
Ad Hoc Bayesian Program Learning

Eli Sennesh
Khoury College of Computer Sciences, Department of Psychology

Northeastern University
Boston, MA 02115

esennesh@ccis.neu.edu

Abstract

Bayesian program learning provides a general approach to human-level concept
learning in artificial intelligence. However, most priors over powerful programming
languages make searching for a high-scoring program intractable, and therefore
cognitively unrealistic. We hypothesize that an efficient learner searches programs
which efficiently generate a likelihood by running to completion, and model this
hypothesis with an ad-hoc proposal for programs. Our proposal works backwards
from observations to find programs which quickly generate similar results.

1 Introduction

Bayesian models of cognition are a foundational paradigm for “reverse engineering the mind” as a
route towards more human-like artificial intelligence [Tenenbaum et al., 2011, Marcus and Davis,
2013]. The theory of ad hoc cognition claims that humans spontaneously invent new concepts or
theories as situations demand, without necessarily conforming to any a priori structure [Casasanto
and Lupyan, 2015]. This theory has no standing analysis in Bayesian terms, but it does explain the
flexibility of human cognition: every concept and theory is constructed and adjusted anew in each
usage. The most radical Bayesian approaches to the mind have been based in program induction
[Ritchie et al., 2018, Saad et al., 2019], explaining the human capacity for conceptual combination
and compositional reasoning by positing that all concepts have the form of probabilistic programs,
including abstract number concepts [Piantadosi et al., 2012] and grounded sensory concepts [Overlan
et al., 2017]. We typically take the Church-Turing thesis as grounds to treat programs as a universal
hypothesis class, and impose a prior over them based on either a probabilistic context-free grammar
or the program’s minimum description length [Vitányi and Li, 2000].

Models of program induction have mostly relied on domain-specific priors that encoded informed
priors over task-relevant programs, as well as restrictions on general recursion [Ellis et al., 2018].
These models assume desirable program properties are provable a priori , an approach limited by
Rice’s Theorem. In contrast, humans can infer generally recursive concepts [Lake and Piantadosi,
2019], and may be employing resource-rational reasoning [Lieder and Griffiths, 2019].

Here we consider Bayesian program induction over a simple language and its evaluation semantics.

1.1 Contributions

We introduce a new proposal distribution for typed programs based on a novel inductive bias: resource-
rational programs have short traces. This proposal allows us to quickly locate programs generating
the observed data with reasonable marginal probability. We use a grammatical prior with our novel
proposal to perform inference by importance sampling.

Preprint. Under review.

c ::= N | R | S | true | false (1)
operator ::= + | − | ∗ | / (2)

e ::= v | (e1 e2) | λv : τ.e | flip e | c | (operator e1 e2) | (3)
if e1 then e2 else e3 (4)

τ ::= N | R | S | {true, false} | τ1 → τ2 (5)

Table 1: Grammar of types τ and expressions e in our simply-typed lambda calculus

2 An Ad Hoc Proposal for Typed Programs

In order to propose programs capable of quickly explaining observations, we assume the following:

• Any program we sample as a hypothesis should be guaranteed to run and score the data
without throwing an exception or otherwise diverging. We guarantee this via type-safety.

• Evaluating a program produces an evaluator trace which assigns the data positive probability
density.

• Traces should be relatively short to minimize necessary computation.

We employ a grammatical prior over program expressions, conditioned upon the static type of the
desired expression. Given a type from which to sample a term, we choose uniformly at random
from the set of expression constructors inhabiting that type (corresponding to grammar rules given in
Table 1), then recursively fill in any necessary subexpressions. Constants are drawn from the uniform
discrete distribution (Booleans), a recursive uniform-discrete sampler over the English alphabet
(strings), the geometric distribution (integers), and the standard normal distribution (double-precision
floating point numbers). Only λ-abstractions and bound variables can have functional type.

2.1 Small-step operational semantics

Computer scientists usually specify evaluation functions as recursive reductions from expressions to
values, lumping many evaluation steps into one reduction. In order to neatly invert our evaluator, we
specify it in terms of small-step semantics: a set of rules which can be (nondeterministically) applied
to reduce expressions to expressions, eventually reaching a normal form.

2.2 Preservation and progress: ensuring a trace exists

To ensure that we can exactly invert the reduction rules to obtain expansion rules, every reduction
rule must either reduce or syntactically reject every possible expression: we must never sample an
expression that becomes “stuck” before reaching a normal form.

This property is formalized in programming languages as type soundness, consisting of preservation
and progress properties. Preservation is the guarantee that all reduction rules syntactically applicable
to an expression preserve the type of the expression. Progress tells us that well-typed expressions are
not stuck: they are either normal forms, or at least one reduction rule can be applied to move towards
a normal form of the appropriate type. Type soundness can be proved for the simply-typed lambda
calculus in a standard fashion [Pierce et al., 2018].

2.3 Ad hoc inference as inference over traces

Given the small-step semantics for a typed programming language, one can trivially select any
well-typed program and run it forward, obtaining its trace (the sequence of semantic rule applications
leading to normalization and a final value). Note that while normal forms (values) reduce only to
themselves, ensuring termination at the end of a reduction sequence, the same normal form can be
reached starting from arbitrarily complex expressions.

We handle this inverse inference problem probabilistically: we invert the reduction rules to obtain
expansion rules, and at each expansion step, randomly select an expansion rule whose input pattern

2

Forward reduction rule for coin-flip operator
p ∈ (0, 1) val ∼ Bernoulli(p)

flipp 7→ val
Inverse expansion rule for coin-flip operator
v ∈ {true, false} p ∼ Uniform(0, 1)

v ; flip p
Table 2: Example reduction and expansion rules for a flip operator

i f (f l i p 3.059908452863891 e−2) then
True

e l s e
F a l s e

i f F a l s e then
f l i p 0.5897988150745864

e l s e
i f True then

f l i p 0.8754357227441879
e l s e

f l i p 0.8838256505797507
f l i p 0.8928934208665623

Table 3: Ad-hoc programs inferred based on flips of a biased coin

(the outputs of the corresponding reduction rule) syntactically match the current expression. Since
these expansion rules are the exact inverses of the reduction rules, our proposal thus denotes a
distribution over expressions yielding a fixed value.

In a probabilistic lambda calculus, as we apply here, the resulting expressions are guaranteed to
include the desired final value in their support set, evaluating to it with a nonzero likelihood.

3 Experiments

We performed two experiments, each consisting of presenting several observations and using self-
normalized importance sampling to obtain ten sample programs inferred by small-step expansion.

In our first experiment, our model learned programs describing a biased coin, based on observations
of [true, true, true, false]. In our second experiment, we used the natural numbers [0, 1, 2, 3, 4] as
observations, hoping to sample programs which would narrowly explain our chosen range of integers.

4 Results

In our experiment where we presented the results of a biased coin-flip as observations, our inference
process yielded programs such as those found in Table 3. These programs appear to do the job we
were trying to model: they flip a coin with a strong, but not total, bias towards heads.

In our second experiment, we inferred ad-hoc programs based on observations of the first five natural
numbers, the sequence 0...4. The programs inferred to the sequence can be found in Table 4.

Many of the programs sampled for each observed problem were quite large, and involved passing
short first-class functions as arguments. We believe this indicates that our prior currently does not
sufficiently penalize the proposed programs for their program size in the importance resampling
process. We also found that many of the sampled program fragments encoded information they did
not use to compute their results, as in the following example.

((λ i . 0 .37875477753557496) " t ")

3

i f (i f F a l s e then True e l s e F a l s e) then
1 / ((2 ∗ 2) ∗ (λ j . 1 λu . True))

e l s e
(i f True then 9 / 3 e l s e 3)

0 − 0
2 / (0 + (/ 1 1))

2 − 2
Table 4: Programs inferred from the first five natural numbers

5 Discussion

Well-typed programs do not “go wrong”, in precisely the sense of preservation and progress theorems
[Milner, 1978]. Here we have exploited this guarantee to search the space of programs in a typed
language backwards, from an observed output, to an expression which quickly generates that output
with relatively high probability. We have made our source code available1 for reproducibility.

However, these results show that our proposal currently does not have any helpful bias towards
expanding only “interesting” programs, in which every subexpression contributes significantly to
the output. We will outline several paths towards this goal, in addition to general improvements
to our technique. A mechanism such as variable-less “higher-order” Bayesian networks [Overlan,
2019] would provide more efficient re-use of typed subexpressions than our lambda calculus’ named
variables. If we assume our observation comes from a primitive type and similarly equip each
primitive type with a sampler covering all its values as support, we can also select the appropriate
typed random sampler as a final likelihood and expand by inverse evaluation from there, turning our
proposal into a prior. Since this prior would expend its probability mass on choosing and running
small-step expansion rules, it would apply the Bayesian Occam’s Razor to find programs which run
in a short sequence of reduction steps. This may provide a novel probabilistic model of bounded
rationality. Similarly, any prior or proposal over programs could be trained via wake-sleep methods,
despite its use of discrete random choices [Anh et al., 2019]; vector types and neural networks could
also be added to the program language. Finally, we could reframe the program-induction problem as
one of program approximation [Kerinec et al., 2018, Dal Lago and Leventis, 2019].

6 Acknowledgments

The authors would like to thank Adam Scibior for his help with the details of monad-bayes, and Luke
Hewitt for his guidance on the work described here.

References
Tuan Anh, Le Adam, N Siddharth Yee, Whye Teh, and Frank Wood. Revisiting Reweighted Wake-

Sleep for Models with Stochastic Control Flow. In Uncertainty in Artificial Intelligence (UAI),
2019.

Daniel Casasanto and Gary Lupyan. All Concepts Are Ad Hoc Concepts. In The Conceptual Mind:
new directions in the study of concepts, pages 543–566. 2015. URL http://casasanto.com/
papers/Casasanto{&}Lupyan{_}AdHocConcepts{_}2015.pdf.

Ugo Dal Lago and Thomas Leventis. On the Taylor expansion of probabilistic λ-terms. Leibniz
International Proceedings in Informatics, LIPIcs, 131:1–22, 2019. ISSN 18688969. doi: 10.4230/
LIPIcs.FSCD.2019.13.

Kevin Ellis, Lucas Morales, Mathias Sablé-meyer, E N S Paris-saclay, and Armando Solar-lezama.
Library Learning for Neurally-Guided Bayesian Program Induction. Neural Information Processing
Systems (NIPS), (Nips):1–11, 2018.

1https://github.com/esennesh/lambda-learner

4

http://casasanto.com/papers/Casasanto{&}Lupyan{_}AdHocConcepts{_}2015.pdf
http://casasanto.com/papers/Casasanto{&}Lupyan{_}AdHocConcepts{_}2015.pdf
https://github.com/esennesh/lambda-learner

Emma Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting Call-by-Value Bohm Trees in
Light of Their Taylor Expansion. pages 1–25, 2018. doi: 10.2168/LMCS.

Brenden M. Lake and Steven T. Piantadosi. People infer recursive visual concepts from just a few
examples. Computational Brain & Behavior, 2019. URL http://arxiv.org/abs/1904.08034.

Falk Lieder and Thomas L. Griffiths. Resource-rational analysis: understanding human cognition as
the optimal use of limited computational resources. Behavioral and Brain Sciences, pages 1–22,
2019. ISSN 00243590. doi: 10.4319/lo.2007.52.2.0517. URL http://eprints.soton.ac.uk/
252625/2/bbs.html.

Gary F. Marcus and Ernest Davis. How Robust Are Probabilistic Models of Higher-Level Cog-
nition? Psychological Science, 24(12):2351–2360, 2013. ISSN 14679280. doi: 10.1177/
0956797613495418.

Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and System
Sciences, 375:348–375, 1978.

Matthew C Overlan. Probabilistic Program Induction as a Model of Human Concept Learning. PhD
thesis, University of Rochester, 2019.

Matthew C. Overlan, Robert A. Jacobs, and Steven T. Piantadosi. Learning abstract visual concepts
via probabilistic program induction in a Language of Thought. Cognition, 168:320–334, 2017.
ISSN 18737838. doi: 10.1016/j.cognition.2017.07.005. URL http://dx.doi.org/10.1016/j.
cognition.2017.07.005.

Steven T Piantadosi, Joshua B Tenenbaum, and Noah D Goodman. Bootstrapping in a language of
thought: a formal model of numerical concept learning. Cognition, 123(2):199–217, may 2012.
ISSN 1873-7838 (Electronic). doi: 10.1016/j.cognition.2011.11.005.

Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. Programming
Language Foundations. Software Foundations series, volume 2. Electronic textbook, May 2018.
Version 5.5. http://www.cis.upenn.edu/ bcpierce/sf.

Daniel Ritchie, Sarah Jobalia, and Anna Thomas. Example-based authoring of procedural modeling
programs with structural and continuous variability. Computer Graphics Forum, 37(2):401–413,
2018. ISSN 14678659. doi: 10.1111/cgf.13371.

Feras A Saad, Vikash K Mansinghka, Marco F Cusumano-Towner, Ulrich Schaechtle, and Martin C
Rinard. Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling. In ACM
Principles of Programming Languages, volume 37, page 33, 2019. ISBN 10.1145/3290350. doi:
10.1145/3290350. URL https://doi.org/10.1145/3290350.

Joshua B Tenenbaum, Charles Kemp, Thomas L Griffiths, and Noah D Goodman. How to grow
a mind: statistics, structure, and abstraction. Science, 331(6022):1279–1285, mar 2011. ISSN
1095-9203 (Electronic). doi: 10.1126/science.1192788.

Paul M.B. Vitányi and Ming Li. Minimum description length induction, Bayesianism, and Kol-
mogorov complexity. IEEE Transactions on Information Theory, 46(2):446–464, 2000. ISSN
00189448. doi: 10.1109/18.825807.

5

http://arxiv.org/abs/1904.08034
http://eprints.soton.ac.uk/252625/2/bbs.html
http://eprints.soton.ac.uk/252625/2/bbs.html
http://dx.doi.org/10.1016/j.cognition.2017.07.005
http://dx.doi.org/10.1016/j.cognition.2017.07.005
https://doi.org/10.1145/3290350

	Introduction
	Contributions

	An Ad Hoc Proposal for Typed Programs
	Small-step operational semantics
	Preservation and progress: ensuring a trace exists
	Ad hoc inference as inference over traces

	Experiments
	Results
	Discussion
	Acknowledgments

