1550

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 8, AUGUST 2013

3D-2D Registration of Cerebral Angiograms:
A Method and Evaluation on Clinical Images

Uros Mitrovi¢*, Ziga Spiclin, Bostjan Likar, and Franjo Pernus

Abstract—Endovascular image-guided interventions (EIGI) in-
volve navigation of a catheter through the vasculature followed by
application of treatment at the site of anomaly using live 2D pro-
jection images for guidance. 3D images acquired prior to EIGI are
used to quantify the vascular anomaly and plan the intervention.
If fused with the information of live 2D images they can also facili-
tate navigation and treatment. For this purpose 3D-2D image reg-
istration is required. Although several 3D-2D registration methods
for EIGI achieve registration accuracy below 1 mm, their clinical
application is still limited by insufficient robustness or reliability.
In this paper, we propose a 3D-2D registration method based on
matching a 3D vasculature model to intensity gradients of live 2D
images. To objectively validate 3D-2D registration methods, we ac-
quired a clinical image database of 10 patients undergoing cerebral
EIGI and established “gold standard” registrations by aligning
fiducial markers in 3D and 2D images. The proposed method had
mean registration accuracy below 0.65 mm, which was comparable
to tested state-of-the-art methods, and execution time below 1 s.
With the highest rate of successful registrations and the highest
capture range the proposed method was the most robust and thus
a good candidate for application in EIGI.

Index Terms—Cerebral angiograms, evaluation, gold standard,
image-guided interventions, 3D-2D registration.

I. INTRODUCTION

N RECENT years, minimally invasive endovascular image-

guided interventions (EIGIs) have been developed for treat-
ment of many types of cerebrovascular diseases like stenosed
or totally occluded vessels, aneurysms, tumor beds, or arteri-
ovenous malformations (AVMs). To reliably quantify the site,
form and extent of a vascular anomaly and to plan the inter-
vention, 3D images are acquired prior to EIGI either by com-
puted tomography angiography (CTA), magnetic resonance an-
giography (MRA), or more recently by 3D rotational angiog-
raphy (3DRA) and digitally subtracted 3DRA (3D-DSA) using
a C-arm. An EIGI is guided by low dose 2D X-ray fluoroscopic
images which have excellent spatial and temporal resolution,
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but unfortunately lack contrast and especially depth informa-
tion. During EIGI the vasculature is occasionally emphasized
by injecting a contrast agent into the bloodstream; however, its
excessive use may result in hazardous patient reactions.
Navigation and optimal application of devices in 3D based
on observing 2D images demand considerable skills in mental
reconstruction of a 3D scene and image-hand coordination. An
emerging technical solution is to exploit the positive aspects of
3D and 2D images by fusing the static 3D information with the
temporal information of the live 2D fluoroscopic images [1], [2].
The fused 3D and 2D data may be exploited in two ways. First,
by projecting static 3D data like (segmented) vessels, associ-
ated pathology and important surrounding tissue and/or treat-
ment plan onto the live 2D fluoroscopic images obtained under
any C-arm projection angle. Second, by back-projecting the dy-
namic information in live 2D fluoroscopic images, like the po-
sition of devices and the propagation of contrast agent, onto the
3D image. The immediate clinical benefits of both strategies
are more accurate navigation and reduction of X-ray dose and
harmful contrast agent. Additionally, the second strategy may
further improve diagnosis and lead to better intervention plan-
ning and intra- and post- intervention evaluation. A good spatial
alignment of 3D and 2D images, however, is crucial to all strate-
gies of fusion and can be achieved by 3D-2D image registration.
Before a 3D-2D image registration method can be incorpo-
rated into an EIGI workflow, it must undergo extensive valida-
tion because the sources of alignment errors and uncertainties
are numerous. Objective and thorough validation and compar-
ison to state-of-the-art methods requires acquisition of valida-
tion image datasets, definition of corresponding “gold standard”
registration and its accuracy, and design of validation protocol
and metrics. To the best of our knowledge, no clinical image
datasets with “gold standard” registrations are publicly avail-
able for validating 3D-2D registrations of cerebral angiograms.

A. Related Work

Registration of live 2D fluoroscopic images with 3D CTA,
MRA, or 3D-DSA images belongs to the category of 3D-2D
(often also 2D-3D) registrations, and has been studied not only
in the context of endovascular interventions, but even more
deeply in the contexts of image-guided radiation therapy and
image-guided minimally invasive therapies. Recently, we have
comprehensively surveyed the 3D-2D registration methods [3].
The methods are mainly characterized by the nature of registra-
tion basis and dimensional correspondence. According to the
nature of registration basis, 3D-2D image registration methods
can be categorized as calibration-based and extrinsic or in-
trinsic image-based methods. Dimensional correspondences
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are established either by the projection, back-projection, or
reconstruction strategies. Here, we limit the review of 3D-2D
registration methods to those that have been proposed for
registering images of vasculature.

Most calibration-based methods [4], [5] are limited to
3D-DSA to fluoroscopy registrations as they are based on the
geometry of a calibrated C-arm X-ray angiography device.
Because the 3D-DSA image is obtained with the same device
as the 2D fluoroscopic images, registration can be calculated
on the basis of the imaging geometry and calibration data.
However, even small patient movements between the acquisi-
tion of the 3D-DSA and fluoroscopic images may hamper the
calibration-based registration, which limits its use in EIGI.

Extrinsic image-based methods [6] rely on artificial objects
like stereotactic frames or a small number of markers attached to
frames, catheters, or implanted into bone, soft tissue, or skin-af-
fixed. While stereotactic frames and bone implanted markers are
rigidly attached, skin markers and markers implanted into soft
tissue can move due to skin elasticity or soft tissue deforma-
tion. Besides, registrations are generally accurate only over the
region covered by the markers.

Intrinsic image-based registration methods rely solely on vas-
culature information in 3D and 2D images. The 3D-DSA, CTA,
and MRA are standard acquisition techniques that clearly reveal
the vasculature, while in the live 2D fluoroscopic images the
vasculature is made visible by contrast agent injection. This is
probably not a drawback of intrinsic methods, as contrast agent
is routinely injected several times during EIGI, e.g., for navi-
gation and blood flow visualization. The intrinsic image-based
methods are further categorized as intensity-, feature-, and gra-
dient-based or hybrid methods [3].

Intensity-based 3D-2D registration methods [7]-[13] are
typically based on 2D-2D matching of real fluoroscopic and
simulated images, called digitally reconstructed radiographs
(DRRs), obtained by casting virtual rays through a CTA, MRA,
or 3DRA image. The most frequently used similarity measures
for these methods are mutual information, cross correlation,
pattern intensity, gradient correlation and gradient difference.
Hipwell ef al. [9] analyzed six different similarity measures
and showed that pattern intensity and gradient difference gave
the best results. Van der Bom [12] analyzed seven different
optimizers and three different similarity measures and showed
that the combination of Powell’s optimization method and
gradient correlation was optimal. McLaughlin ef al. [11] com-
pared an intensity-based method using gradient difference and
a feature-based registration method [14] and showed that the
former was more accurate and reliable but significantly slower.
Owing to DRR generation, high computational complexity is
characteristic of intensity-based methods.

Feature-based methods [14]-[20] rely on matching corre-
sponding features extracted from 3D and 2D images. Feldmar
et al. [16] modeled vessels as curves in 3D and 2D and matched
the curve points and orientations using the iterative closest
point (ICP) framework. To speed-up ICP matching, Rivest-Hé-
nault et al. [20] precomputed a modified distance transform
of a segmented vessel tree. Groher et al. [17] used branching
points and topology of the segmented vessel tree as features
in a modified ICP framework. In [18] the method in [17] was
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extended to a maximum likelihood segmentation-registration
framework that projects the 3D skeleton of the vessel tree to
2D so as to initialize and execute the 2D segmentation. The
2D skeleton obtained from the segmented image is registered
with the projection of the 3D skeleton. The advantage of
feature-based methods is their low computational complexity
because of large data reduction. Unfortunately, the accuracy of
these methods depends directly on the quality of segmentation
by which features are extracted. Besides, segmentation of live
2D images may be too time consuming to allow clinical use of
feature-based methods.

Gradient-based methods [21] are based on the fact that rays
emanating from the X-ray source and pointing to edges in
the X-ray image are tangent to surfaces of distinct anatom-
ical structures [22]. Recently, Mitrovic et al. [21] applied a
gradient-based 3D-2D registration method [23] to cerebral
vessels. Computational demands are usually lower than in
intensity-based methods since only a certain number of sig-
nificant volume gradients is processed. However, the gradient
matching process is driven mainly by gradient magnitude
information, which is sensitive to spatial variations of image
contrast. Besides, one-to-one gradient matching is sensitive to
small image transformations and thus not very robust.

The registration methods that use a mixed registration basis
are referred as hybrid methods [2], [24]-[30]. Turgeon et al. [26]
registered a triangulated mesh model of vasculature, extracted
from a pre-EIGI 3D image by multiscale segmentation, to seg-
mented 2D image(s) by using entropy correlation coefficient as
similarity measure. Similarly, Copeland et al. [2] created a trian-
gular mesh of vasculature using Marching cubes segmentation
that was projected and correlated to enhanced 2D time series.
Ruijters et al. [25] registered the 2D distance transform of a pro-
jected skeleton of the pre-EIGI 3D image to the vessel enhanced
2D fluoroscopic image using the dot-product of the two im-
ages as similarity measure. Jomier et al. [27] projected each 3D
vessel centerline point onto the 2D-DSA image and smoothed
the intensities in the projected point’s neighborhood propor-
tionally to the corresponding vessel radius. The similarity mea-
sure for 3D-2D registration was the sum of smoothed intensities
at the projected centerline points, weighted by corresponding
vessels’s radii. Typically, the hybrid methods mimic the inten-
sity-based methods, but approximate or even avoid DRR gener-
ation and, instead, employ efficient methods for projecting 3D
information to 2D.

For validating the 3D-2D image registration methods there
exist four publicly available image datasets, two of cadaveric
spine segments [31], [32] one of a porcine cadaver head [33]
and one with synthetic spine and pelvis images generated from
the Visible Human data [34]. Quite accurate reference (or “gold
standard”) registrations are available for all four datasets, as
they were obtained using fiducial markers [31], [33], knowl-
edge of image acquisition geometry and intensity based regis-
tration [32] and knowledge of image generation geometry [34].
The problem with these datasets is that clinical realism is cap-
tured only to a limited extent, except for the porcine cadaver
head image dataset, and that images do not capture the rich bi-
ological variability, which can be captured only by imaging a
large number of patients. Besides, validation of a 3D-2D regis-
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tration method has to be performed according to a clinical con-
text. The clinical context associated with the publicly available
image datasets is spine surgery [31], [32], [34], and radiotherapy
of the head [33]. For other clinical contexts such as (cerebral)
EIGI, to the best of our knowledge, no validation datasets exist.

B. Motivation and Our Approach

The main motivation for this work is twofold. First, in most of
the reviewed references the authors primarily aim to achieve a
high level of accuracy of their 3D-2D registration method. The
reviewed methods typically achieved mean registration accu-
racy below 1 mm that is probably acceptable for EIGI. However,
their rather low computational efficiency and, especially, robust-
ness limit their application in EIGI. Robustness of a method may
also depend on the anatomy to which it is applied, e.g., methods
[81, [17]-[19], [27], [28] that were developed to register images
of larger vasculatures in the abdominal area may not be equally
robust on images of cerebral vasculature. Our first goal was,
therefore, to develop a computationally efficient and, more im-
portantly, a robust 3D-2D registration method. Second, to objec-
tively quantify the performance of 3D-2D registration methods,
with special attention dedicated to quantification of robustness,
realistic validation image datasets in the context of EIGI have to
be available. Our second goal was thus to acquire a large enough
clinical image database.

In this paper, based on our previous work in [29], we de-
velop a hybrid 3D-2D registration method, in which features
extracted from the pre-EIGI 3D image are matched directly to
information contained in live 2D images. Matching is based on
comparison of orientations at vessels’ centerline points, pro-
jected from 3D to 2D, to orientations of live 2D image(s) inten-
sity gradients within a certain neighborhood around a projected
centerline point. The idea of matching 3D vessel orientations
to orientations of 2D intensity gradients was inspired by com-
puter vision community [35], [36] where several studies demon-
strated robust matching of corresponding orientation features.
Such a 3D-2D registration is expected to be robust to signifi-
cant variations of image contrast that are characteristic of cere-
bral angiograms.

To extensively and objectively validate the novel method
and compare it to state-of-the-art methods, we have acquired
a clinical image database comprised of 10 image datasets of
patients undergoing cerebral-endovascular treatment. Eight pa-
tients underwent aneurysm treatment and two underwent AVM
embolization. The degree of the cerebrovascular pathologies
varied considerably between the patients. Accurate “gold stan-
dard” 3D-2D registrations relating any point in the pre-EIGI
3D image to its corresponding point on a 2D view requires
a retrospective calibration of the C-arm imaging system and
a retrospective positioning of the pre-EIGI 3D image in the
patient space. These two tasks were simultaneously achieved
by aligning fiducial markers attached to patients and visible
both in 3D and 2D images. We believe that 10 clinical image
datasets acquired in the context of cerebral EIGI enable an
objective and thorough evaluation of novel and state-of-the-art
3D-2D registration methods.
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C. Contributions

The work presented in this paper makes several methodolog-

ical, data, and validation contributions.

1) A novel, accurate, robust, and fast method for 3D-2D
rigid registration of cerebral angiograms is presented in
Section II,

2) A database of real clinical images prepared purposely for
quantitative evaluation of the performances of 3D-2D rigid
registration methods is presented in Section III,

3) Extensive and objective validation of the novel method and
its comparison to state-of-the-art intensity-, feature-, and
gradient-based 3D-2D registration methods is presented in
Sections IV and V.

II. METHOD

C-arm imaging is modeled as a perspective projection, the
parameters of which can be estimated through a calibration
procedure. Calibration is required prior to 3D-2D registra-
tion so that the exact position and orientation of the C-arm
imaging system in some world (patient) coordinate system
(Sw) is known (Fig. 1). The result of C-arm calibration is a
3 x 4 projection matrix P, which relates any 3D point in S,
to its corresponding 2D point on detector plane defined by
the coordinate system S;. To position the coordinate system
of a pre-EIGI 3D image (Sy) in Sy, so that corresponding
cerebrovascular structures on the projected 3D and live 2D
image(s) overlap, one has to find an optimal transformation
T(q) (4 x4 matrix) defined by six rigid-body parameters
q = (15;15,75‘,,77;.,ww_,wy,wz).1 Hence, a registration method is
required that relates the pre-EIGI 3D image and the live 2D
image(s) acquired by the C-arm imaging system.

The 3D-2D registration method we propose employs feature
extraction from the pre-EIGI 3D image followed by matching
of these features to the information in live 2D image(s). In fea-
ture extraction, the information on vasculature in the pre-EIGI
3D image is compressed to a 3D vessel tree model, which is
described by geometric primitives (GPs) that can be efficiently
projected from 3D to 2D. Geometric primitives describing the
3D vessel tree are the vessels’ centerline points, orientations
and radii. The alignment of 3D and 2D image(s) is achieved
by matching projected GPs to intensity gradients of live 2D
image(s). In the following, the 3D vessel tree model and the GP
matching process are described.

A. 3D Vessel Tree Model

A 3D vessel tree is modeled with a set of GPs: {GP;} =
{CP. VP RiY,i=1,2,..., N, where C3P are points on the
vessels’ centerlines and VP and R; are the associated orien-
tations and radii, respectively (Fig. 1). The GPs are obtained in
four steps.

1) Segmentation of the pre-EIGI 3D image by a manually
determined global threshold and selection of the largest
connected component as the output of segmentation.

2) Skeletonization using Lee’s thinning algorithm [37] to ob-
tain the vessels’ centerline points C3P.

U1t is assumed that the cerebral vasculature is a rigid structure.
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Fig. 1. Geometrical setup of 3D-2D registration and the basic principle of the proposed 3D-2D image registration method.

3) Hessian analysis in the scale-space of 3D neighborhood of
each centerline point C3 to obtain, at the scale of max-
imum medialness response, the vessels’ orientations V3P
as the eigenvector of the Hessian matrix associated with
the largest eigenvalue and the vessels’ radii R;[38].

4) Elimination of incorrect GPs related to false branches in
the 3D skeleton [17] and elimination of unreliable GPs
such as branching points without a unique orientation V37,

The vessels’ centerline points, the corresponding orientations
and radii could also be obtained in other ways [39], [40].

B. Matching of Geometrical Primitives

The 3D-2D registration method is based on matching orien-
tations V3D of the 3D vessel tree model, which point in the
direction of the vessel at points C3P and orientations of cor-
responding 2D intensity gradients of live 2D image(s), which
point in directions of largest intensity increases.

Let 2 = {x} denote the 2D image domain on which the in-
tensity gradients g2 are defined. Dimensional correspondence
between the GPs that are defined in 3D and the intensity gradi-
ents g2 that are defined in 2D is obtained by 3D to 2D projec-
tion of GPs

ci? =P-T(q) - CP
viP =P T(q) - (CF° + ViP) — fP.

)
2

By assuming that the orthogonal vessel cross sections are round,
each radius R; in 3D scales to a radius r; in 2D as
2D
rs — ¢ |
Ty =

I, 3)
e — CPP[

where 7, is the position of the X-ray source, |ry — C§D| and
|r — 2P| are source-to-centerline point and source-to-projected
centerline point distances, respectively, and | - | is the L» norm.

To reduce the influence of high magnitude gradients on the
matching process and to reduce the sensitivity to changes of
image contrast and to small image transformations, we employ a
neighborhood-based matching of orientations vZP to the orien-
tations of g” . For each v a set of intensity gradients {g7?},
i =1,2,..., Mj, is computed in a square neighborhood §2; of
c2P where Q; = {xi;; [c?P — % 0o < kri}. Here, the param-
eter & > 0 controls the size of the neighborhood. The degree of
matching between the orientations of vZP and {g??} is mea-

sured by the following similarity measure (SM)

N M 4 .
M = 2iet Zj:l flaj) )
D= N
Zi:l M;
where f(c; j) is the angle weighting function
. | sin”™ (e ), |g-2?\ >3
i) = wA L B 5
Jes) {0, otherwise )
and o ; denotes the angle between the #th unit vector V?D and
the yth intensity gradient g%? contained in £;
[ IVEP x gl
o = arcsin | —=—=51 . 6
: ( VEllg?? ©

To make the matching process more robust, the angle
weighting function in (5) employs two outlier rejection criteria.
The first determines a set of so-called plausible matches, while
the second controls the sensitivity of f(c ;) to weak matches.
A plausible match is represented by a high magnitude gradient
gf? and is determined according to the threshold parameter
B = |g2P|, where |g2P| is the mth percentile of the magnitude
distribution of g?P. A weak match, i.e., a higher deviation of
|vi ;| from 7 /2, is penalized by parameter 7 in the power of the
sine function in (5).
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(®)

Fig. 2. Intensity gradients {g?}"} and projected GPs {c¢?”. V?”} ina “gold
standard” (a) and displaced from “gold standard” position (b).

Fig. 2 illustrates the reasoning behind the proposed SM in
(4). When the pre-EIGI 3D image is optimally aligned with the
live 2D image, the ¢2P and vZP model the position and orien-
tation of a local centerline of the underlying 2D vessel, respec-
tively [Fig. 2(a)]. In this case vZP is perpendicular to most of
the high intensity gradients in {g??} If the pre-EIGI 3D image
is not optimally aligned, only a part of the vessel is within the
GP’s neighborhood £2; [Fig. 2(b)]. In this case, the plausible and
strong matches between orientations vZP and corresponding
gradients in {g??} will guide the registration in such a way
that ¢2P will move closer to the vessel’s centerline. Matching
is performed iteratively, by searching in each iteration for such
rigid-body parameters q+ that maximize the SM

q" = arg max SM.
q

(7

When two live 2D images are available during EIGI, then the
overall SM is simply the sum of individual SMs.

C. Implementation Details

The extraction of the 3D vessel tree model (Section II-A)
required by the proposed MGP method typically resulted in
N = 1700 GPs. During 3D-2D registration GPs were matched
to 2D intensity gradients g2P using the SM in (4). For each GP
projected from 3D to 2D, the angle weighting function (5) was
evaluated between the GP and all { g??} in a square neighbor-
hood €2;. For a particular choice of n = 2 in (5), which yielded
good registration performances as shown in Section V-B, the
sum of f(w; ;) over the square neighborhood €2; was efficiently
computed by using integral images [41]. First the intensity gra-
dients g?P < (3 were set to zero and the remaining intensity
gradients were normalized to unit length and denoted g2P. Note
that the projected GPs vZP were of unit length. Let (u, v)e€) in-
dicate pixel indices along horizontal and vertical 2D image axes,
respectively, and g77 = [gu; ; gv, ;1T and viP = [vu; vvi]T
If n is set to 2, the sum in the numerator of (4) expands to

j\’fi ]\'fi
> Hleag) =Y IviP x g PP
=1 =1

Mi

_ 2 E . 2
=VVvy gui,j
=1
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— 2vurvvi E gUy ;YT ;
i=1

+Vlliz E g\fij.
=1

Three integral images for corresponding three expanded sums
over j-s in (8) can be computed as [41]

®)

s{u,v; g) = gluw) + s(u—1,v59)

+s{uw —1;9) —s(u—T1,0v—1;9) (9)
where g = {gu?, gv?, gu - gu}. The integral image s(u, v; g) is
0 for u,v < 0. For each of the V projected GPs, i.e., V?D, the
corresponding three sums for g are evaluated as

M;
Zg =s(u; + 7,0 + 715 9)
j=1
= s(ug — i — L + 143 9)
— s(ui + riyo; —ri — 1y 9)

+5(ui—ri — Lo —ri—1;g) (19)

where (u;, v;) is the location of projected 3D centerline point
cZP Tt follows from (10) that for each ¢ the sum over neighbor-
hood €2; can be computed only by three add/subtract operations
and is independent of the neighborhood size ;. Hence, (8) can
be computed in only 15 multiply-add-subtract operations.

III. MATERIALS

A. Clinical Image Database

The clinical image database contained 10 image datasets of
patients undergoing cerebral-endovascular treatment. Images
were acquired just before the start of the treatment, while
patients were in deep anesthesia. The catheter was present in
all of acquired images. Eight patients underwent aneurysm
treatment and two underwent AVM embolization. The degree
of cerebrovascular pathologies varied considerably between the
patients (Fig. 3).The images were acquired on a Siemens Axiom
Artis dBA biplane flat panel detector angiography system. For
each patient two pre-EIGI rotational scans of the head were
first acquired, one with and one without contrast agent, which
resulted in two respective cone-beam computed tomography
(CBCT) volumes. The CBCT volumes were subtracted to ob-
tain a 3D digitally subtracted angiogram (3D-DSA) with high
vessel contrast. The CBCTs and the resulting 3D-DSA images
had voxel sizes of 0.46 x 0.46 x 0.46 mm and dimensions of
512 x 512 x 391. Next, two 2D fluoroscopic (2D-MAX) and
two 2D-DSA images were acquired from two views, one in
pure lateral (LAT) and the other approximately in anterior-pos-
terior (AP) gantry position. Compared to 2D-DSA images, the
2D-MAX images manifested lower vessel contrast and also
depicted nonvascular anatomical structures and interventional
tools. The 2D images had pixel sizes of 0.154 x 0.154 mm and
dimensions of either 1920 x 1920 or 2480 x 1920 pixels.

Prior to 3D-2D registration each 3D-DSA image was blurred
with a Gaussian filter (¢ = 0.5 mm) and resampled to isotropic
resolution of 0.75 mm. The live 2D images were blurred with
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Fig. 3. Characteristic lateral 2D-DSA clinical images. Patients 3 (a), 5 (b),
and 7 (c) underwent aneurysm treatment, while patient 8 (d) underwent AVM
treatment.

a Gaussian filter (¢ = 0.5 mm) and resampled to the isotropic
resolution of 0.3 mm. In each 3D-DSA image a volume of in-
terest (VOI) was defined as the bounding box containing the
segmented 3D vessel tree, while in each 2D image a rectan-
gular region of interest (ROI) containing the entire cerebral vas-
culature was defined manually. All 3D-2D registration methods
were applied to resampled 3D and 2D images and corresponding
VOIs and ROIs because of the high computational complexity
of the intensity-based method.

B. “Gold Standard” Registration

Since the acquired clinical image datasets will be used for
comparative evaluations of 3D-2D registration methods, an ac-
curate reference transformation (or a “gold standard” transfor-
mation) of any point in the pre-EIGI 3D image to its corre-
sponding point on a 2D view needs to be known. This requires
retrospective calibration of the C-arm imaging system and a
retrospective positioning of the pre-EIGI 3D image in the pa-
tient space. These two tasks were simultaneously achieved by
aligning fiducial markers attached to patients and visible both
in 3D and 2D images.

During the acquisition of 3D and 2D images, each patient
wore an elastic headband with 12 (Ny; = 12) integrated 2-mm-
diameter steel ball bearings, which served as fiducial markers
(Fig. 4). The centroid of the 12 fiducial markers approximately
coincided with the centroid of the cerebral vasculature. In this
way, the alignment based on fiducial markers should achieve
the highest accuracy near the centroid of the cerebral vascula-
ture [42]. The centers of fiducial markers were extracted from
all CBCTs without contrast agent and 2D-MAX images by using
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the intensity centroid method [43], [44]. As the presence of fidu-
cial markers on the 3D and 2D images can bias the 3D-2D regis-
trations, the areas of fiducial markers were removed from the 3D
and 2D images after obtaining the “gold standard.” Intensities
in the removed areas were substituted using spline interpolation
[8] [Fig. 4(d)].

Aligning the centers of fiducial markers in 3D and 2D images
involves finding the projection matrix P of the C-arm imaging
system for each 2D view and finding the optimal transformation
T(q) of the 3D image. The projection matrix P can be defined
by six geometric parameters of the C-arm imaging system, i.e.,
source-to-object (SOD) and source-to-detector distances (SID),
primary (PA), and secondary angles (SA) of the C-arm gantry
and coordinates of the principle point (ug, vg) on the flat panel
detector

SID 0 —u 0
P= 0 —SID  —wy | |[RpaRga| O (11)
0 0 1 —S0D

where Rps and Rga are 3 x 3 rotation matrices defined by the
PA and SA angles [45].

The projection matrices of LAT and AP 2D views, Ppat
and P ap, and the epipolar geometry [46] can be used to re-
construct in 3D the centers of fiducial markers X% from their
corresponding 2D centers. The reconstructed centers X2 and
centers of fiducial markers X; extracted from a 3D image were
aligned by minimizing the fiducial registration error (FRE)

1 Nas

Nog Z(XCB{(PLAT7 Pap) — T(q)X,). (12)
=1

FRE =

The rigid transformation T(q) that minimizes FRE was com-
puted by singular value decomposition. Approximate values of
the 12(6 + 6) geometric parameters defining the projection ma-
trices Prat and P ap were obtained from the DICOM header
of corresponding 2D images and were refined by minimizing
FRE. In total 18(6 + 6 + 6) parameters were optimized, re-
sulting in optimal LAT and AP projection matrices and optimal
rigid transformation T(q) that represented the “gold standard”
registration of each of the 10 clinical image datasets.

Based on the established methodology proposed by Fitz-
patrick et al. [42] the FRE can be used to predict the mean
target registration error (mTRE) for any target of interest. As
the target points we have used the 3D vessels’ centerline points
c?P . The obtained FREs ranged from 0.038 to 0.060 mm, while
the predicted mTREs that represent the accuracy of computed
“gold standard” registration ranged from 0.033 to 0.056 mm,
which indicated a highly accurate “gold standard.”

IV. EXPERIMENTS

The clinical image database was used to quantitatively eval-
uate the performances of the proposed and three state-of-the-art
3D-2D registration methods Table 1. Selection of the state-of-
the-art methods was limited to methods that are well established
in the field of 3D-2D registrations, and that are capable of reg-
istering a 3D image either to one 2D view or to multiple 2D
views simultaneously. The first of the state-of-the-art methods
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(@) (b)

@

Fig. 4. Typical 3D and 2D images with fiducial markers: a CBCT axial slice (a), a 2D-MAX LAT (b) and 2D-MAX AP (c) images. The arrows indicate the
locations of the fiducial markers. The rectangular area in (c) is shown enlarged in (d) top, while (d) bottom is obtained after substituting the intensity information

in the areas of fiducial markers by spline interpolation.

TABLE I
EVALUATED 3D-2D REGISTRATION METHODS CLASSIFIED BY THE
REGISTRATION BASIS, DIMENSIONAL CORRESPONDENCE AND APPLICATION

Registration Dimensional

Method basis correspondence Application
MIP-MI [9], [47] I“;Z‘;Z‘;y' Projection General
ICP [20] Fsztsl:de_ Projection Vascular
BGB [22] G{)afsfgt_ Back-projection General
MGP (Proposed . L
method) Hybrid Projection Vascular

was the intensity-based method that used maximum intensity
projection (MIP) images. MIPs were used instead of DRRs to
suppress subtraction artifacts and intensity inhomogeneities and
to obtain a simulated 2D-DSA image with high vessel-to-back-
ground contrast. Among the state-of-the-art similarity measures
[9] mutual information (MI) performed best on our clinical data-
base, thus results are presented only for the MI-based method,
referred to as MIP-MI. The second was the iterative closest point
(ICP) matching between the projected 3D and the 2D vessel tree
centerline points [20]. The third method was the back-projec-
tion gradient-based (BGB) method [22] that matches 3D nor-
mals to vessel walls and 2D X-ray gradients back-projected into
3D. The method proposed in Section II is based on matching of
the geometric primitives and was thus referred as the MGP. Ad-
ditional registration tests were performed by running consecu-
tively the proposed MGP and BGB methods so as to demon-
strate that the combined MGP + BGB can further improve the
registration performance. Rigid-body parameters obtained by
the MGP method were used as initial parameters for the BGB
method.

The compute-intensive MIP-MI method was implemented
in CUDA [48] and executed on NVIDIA GeForce GTS 450
graphics card. The vasculature centerline points needed to run
the ICP method were obtained by Live-Vessel software [49]. As
the extraction of centerline points is controlled by visual feed-
back, we expect to obtain similar centerline points for vessels in
2D-DSA and 2D-MAX images. Hence, centerline points were
extracted only from the 2D-DSA images and then applied to

corresponding 2D-MAX images. There were about 14 000 cen-
terline points per 2D image for which the distance transform
was precomputed so as to speed up the nearest neighbor search
to the projected 3D centerline points [20]. In the BGB method
the 3D intensity gradients were extracted using the Canny edge
detector, which typically resulted in about 17 000 edge points.
The 2D intensity gradients were computed by the central differ-
ence kernel.

Parameters of the evaluated state-of-the-art 3D-2D registra-
tion methods were experimentally set so as to obtain the best
registration performances on the clinical image dataset 1. In the
MIP-MI method, the sampling step along the projection rays
was 0.375 mm and the intensities were discretized in 64 bins to
compute the MI histograms. The ICP had no user-controlled pa-
rameters, while in the BGB method the sensitivity of the angle
weighting function, similar to (5), was set to n = 4.

In all evaluated 3D-2D registration methods, search for the
optimal rigid-body parameters (q+*) was performed by Powell’s
multi-dimensional directional set method [50]. The methods
were executed in MATLAB (The MathWorks, Inc., Natick,
MA, USA) on an Intel Core i7 CPU 860 @ 2.80 GHz computer
with 8 GB memory.

The experiments consisted of registrations of a 3D-DSA
image to either a LAT or AP view and simultaneously to
both 2D-DSA images. A similar set of experiments was per-
formed by using 2D-MAX instead of 2D-DSA images, i.e.,
the 3D-DSA image was registered to either a LAT or AP
view and simultaneously to both 2D-MAX images.Overall, we
performed 24 000 registrations per each of the tested method.

In the following subsections we describe the evaluation of
3D-2D registrations Section IV-A and the parameter settings of
the proposed MGP method Section IV-B. The influence of the
proposed 3D vessel tree model extraction Section II-A on the
performances of the MGP method is analyzed in Section IV-C.
Results of quantitative evaluation of the 3D-2D registration
methods are reported in Section V.

A. Registration Evaluation

The 3D-2D registration methods were evaluated by standard-
ized evaluation methodologies proposed by van de Kraats et
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al. [32] and Markelj et al. [34], in which mTRE is used as a
measure of the accuracy of a 3D-2D registration. The mTRE
was computed as the mean distance between 3D vessels’ cen-
terline points C3P in the “gold standard” position and the po-
sition as obtained by a 3D-2D registration method. Following
the methodology of van de Kraats et al. [32], rigid-body trans-
lations and rotations were randomly sampled in the range of
[—20, 20] mm and [—10, 10] degrees, respectively, so as to gen-
erate initial displacements of the pre-EIGI 3D image from the
“gold standard” position in the range of 0-20 mm of mTRE.
Twenty initial displacements were generated per each 1 mm
subinterval of mTRE, resulting in 400 different displacements
for each of the 10 datasets. If mTRE after executing the 3D-2D
registration method was below 2 mm, the registration was con-
sidered successful. Overall accuracy of the 3D-2D registration
was defined as MEAN £5TD of mTRE of all successful regis-
trations. To show the registration accuracy according to Markelj
et al. [34], the range of initial mTRE displacements was divided
into 20 accumulative subintervals 0—1 mm, 0-2 mm,..., 0-20
mm, and for each subinterval the accuracy was calculated as
the 95th percentile of mTRE distribution. Capture range (CR)
was defined as the first | mm subinterval with less than 95%
of successful registrations. Success rate (SR) was defined as the
overall percentage of successful registrations. CR and SR were
used to quantify the robustness of registration methods.

When 3D-DSA images were registered only to a single 2D
view (LAT or AP) the mean reprojection distance (mRPD) was
computed instead of mTRE. mRPD is defined as the mean of
minimum distances between the lines, which pass through the
X-ray source and the 3D target points in the registered position,
and the corresponding 3D target points in the “gold standard”
position [32].

Registration results were presented according to the stan-
dardized evaluation protocols [32], [34] as outlined above. The
overall registration accuracy, SR, CR and mean execution times
were computed over all 10 datasets for each of the evaluated
3D-2D registration method.

B. Parameter Settings

The three parameters of the proposed MGP method were set
to following default values n = 2, rn = 70, and & = 2. To an-
alyze the influence of these parameters on the performance of
the proposed MGP method, one parameter was varied at a time,
while the values of other parameters were held fixed at the de-
fault values. The parameter settings are given in Table II. The
analysis was performed on image dataset 1 for registrations of
3D-DSA to 2D-DSA image(s), either to a single LAT or to both
LAT and AP 2D-DSA images simultaneously. Registration ac-
curacy and SR were evaluated for each combination of param-
eter values.

C. Influence of 3D Vessel Tree Model Extraction

To evaluate the influence of the four-step 3D vessel tree
model extraction Section II-A on the performance of the MGP
registration method, we varied the global intensity threshold
(step 1 in Section II-A. Namely, three different global in-
tensity thresholds were used to obtain three different vessel
segmentations, shown as A, B, and C in Fig. 5. B represents the
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TABLE II
PARAMETER SETTINGS OF THE PROPOSED MGP METHOD USED IN THE
EXPERIMENTS IN SECTION IV-B. THE PARAMETER VALUES SHOWN
IN BOLD REPRESENT THE DEFAULT PARAMETER SETTING

Parameter settings

Parameter
1 2 3 4 5 6
n 1 2 3 4 5 6
m 0 10 30 50 70 90
k 0.5 1 1.5 2 2.5 3

@

Fig. 5. Volume renderings of four different vessel segmentations of 3D-DSA
image in dataset 1. Volume rendering of segmentation A using high global in-
tensity threshold, where mainly large-diameter vessels are visible (a). By low-
ering the global intensity threshold the small-diameter vessels start to appear
(b), (c). Volume rendering of only the small-diameter vessels obtained by re-
moving large-diameter vessels from segmentation C (d).

segmentation by the manually determined threshold. In A the
threshold was set higher than in B so that the output segmenta-
tion was comprised mainly of large-diameter, high-contrasted
vessels. Note that in the 3D-DSA the vessels appear bright.
Conversely, in C the threshold was set lower than in B so that
the output segmentation included all of the large- and many of
the small-diameter vessels. Segmentation D, containing only
small-diameter, low-contrasted vessels of the segmentation C,
was generated by analyzing the centerline points of segmenta-
tions A and C. First, for each centerline point in C the closest
point in A was found and the corresponding distance between
each pair of centerline points was computed. If the distance
was larger than some threshold, then it was assumed that the
centerline point in C does not have a corresponding centerline
point in A. Finally, parts of segmentation C locally connected
to these remaining centerline points were used to generate seg-
mentation D. The vessel segmentation influence was analyzed
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TABLE I1I
MEAN AND STD OF MRPD VALUES OF SUCCESSFUL REGISTRATIONS, SR, CR, AND MEAN EXECUTION TIMES AVERAGED
OVER ALL 10 DATASETS FOR FIVE DIFFERENT METHODS REGISTERING A 3D-DSA TO A SINGLE 2D VIEW (LAT OR AP)

View Method MEAN + STD (mm) SR [%] CR (mm) T(ige
DSA MAX DSA  MAX DSA  MAX
MIP-MI 0304029 0.64+0.53 7743 37.18 5 2 84.3
ICP 0.41+0.34 45.05 0 0.5
LAT BGB 040037 041+036 5238 4843 3 3 11.6
MGP 0.61+037 0.63+0.39 7323 69.98 5 4 0.5
MGP+BGB 028021 031+0.25 7945 7523 6 4 15.3
MIP-MI 026029  0.68+0.40 9243 3973 11 0 523
ICP 0.32+0.25 7248 1 04
AP BGB 039+035 047+0.39 58.18 5475 3 3 10.8
MGP 0.55+029 0.65+0.33 9223 82.65 11 8 0.5
MGP+BGB 028+0.19  0.37+0.29 9545  86.8 12 8 11.5
TABLE IV

MEAN AND STD OF MTRE VALUES OF SUCCESSFUL REGISTRATIONS, SUCCESS RATES (SR), CAPTURE RANGES (CR) AND MEAN EXECUTION
TIMES AVERAGED OVER ALL 10 CLINICAL DATASETS FOR FIVE DIFFERENT METHODS REGISTERING LAT AND AP VIEWS SIMULTANEOUSLY

+ 9 1
Method MEAN = STD (mm) SR [%] CR (mm) T(l;I)le
DSA MAX DSA MAX DSA MAX
BGB 0.29+0.29 0.31+0.26 43.98 44.05 2 4 19.5
MGP 0.42+0.23 0.56+0.30 98.63 89.18 19 9 0.7
MGP+BGB 0.20+0.06 0.23+0.10 99.2 90.73 19 12 15.1

on dataset 1 by registering the 3D-DSA to 2D-DSA of a single
LAT or both LAT and AP views.

V. RESULTS

A. Registration Results

The performances of 3D-2D registration methods were eval-
uated with respect to registration accuracy, robustness and exe-
cution time Section IV-A. For registrations of a 3D-DSA image
to a single 2D view, either the LAT or the AP, the mRPDs are
given in Table III, while for registrations of a 3D-DSA image to
two 2D views, the mTREs are given in Table IV. The registra-
tion accuracy of the MGP method in accumulative subintervals,
using either one or two 2D views, is shown in Fig. 6.

1) Registration Accuracy: For both the single and dual view
registrations, the registration accuracy of all of the evaluated
methods was below 0.75 mm Tables III and 1V, i.e., the 3D
image voxel size. For 3D-DSA to 2D-DSA registrations, the
MIP-MI and MGP + BGB methods were the most accurate
at about 0.3 and 0.2 mm for single and dual view setups,

respectively. Interestingly, similar registration accuracies were
achieved for 3D-DSA to 2D-MAX by using the gradient
matching methods (BGB, MGP, MGP + BGB), while the
registration accuracy of MIP-MI was worse at 0.66 and 0.41
mm for single and dual view setups, respectively. The MGP
method had a slightly, but insignificantly lower registration
accuracy. This was due to the neighborhood-based matching
process that reduces the distinctiveness of the SM near the
optimal registration (cf. Section V-B).

2) Robustness: As the 2D-DSA segmentation was used for
2D-MAX the results of the ICP method involving 2D-MAX
images can be considered as the best case scenario. Surpris-
ingly though, the ICP method achieved the lowest CR among
all the evaluated methods in the single view registration sce-
nario. For single LAT view registrations the SR was comparable
to the BGB method and was otherwise higher in the single AP
view and dual view registrations. Nevertheless, the robustness
of ICP and BGB methods was clearly inferior in comparison
to other evaluated methods. The proposed MGP method out-
performed all of the tested state-of-the-art methods in terms of
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Fig. 6. Registration accuracies of the MGP method defined as 95th percentile of mTRE/mRPD distribution for each of 20 accumulative subintervals of ini-
tial mTRE displacements. Minimal, median, and maximal accuracies in each subinterval were calculated across all 10 clinical datasets and is represented by
dashed—dotted, solid, and dotted lines, respectively. Grey area denotes the range of registration accuracies between first and third quartile.

SR and CR and proved to be highly robust in all experiments.
SR and CR were slightly but consistently improved by using
the combined MGP 4 BGB method. Compared to the MGP
and MGP + BGB methods, the MIP-MI method had a similar
SR, but lower CR in most of the tests (Tables III and IV), espe-
cially for registrations of 3D-DSA to 2D-MAX images. Hence,
MIP-MI is not as robust as the proposed MPG method in the
case of low vessel-to-background contrast and in the presence
of other anatomical structures and interventional tools.

3) Execution Time: Tables III and IV report solely the ex-
ecution times required by the optimization method to find the
rigid-body parameters of the pre-EIGI 3D image. In addition to
these times, the ICP method required segmentation of vessels
both in 3D and 2D images and computation of the distance trans-
form [20]. In practice, 3D segmentation can be computed prior
to EIGI, while 2D segmentation and the distance transform have
to be computed during EIGI, which may slow down the proce-
dure. The extraction of a 3D vessel tree model required by the
MGP method took up to 5 min but can be performed pre-EIGI.
The 2D intensity gradients and corresponding integral images
were on average computed in 0.35 s and in 0.8 s for one and
two views, respectively. Processing of the 2D image is required
only once before the start of the registration process and can be
easily optimized to achieve overall execution times of the MGP
method below 1 s.

B. Parameter Settings

The proposed novel 3D-2D registration method (referred as
MGP) has three parameters n, m, and k, the influence of which
on the registration is shown in Fig. 7. Parameter n controls
the sensitivity of the angle weighting function (5) and does not
have a significant effect on registration accuracy. By increasing
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Fig. 7. Registration performances for different settings of parameters n, m, k
of the proposed MGP method: success rates (top) and the rms of mRPD/mTRE
values of successful registrations (bottom) for 3D-2D registration of 3D-DSA
to a single LAT (left) and to LAT+AP (right) 2D-DSA images.

n from 1 to 6 a linear increase in SR of up to 5% was ob-
served for registrations of a 3D-DSA to 2D-DSA of a single
LAT view, while SR was not affected when both LAT and AP
views were used. As expected, reducing the sensitivity to weak
matches is important in single view registrations, where depth
information is limited. Parameter m defines a set of plausible
matches for each of the projected geometric primitives (GPs).
For lower m(< 50) a high number of unplausible matches are
considered as plausible matches, therefore the MGP method has
a higher probability of getting trapped in local maxima. This af-
fects both registration accuracy and SR, which seem to be stable
for m > 50 (settings 4, 5, and 6 in Fig. 7). The constant & con-
trols the size of neighborhood €2; for each of the projected GPs.
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Fig. 8. Registration performances of the proposed MGP method for different
3D vessel tree models in Fig. 5: success rates (fop) and the rms of mRPD/mTRE
values of successful registrations (bottom) of a 3DDSA to a single LAT (left)
and to LAT+AP views (right).

Higher % and thus larger neighborhoods result in a higher proba-
bility that each projected GP will overlap with vessel structures.
This is reflected in Fig. 7, where SR increases with % and peaks
near £ = 2. For k > 2, larger neighborhoods {2; may capture
more of the surrounding structures that can decrease the resolu-
tion of the matching process near the optimal registration and,
thus, decrease registration accuracy. Based on discussion above,
it is relatively straightforward to identify the optimal parameter
values, which were n = 2, m = 70, and k& = 2. Moreover, n
was set to 2 since it enables a highly efficient implementation
of the MGP method by using integral sums Section II-C, while
k = 2 was chosen as the best trade-off between registration ac-
curacy and SR. In all experiments, parameters values were fixed
at the specified optimal values.

C. Influence of 3D Vessel Tree Model Extraction

Extraction of the 3D vessel tree model is an essential part of
the proposed MGP method; therefore, its influence on the reg-
istration performances is shown in Fig. 8. The 3D model con-
sists of GPs that are extracted from 3D-DSA images in four
steps Section II-A, out of which the first contributes most to
overall quality of the 3D model. Segmentation of vessels from
3D-DSA images based on global intensity threshold is prone
to large errors due to non-uniform spread and/or diffusion of
the contrast agent throughout the vessel tree. Fig. 8 shows that
SR is generally lower if only small-diameter vessels are seg-
mented Fig. 5(d). The large-diameter vessels Fig. 5(a) seem to
contribute most to SR, and by additionally capturing more and
more small-diameter vessels (Fig. 5(b) and (c), SR gradually
improves. At the same time, registration accuracy improves as
more small-diameter vessels are captured by segmentation. The
reason is that by also segmenting small-diameter vessels, the 3D
vessel tree has a richer structure and, thus, a more precisely de-
fined position of the SM maximum in (4). The possible segmen-
tation artifacts, as a consequence of global-intensity-threshold-
based segmentation of noisy images with contrast variations ob-
viously, did not hamper the 3D-2D registrations.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 8, AUGUST 2013

VI. DISCUSSION

This paper has three important contributions: 1) a novel
method for 3D-2D rigid registration of cerebral angiograms
and 2) a dataset of real clinical images and 3) a quantitative and
comparative evaluation of the performances of several 3D-2D
rigid registration methods.

A. Novel 3D-2D Registration Method

A method based on matching of geometric primitives (MGP)
was proposed in Section II. The 3D-2D registration method first
extracts geometric primitives (GPs) from the 3D image, i.e., the
vessels’ centerline points, orientations and radii, which encode
the structure of the 3D vessel tree. The projected GPs are then
matched to orientations of 2D intensity gradients using a neigh-
borhood-based similarity measure.

The proposed method was classified as a hybrid 3D-2D
registration method. Its development was based on studying the
main drawbacks of the state-of-the-art gradient-based methods
[22],[34], [51]. These are 1) by considering gradient magnitude
directly in the SM, the matching process is driven mainly by
magnitude information, 2) gradient magnitude is sensitive to
spatial variations of image contrast, and 3) one-to-one gradient
matching is very sensitive to small image transformations and
thus may not be robust. To overcome these drawbacks, we em-
ployed orientation features in a neighborhood-based matching
process. Orientation features are relatively independent of
image contrast and encode only local image structure [35],
[36], [52] while the neighborhood-based matching process
increases the probability of detecting corresponding orientation
features [21] which then guide the 3D-2D image registration
towards the optimal alignment.

B. Clinical Image Database

Translation of novel and existing 3D-2D registration methods
into clinical practice can only be achieved after a series of rig-
orous evaluations, performed on patient images and within a
clinical context. The main challenge when using these clinical
image databases for quantitative evaluation of 3D-2D registra-
tions is how to obtain the reference or “gold standard” reg-
istrations. Typically, manually aligned images are used as the
“gold standard” registration. Such “gold standards” are gen-
erally less accurate than “gold standards” obtained with fidu-
cial markers. Besides, registration evaluations have to be per-
formed on a larger image database. In the past, 3D-2D registra-
tion methods were typically tested on only a few clinical image
datasets and with a manually determined “gold standard” [11],
[17], [20]. A few image datasets with manual “gold standard”
registrations may not be reliable and thus not sufficient for thor-
ough and objective evaluation.

Our clinical image database consisted of 10 datasets of im-
ages of patients acquired just before the start of cerebral-EIGI
either for aneurysm or AVM treatment. The “gold standard”
registrations were obtained by retrospective alignment of fidu-
cial markers integrated into a special headband that each pa-
tient wore during the acquisition of images. The resulting error
(mTRE) of the “gold standard” registrations for the vessel struc-
tures was less than 0.056 mm, which was an order of magnitude
lower than the expected error of a 3D-2D registration method.
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The obtained “gold standard” thus enables reliable measure-
ments of registration error.

The presented clinical image database with fiducial
marker-based “gold standard” registrations is, to the best
of our knowledge, so far the most extensive and objective
database that serves for quantitative evaluation of 3D-2D regis-
tration methods in the context of cerebral EIGI. We believe that
10 image datasets guarantee a faithful evaluation of registration
methods and are also representative of the clinical context as
they contain two different vascular pathologies of various de-
grees as well as interventional tools Fig. 3. To motivate further
development and evaluation of 3D-2D registration methods
for cerebral EIGI the clinical image database is made publicly
available and can be found online.?

C. Quantitative and Comparative Evaluation of Methods

The clinical image database with known “gold standard” or
reference registrations was used to quantitatively evaluate the
proposed and three state-of-the-art 3D-2D registration methods
Table I. Additional registration tests were performed by running
consecutively the MGP and BGB methods (MGP + BGB).

Registration accuracy of all evaluated methods was below
the 3D image voxel size, which was 0.75 mm. The perfor-
mances of tested methods differed mainly by their sensitivity
to poor initialization, sensitivity to image noise and contrast
variations, sensitivity to the presence of pathology and presence
of interventional tools, etc. The degree of these sensitivities
was referred to as robustness, where high robustness meant
low sensitivity. Robustness of the evaluated 3D-2D registration
methods was expressed by SR and CR Section IV-A, and by
comparing the overall performances between the 3D-DSA to
2D-DSA and between the 3D-DSA to 2D-MAX registrations.
Compared to 2D-DSA images, the 2D-MAX images man-
ifested a lower vessel-to-background contrast and depicted
non-vascular anatomical structures and interventional tools.
A 3D-2D registration method was considered robust if it per-
formed equally well on both modalities.

The proposed MGP and the combined MGP +BGB methods
proved to be the most robust, with more than 69% and 75% of
successful registrations in all registration experiments, respec-
tively. The CRs of these two methods were also the highest,
ranging up to 12 and 19 mm in respective single and dual view
experiments.

Probably the most difficult challenge of a 3D-2D registration
method is dealing with nonuniform spread and/or diffusion of
contrast agent that causes intensity variations in both 3D and 2D
images. The proximal, large-diameter vessels, through which
the contrast agent is delivered, typically receive a high amount
of contrast agent that reflects in high attenuation of X-rays. This
manifests in a high vessel-to-background contrast. Distribution
of contrast agent in more distal, small-diameter vessels is mainly
governed by the properties of blood flow and/or geometry of the
vessel tree. Therefore, the amount of contrast agent delivered
to each of these vessels can vary significantly, which results in
high contrast variations between distal vessels Fig. 3(b). Vas-
cular pathology can also affect the distribution of contrast agent.

2Available online: http://lit.fe.uni-lj.si/tools.php? lang=eng
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For instance, in dataset 7 Fig. 3(c) the contrast agent accumu-
lated in the large aneurysm, causing most of the small-diameter
vessels to appear less prominent. The most difficult case was the
registration of 3D-DSA to lateral 2D-MAX image of dataset 5,
in which the MAX image had extremely low vessel-to-back-
ground contrast. In this case, small-diameter distal vessels were
not “captured” by threshold 3 of the proposed MGP method,
but nevertheless, the MGP method performed the best. The per-
formance of the MGP method in such cases can be improved
by lowering threshold §. The reason that the proposed MGP
method is robust to the above-mentioned image contrast varia-
tions, and also to other adverse phenomena, is due to the neigh-
borhood-based matching process relying on corresponding ori-
entation features in 3D and 2D images Section II-B.

The execution time of the proposed MGP method was compa-
rable to the feature-based ICP method and was in the order of a
second. The MGP 4+ BGB method and BGB methods had mean
execution times between 10 and 20 s using a single-threaded
implementation. By using a multi-threaded implementation or
a dedicated CUDA implementation, the corresponding execu-
tions times should be comparable to those of the MGP method.
Although, the MIP-MI method was implemented in CUDA, ex-
ecution times were still at least five times longer than for other
methods.

VII. CONCLUSION

In this paper, we presented a novel method for 3D-2D rigid
registration of cerebral angiograms. The method is based on
matching of geometric primitives, which encode the structure
of the 3D vessel tree, to orientations of 2D intensity gradients
using a neighborhood-based similarity measure. The main ad-
vantage of the proposed method is its robustness to image con-
trast variations and other adverse phenomena that can hamper
the registration process. Besides, the overall execution time in
the order of a second makes the method a good candidate for
EIGL

Translation of any 3D-2D registration method into clin-
ical practice requires extensive and rigorous evaluations on
real-patient image databases. Therefore, we acquired a clinical
image database representative of cerebral-EIGI and established
a highly accurate “gold standard” registration that enables
objective quantitative evaluation of 3D-2D rigid registration
methods. The quantitative and comparative evaluation of three
state-of-the-art methods showed that the performance of the
proposed method best met the demands of cerebral EIGI.
The image database and registration results of the evaluated
methods are publicly available and can be found online.?
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