCeS (Ours)

PointCircle1 Reward 46.6 (1.4) 41.9 (1.8) 40.2 (1.1) 43.2 (1.5)
Cost 21.5 (7.2) 1.6 (2.2) 25.3 (15.9) 16.2 (7.2)

Labeled Trajectories NA 3244 (966) 12000 (0) 5830 (918)

PointCircle2 Reward 41.7 (0.9) 39.9 (0.8) 40.2 (0.8) 41.1 (0.9)
Cost 29.1 (6.00) 2.6 (4.5) 22.7 (13.5) 19.8 (9.5)

Labeled Trajectories NA 3422 (589) 12000 (0) 5465 (1328)

CarCircle1 Reward 18.3 (0.4) 14.3 (2.2) 18.0 (0.5) 17.4 (0.9)
Cost 23.5 (5.9) 33.8 (41.7) 28.2 (11.7) 11.3 (8.0)

Labeled Trajectories NA 7479 (645) 12000 (0) 4005 (7)

CarCircle2 Reward 16.2 (0.2) 13.7 (1.1) 15.3 (0.9) 15.2 (0.9)
Cost 28.3 (5.2) 20.2 (17.0) 44.0 (24.0) 11.9 (10.0)

Labeled Trajectories NA 7601 (597) 12000 (0) 4341 (243)

Ant Reward 3313.1 (53.8) 2220.7 (91.8) 3096.7 (63.7) 2885.4 (12.3)
Cost 14.4 (6.8) 5.8 (2.6) 20.3 (4.1) 19.5 (5.3)

Labeled Trajectories NA 9036 (1289) 6000 (0) 4657 (551)

HalfCheetah Reward 3008.3 (52.9) 2468.8 (177.0) 2623.5 (264.6) 2372.5 (272.6)
Cost 2.1 (1.2) 0.5 (0.9) 99.7 (74.5) 22.4 (5.3)

Labeled Trajectories NA 4349 (793) 6000 (0) 2749 (557)

Hopper Reward 1046.1 (345.2) 1577.7 (42.1) 1620.1 (139.9) 1610.7 (48.9)
Cost 29.1 (36.2) 20.4 (44.2) 284.2 (289.2) 17.1 (4.7)

Labeled Trajectories NA 6690 (736) 6000 (0) 2993 (484)

Walker2d Reward 2682.2 (333.2) 2797.7 (122.0) 2491.0 (478.3) 2211.2 (182.0)
Cost 10.3 (5.5) 0.3 (0.3) 16.7 (9.1) 24.1 (3.9)

Labeled Trajectories NA 15227 (1920) 6000 (0) 5735 (1041)

ht at timestep t. Consequently, the policy network πθ(a|s, h) and the cost-critic network V π
c (s, h)

both take s and h as input. We name our method, which learns the safety credit assignment model
in figure 1b and safe RL using decomposed scores log P̂∆

t , as TraCeS.

Continual Constraint Model Learning: Before commencing safe RL, the constraint models
should reach some level of accuracy in order to provide accurate safety information to TraCeS.
We therefore pre-train the constraint models using offline safe RL dataset in DSRL repository (Liu
et al., 2024). We wrote a script to provide sparse safety labels to the trajectory segments found in
DSRL dataset and pre-train our constraint models using this dataset to around 95% accuracy.

Another challenge in online RL is that as policy gets updated during training, the distribution of the
observed trajectories also changes. To remain accurate, the constraint models need to be retrained
with fresh set of trajectory data. We describe our continual learning strategy using coefficient of
variation (CV) method in appendix C.

4 EMPIRICAL RESULTS

Our experiments target to investigate the following: (1) Do the decomposed safety proxy variables
from our constraint models provide sufficient information to guide RL agent in producing safe tra-
jectory? What is the solution quality in terms of reward maximization? (2) How well do the decom-
posed safety proxy variables correspond to the unknown ground truth? Can it identify critical parts
of the trajectory which have the highest impact on safety? (3) Is the CV-based method in Section C.2
effective in reducing the amount of human feedback required yet retain high solution quality?

Experiment Setup: We conducted experiment on 12 control tasks: four MuJoCo (Todorov et al.,
2012) tasks, four circle tasks in safety gymnasium (Ji et al., 2023), and four run tasks in bullet safety
gym (Gronauer, 2022). For all these tasks, we consider the true cost and budget to be unknown
to the constraint models. The constraint model only learns the constraint from labeled trajectories.
Following the setup in Ji et al. (2023; 2024); Gronauer (2022), the ground-truth cost signal is binary
(0 or 1) and ground-truth budget is 25 in our experiments. To pretrain our constraint models, we use
the offline safe RL dataset from Liu et al. (2024). Sparse safety labels are given to a variable-length
trajectory segment: trajectory is only labeled safe if the true cost incurred is above the threshold.
Note that the baseline RLSF method is also pretrained with the same dataset.

Baselines: Our constraint models are designed to enable constrained RL when both budget and
cost are unknown and have to be learned from sparsely-labeled data. To the best of our knowledge,

7



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Total Cost Incurred

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

rib
ut

io
n 

- P
(S

af
e 

Tr
aj

)

SafetyWalker2dVelocity-v1

Figure 2: Distribution of Safety Score (Walker2d)

0 200 400 600 800 1000
0

20

40

Cu
m

ul
at

iv
e 

Co
st

Ant

Cumulative Cost
True Cost

0 200 400 600 800 1000
0

20

40

Walker2d

0 20 40 60 80 100
0

20

40

BallRun

0 50 100 150 200
0

20

40

CarRun

0 200 400 600 800 1000
Timestep

0

20

40

Cu
m

ul
at

iv
e 

Co
st

Cumulative Cost
Inferred Cost

0 200 400 600 800 1000
Timestep

0

20

40

0 20 40 60 80 100
Timestep

0

20

40

0 50 100 150 200
Timestep

0

20

40

Figure 3: Sample Trajectories from Four Tasks

the existing notable work which can serve as baselines include: (1) PPO-Lagrangian, an oracle
baseline where cost is directly observed and budget is known; (2) RLSF (Chirra et al., 2024), cost is
learned from human feedback but budget is known. These two baselines are compared with our two
proposed methods where both budget and cost are learned: (3) Cost Budget Model; and (4) Safety
Summary Vector Model TraCeS. PPO-Lagrangian baseline results are generated using omnisafe
framework (Ji et al., 2024). For our methods, the constraint models estimate the safety scores and
PPO-Lagrangian is used to perform safe RL. Our implementation are based on the PPO-Lagrangian
code in omnisafe framework.

Metrics: We assess the performance using two metrics: total return and total incurred true cost. We
report the metrics by evaluating 100 separate test trajectories using the trained policy and constraint
models at the end of safe RL training. These test trajectories are generated in another evaluation
environment, separate from the training environment. The metrics are reported in the terms of
average and standard deviation values across 8 training seeds.

Safe RL Performance: We performed safe RL trainng and evaluated our models against the base-
line methods and the evaluation results are tabulated in Table 1, and 2 (in supplement). The total
number of learning steps in all safety gymnasium tasks is 10 million steps. For bullet safety gym
tasks, BallRun task was trained for 1 million steps while the other three tasks were trained for 2
million steps. The training curves for all these tasks can be found in Figure 5, 6, 7. For our proposed
models, SSV method was trained with selective feedback (described in Section C.2) while C&B was
trained with higher number of feedback trajectories than the SSV method as the selective feedback
of section C.2 is not easily applicable in the C&B model.

From the final evaluation performance, we can observe that while C&B model achieves good qual-
ity solution in some tasks, it struggles to produce safe policy in a number of tasks, including two
CarCircle tasks, HalfCheetah, Hopper, AntRun and CarRun tasks. In comparison, the policy trained
using our SSV model is safe across all twelve tasks, with total return close to PPO-Lagrangian. We
reiterate that PPO-Lagrangian requires cost and budget to be known and RLSF assumes known bud-
get. SSV model does not have knowledge of both cost and budget, and its solution quality is close
to PPO-Lagrangian and RLSF, requiring fewer labeled trajectories than RLSF in several domains.

Credit Assignment: The RL performance result shows that our SSV model aids safe RL by decom-
posing safety signal to the critical timestep. This subsection aims to investigate this safety credit
assignment aspect further. The y-axes in the boxplots of Figure 2 (and figures 8, 9, 10 in sup-

8



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Ant Walker2d BallRun CarRun
0.0

0.1

0.2

0.3

0.4

0.5

Ra
tio

 (F
la

t R
eg

io
n 

Av
e 

/ T
ra

j A
ve

)

(a) Ratio of Average Logscore within “Flat Region” to
Overall Average Logscore

(-25, -20)(-20, -15)(-15, -10)(-10, -5) (-5, 0) (0, 5) (5, 10) (10, 15) (15, 20) (20, 25)
Window Positions

0

1

2

3

4

5

6

Ra
tio

 (W
in

do
w 

Av
e 

/ T
ra

j A
ve

)

SafetyWalker2dVelocity-v1

(b) Ratio of Window Average Score over Overall Av-
erage Score around Critical Region (Walker2d)

Figure 4: Credit Assignment within Flat Region and around Critical Region

plement) show the estimated probability of trajectory being safe while x-axis is the total cost in
a trajectory. Trajectories with lower cost incurred (less than 15) generally have higher estimated
probability of being safe. When the total incurred cost crosses beyond the ground-truth budget, i.e.
25, the estimated probability of safety drops to a low number. These figures demonstrate what the
model learns from labeled trajectory data: trajectory is estimated to be unsafe once it crosses the
ground-truth budget. This is expected as annotators label trajectories based on this threshold.

We next discuss how the inferred safety score is attributed to different timesteps within a trajectory.
Figure 3 depicts four sample trajectories from different tasks. The red curve is the ground-truth
1-0 cost and blue curve is the accumulated cost at different timestep. In the second row of figure,
we plot the normalized inferred cost from the SSV model, i.e. logscore at timestep t divided by
minimum logscore in the trajectory. The main purpose of this green curve is to inspect its safety
credit assignment behavior compared to the true cost. It can be observed from the figure that the
inferred cost typically peaks when the accumulated cost reaches 25, the ground-truth budget, and
there are other spikes closely following the true non-zero cost at other timesteps. In the “flat region”
of the blue curve where there is no additional cost incurred for an extended period of time, the SSV
model does not attribute cost to this region, which is accurate credit assignment as expected. To
ascertain this feature, in Figure 4a we plotted the ratio of average logscore within these flat regions
(of cumulative cost, blue curve) to the average logscore in the trajectory. It confirms our observation
that the inferred cost in the “flat region” is much lower.

We saw from Figure 3 that most of the inferred cost concentrates around the critical timestep when
the accumulated real cost exceeds 25. We plotted Figure 4b (and figures 11, 12, 13 in supplement)
to inspect the statistics of inferred cost around this critical timestep. In each of these figures, x-axis
refers to the window (with length of 5 timesteps) around the critical timestep and y-axis is the ratio
of average logscore within the window to the overall average logscore within the trajectory. The
inferred cost signal is typically highest in the next five timesteps immediately following the critical
timestep and this inferred cost trails off as timestep increases. Due to the sparse safety feedback
mechanism, we do expect some credit assignment to be slightly delayed but these figures confirm
that most of the safety credit assignment happens right after the critical timestep.

Trajectory Selection: To assess the effectiveness of our proposed selective feedback strategy (de-
scribed in Section C.2), we also trained the SSV method using all training trajectories encountered
for labeling. The result is in Table 3. Compared to the selective feedback strategy, using all training
trajectories for labeling does not seem to produce significantly different result. The total return and
ground-truth cost are comparable across all twelve tasks. We therefore conclude that the selective
feedback strategy does reduce feedback required while retaining good solution quality.

5 CONCLUSION

In this work, we study safe RL with unknown safety constraint. We propose two constraint models
to model both the unknown cost and budget to enable constrained RL to be carried out. We discuss
the unique design of our constraint model to perform credit assignment. The empirical result shows
that, with our SSV safety model, safe policy is achieved while maintaining high solution quality
with total return close to oracle methods.

9



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

Eitan Altman. Constrained markov decision processes with total cost criteria: Lagrangian approach
and dual linear program. Mathematical methods of operations research, 48(3):387–417, 1998.

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine learning, vol-
ume 4. Springer, 2006.

Shashank Reddy Chirra, Pradeep Varakantham, and Praveen Paruchuri. Safety through feedback
in constrained RL. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=WSsht66fbC.

Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learning constraints from demonstrations, 2019.

Glen Chou, Necmiye Ozay, and Dmitry Berenson. Learning parametric constraints in high dimen-
sions from demonstrations. In Proceedings of the Conference on Robot Learning, pp. 1211–1230,
2020.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
forcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(167):
1–51, 2018.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. Technical
report, mediaTUM, 2022.

Sehoon Ha, Peng Xu, Zhenyu Tan, Sergey Levine, and Jie Tan. Learning to walk in the real world
with minimal human effort. In Conference on Robot Learning, pp. 1110–1120. PMLR, 2021.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference, and prediction, 2017.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement
learning benchmark. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=
WZmlxIuIGR.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. Journal of Machine Learning Research, 25(285):1–6, 2024.
URL http://jmlr.org/papers/v25/23-0681.html.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Victoria Krakovna, Laurent Orseau, Ramana Kumar, Miljan Martic, and Shane Legg. Penalizing
side effects using stepwise relative reachability. arXiv preprint arXiv:1806.01186, 2018.

Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

Guiliang Liu, Yudong Luo, Ashish Gaurav, Kasra Rezaee, and Pascal Poupart. Benchmarking con-
straint inference in inverse reinforcement learning. In International Conference on Learning
Representations, 2023.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu, Wen-
hao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe rein-
forcement learning. Journal of Data-centric Machine Learning Research, 2024.

10

https://openreview.net/forum?id=WSsht66fbC
https://openreview.net/forum?id=WZmlxIuIGR
https://openreview.net/forum?id=WZmlxIuIGR
http://jmlr.org/papers/v25/23-0681.html


Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Shehryar Malik, Usman Anwar, Alireza Aghasi, and Ali Ahmed. Inverse constrained reinforcement
learning. In International conference on machine learning, pp. 7390–7399. PMLR, 2021.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., 1st edition, 1994.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 7(1):2, 2019.

Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science, 7(2):
123–146, 1995.

Sandhya Saisubramanian, Shlomo Zilberstein, and Ece Kamar. Avoiding negative side effects due
to incomplete knowledge of AI systems. AI Mag., 42(4):62–71, 2021.

Sandhya Saisubramanian, Ece Kamar, and Shlomo Zilberstein. Avoiding negative side effects of
autonomous systems in the open world. J. Artif. Intell. Res., 74:143–177, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

R Shah and D Krasheninnikov. Preferences implicit in the state of the world. In International
Conference on Learning Representations (ICLR), 2019.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, 1998.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Alex Turner, Neale Ratzlaff, and Prasad Tadepalli. Avoiding side effects in complex environments.
Advances in Neural Information Processing Systems, 33:21406–21415, 2020a.

Alexander Matt Turner, Dylan Hadfield-Menell, and Prasad Tadepalli. Conservative agency via
attainable utility preservation. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and
Society, pp. 385–391, 2020b.

Shun Zhang, Edmund H Durfee, and Satinder Singh. Minimax-regret querying on side effects for
safe optimality in factored markov decision processes. In IJCAI, pp. 4867–4873, 2018.

Zidong Zhang, Dongxia Zhang, and Robert C Qiu. Deep reinforcement learning for power system
applications: An overview. CSEE Journal of Power and Energy Systems, 6(1):213–225, 2019.

A APPENDIX

B COST & BUDGET MODEL

B.1 SAFETY MODEL ARCHITECTURE

This model aims to learn the cost function ĉ and budget b̂ using safety-labeled variable-length tra-
jectories in the safety feedback dataset. The probability of a trajectory being safe is computed
using the estimated remaining budget b̂ −

∑T−1
t=0 ĉ(st, at) having observed a trajectory τ of length

11



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

T . The C&B model uses the sigmoid function to map the estimated remaining budget to esti-
mated safety probability: with b̂ being the estimated budget and ĉ(s, a) being the estimated cost
of executing action a at state s, the estimated probability of a trajectory τ0:T being feasible is
P̂ (ψ0:T−1 = 1|τ0:T−1) = σ(b̂−

∑T−1
t=0 ĉ(st, at)) where σ(·) is the sigmoid function.

Figure 1a depicts the architecture of C&B Model. Given a trajectory τ0:T−1 of length T , the model
outputs T estimated costs and a single estimated budget. The model parameters are trained by
minimizing the binary cross entropy loss (Bishop & Nasrabadi, 2006; Goodfellow et al., 2016):

B.2 SAFE RL USING C&B MODEL

With the estimates of costs ĉ(·, ·) and budget b̂, we solve for the following reformulated problem:

max
θ
JR(πθ) = Eτ∼πθ [

∞∑
t=0

γtR(st, at)]

s.t. Jc(πθ) = Eτ∼πθ [

∞∑
t=0

γtĉ(st, at)] ≤ b̂

(11)

With the reformulated problem in Equation equation 11 being in the standard CRL form, we can
employ PPO-Lagrangian (Tessler et al., 2018) to solve this program.

C CONTINUAL LEARNING FOR SAFETY MODEL

C.1 CONTINUAL LEARNING STRATEGY

Since our end goal is to use the constraint models to facilitate online safe RL, the constraint models
need to be constantly updated with the in-distribution trajectory data encountered during safe RL
training. Without continual learning, the constraint model might not remain accurate and it might
provide erroneous guidance while trying to steer the policy toward feasible region.

To prevent catastrophic forgetting (Robins, 1995), the constraint models are retrained using sparsely
labeled in-distribution data and rehearsed with old data used in pre-training. This retraining process
is executed once sufficient number of training trajectories is collected during safe RL phase.

C.2 SELECTING TRAJECTORY FOR FEEDBACK

To reduce the total number of feedback required for safety labeling, we included an enhancement
to the safety summary vector model in 1b. Instead of giving a point estimate log P̂∆

t , the decoder
module outputs the parameters of a negative lognormal distribution −Lognormal(µt, σt) and the
actual safety score log P̂∆

t is sampled from the distribution. The estimated log-probability of entire
log P̂ (ψ0:T−1 = 1|τ0:T−1) is thus the sum of these T random variables.

The rationale behind learning these parameters is to gauge the uncertainty behind the safety score
estimate. For a continuous random variable, the coefficient of variation (CV) is typically used to
measure its dispersion (Hastie et al., 2017). CV captures the relative uncertainty in the estimated
safety score across a trajectory. Note that these T random variables are conditionally independent,
conditioning on observing the trajectory τ0:T−1. The mean, variance and CV of the final sum are
therefore:

E[
∑T−1

t=0
X] =

∑T−1

t=0
E[X]

Var[
∑T−1

t=0
X] =

∑T−1

t=0
Var[X]

CV[
∑T−1

t=0
X] =

√
Var[

∑T−1
t=0 X]

E[
∑T−1

t=0 X]
=

√∑T−1
t=0 Var[X]∑T−1
t=0 E[X]

(12)

The CV of the final sum of safety scores (for a trajectory segment of length T ) can be easily calcu-
lated using equation 12 since the decoder module outputs the distribution parameters of the negative
lognormal distributions. During continual learning, we calculate the CV value for each training
trajectory and only select the training trajectories with high CV for labeling and retraining.

12



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

D ADDITIONAL RESULTS

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

10

20

30

40

50

Re
tu

rn

SafetyPointCircle1-v0

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

10

20

30

40

50

SafetyPointCircle2-v0

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

5

10

15

20

SafetyCarCircle1-v0

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

5

10

15

20

SafetyCarCircle2-v0

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

100

200

300

Co
st

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

100

200

300

400

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

50

100

150

200

250

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

100

200

300

400

PPO-Lagrangian (Cost & Budget Known) Cost & Budget Model Safety Summary Vector Model

Figure 5: Training Curve for Circle Tasks

0.0 0.2 0.4 0.6 0.8 1.0
1e7

4000

2000

0

2000

Re
tu

rn

SafetyAntVelocity-v1

0.0 0.2 0.4 0.6 0.8 1.0
1e7

1000

0

1000

2000

3000

SafetyHalfCheetahVelocity-v1

0.0 0.2 0.4 0.6 0.8 1.0
1e7

500

0

500

1000

1500

2000

2500
SafetyHopperVelocity-v1

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

1000

2000

3000
SafetyWalker2dVelocity-v1

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

20

40

60

80

100

Co
st

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

50

100

150

200

250

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

200

400

600

800

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

50

100

150

PPO-Lagrangian (Cost & Budget Known) Cost & Budget Model Safety Summary Vector Model

Figure 6: Training Curve for MuJoCo Velocity Tasks

0.0 0.5 1.0 1.5 2.0
1e6

0

200

400

600

Re
tu

rn

SafetyAntRun-v0

0.0 0.2 0.4 0.6 0.8 1.0
1e6

500

0

500

1000

1500

SafetyBallRun-v0

0.0 0.5 1.0 1.5 2.0
1e6

200

0

200

400

600

800
SafetyCarRun-v0

0.0 0.5 1.0 1.5 2.0
1e6

0

100

200

300

400

500

SafetyDroneRun-v0

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

10

20

30

40

50

60

Co
st

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e6

20

0

20

40

60

80

100

0.0 0.5 1.0 1.5 2.0
Steps 1e6

0

50

100

150

200

0.0 0.5 1.0 1.5 2.0
Steps 1e6

25

0

25

50

75

100

125

PPO-Lagrangian (Cost & Budget Known) Cost & Budget Model Safety Summary Vector Model

Figure 7: Training Curve for Bullet Run Tasks

13



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Total Cost Incurred

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

rib
ut

io
n 

- P
(S

af
e 

Tr
aj

)

SafetyAntVelocity-v1

Figure 8: Distribution of Safety Score (Ant)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Total Cost Incurred

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

rib
ut

io
n 

- P
(S

af
e 

Tr
aj

)

SafetyBallRun-v0

Figure 9: Distribution of Safety Score (BallRun)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Total Cost Incurred

0.2

0.4

0.6

0.8

1.0

Di
st

rib
ut

io
n 

- P
(S

af
e 

Tr
aj

)

SafetyCarRun-v0

Figure 10: Distribution of Safety Score (CarRun)

(-25, -20) (-20, -15) (-15, -10) (-10, -5) (-5, 0) (0, 5) (5, 10) (10, 15) (15, 20) (20, 25)
Window Positions

0

1

2

3

4

5

6

7

8

Ra
tio

 (W
in

do
w 

Av
e 

/ T
ra

j A
ve

)

SafetyAntVelocity-v1

Figure 11: Ratio of Average Logscore within 5-Timestep Window to Overall Average Logscore
around Critical Region (Ant)

14



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

(-25, -20) (-20, -15) (-15, -10) (-10, -5) (-5, 0) (0, 5) (5, 10) (10, 15) (15, 20) (20, 25)
Window Positions

0

1

2

3

4

5

6

7

8

Ra
tio

 (W
in

do
w 

Av
e 

/ T
ra

j A
ve

)

SafetyBallRun-v0

Figure 12: Ratio of Average Logscore within 5-Timestep Window to Overall Average Logscore
around Critical Region (BallRun)

(-25, -20) (-20, -15) (-15, -10) (-10, -5) (-5, 0) (0, 5) (5, 10) (10, 15) (15, 20) (20, 25)
Window Positions

0

1

2

3

4

5

6

7

8

Ra
tio

 (W
in

do
w 

Av
e 

/ T
ra

j A
ve

)

SafetyCarRun-v0

Figure 13: Ratio of Average Logscore within 5-Timestep Window to Overall Average Logscore
around Critical Region (CarRun)

Table 2: Safe RL Performance Comparison (Evaluation Environment) in Bullet Safety Gym. Safe
policies in bold black color, and best among all safe in blue color; all others in grey. Numbers in ()
are standard deviations. Note that RLSF implementation does not support Bullet Safety Gym.

Task Metric PPO-Lagrangian C&B + CRL (Ours) SSV + TraCeS (Ours)

AntRun Reward 683.7 (24.7) 654.6 (39.8) 590.5 (32.3)
Cost 25.4 (25.3) 33.3 (21.5) 21.4 (1.9)

Labeled Trajectories NA 6000 (0) 6521 (1008)

BallRun Reward 579.5 (332.2) 485.8 (29.7) 457.0 (30.1)
Cost 17.8 (28.9) 35.3 (22.3) 24.7 (0.8)

Labeled Trajectories NA 6000 (0) 2627 (229)

CarRun Reward 577.7 (17.8) 569.1 (8.2) 568.3 (9.4)
Cost 22.0 (8.9) 13.3 (11.9) 23.3 (1.1)

Labeled Trajectories NA 6000 (0) 8832 (988)

DroneRun Reward 459.0 (10.4) 446.4 (5.1) 440.0 (3.3)
Cost 33.2 (8.1) 18.1 (7.2) 13.6 (10.5)

Labeled Trajectories NA 6000 (0) 3494 (541)

15



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Table 3: Safe RL (Evaluation Performance) Comparison for SSV Model with Selective Feedback.
Safe policies in bold black color, and best among all safe in blue color; all others in grey. Numbers
in () are standard deviations.

Task Metric SSV + TraCeS (Selective) SSV + TraCeS (All)

PointCircle1 Reward 43.2 (1.5) 44.7 (2.5)
Cost 16.2 (7.2) 17.0 (7.9)

PointCircle2 Reward 41.1 (0.9) 40.1 (2.1)
Cost 19.8 (9.5) 15.4 (10.3)

CarCircle1 Reward 17.4 (0.9) 18.3 (0.3)
Cost 11.3 (8.0) 14.9 (9.6)

CarCircle2 Reward 15.2 (0.9) 15.6 (0.6)
Cost 11.9 (10.0) 10.0 (4.9)

Ant Reward 2885.4 (12.3) 2821.3 (242.5)
Cost 19.5 (5.3) 17.5 (2.9)

HalfCheetah Reward 2372.5 (272.6) 2771.1 (139.4)
Cost 22.4 (5.3) 19.5 (1.9)

Hopper Reward 1610.7 (48.9) 1655.1 (41.0)
Cost 17.1 (4.7) 20.6 (2.9)

Walker2d Reward 2211.2 (182.0) 2329.4 (309.1)
Cost 24.1 (3.9) 20.7 (2.0)

AntRun Reward 590.5 (32.3) 587.7 (27.4)
Cost 21.4 (1.9) 22.8 (2.8)

BallRun Reward 457.0 (30.1) 499.2 (12.3)
Cost 24.7 (0.8) 24.6 (0.8)

CarRun Reward 568.3 (9.4) 566.5 (14.9)
Cost 23.3 (1.1) 23.7 (0.7)

DroneRun Reward 440.0 (3.3) 394.6 (134.5)
Cost 13.6 (10.5) 32.0 (45.6)

16


	Introduction
	Background Information
	Constrained MDPs
	Safety Feedback Dataset

	Safety Constraint Models
	Cost & Budget Model
	Safety Summary Vector Model
	Safety Credit Assignment
	Problem Reformulation
	Safety Model Architecture


	Empirical Results
	Conclusion
	Appendix
	Cost & Budget Model
	Safety Model Architecture
	Safe RL Using `3́9`42`"̇613A``45`47`"603AC&B Model

	Continual Learning for Safety Model
	Continual Learning Strategy
	Selecting Trajectory for Feedback

	Additional Results

