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ABSTRACT

Generative seq2seq dialogue systems are trained to predict the next word in dia-
logues that have already occurred. They can learn from large unlabeled conversation
datasets, build a deep understanding of conversational context, and generate a wide
variety of responses. This flexibility comes at the cost of control. Undesirable
responses in the training data will be reproduced by the model at inference time,
and longer generations often don’t make sense. Instead of generating responses
one word at a time, we train a classifier to choose from a predefined list of full
responses. The classifier is trained on (conversation context, response class) pairs,
where each response class is a noisily labeled group of interchangeable responses.
At inference, we generate the exemplar response associated with the predicted
response class. Experts can edit and improve these exemplar responses over time
without retraining the classifier or invalidating old training data.
Human evaluation of 775 unseen doctor/patient conversations shows that this
tradeoff improves responses. Only 12% of our discriminative approach’s responses
are worse than the doctor’s response in the same conversational context, compared
to 18% for the generative model. The discriminative model trained without any
manual labeling of response classes achieves equal performance to the generative
model.

1 INTRODUCTION

Task oriented dialogue systems, exemplified by Budzianowski et al. (2018), tend to solve narrow
tasks like restaurant and hotel reservations and require access to a large knowledge base. After
each user utterance, these systems run multiple modules which parse the user utterance, to try to
fill (slot, value) pairs, and pick an action. This setup is too cumbersome for primary care
medical conversations, our setting, because (a) building the external knowledge base would require
the enumeration of the very large symptom, diagnosis and remedy spaces and (b) each module
requires separate training data in large volumes.

The seq2seq group, which we call generative models (GM) 1 require neither labeling nor structured
representations of the dialogue state, but manage to learn strong representations of the conversational
context with similar content to a knowledge base, according to Petroni et al. (2019). They have a
key drawback, however: there are no mechanisms to ensure high quality responses. Wallace et al.
(2019) show that GPT2 (Radford et al., 2019) can be attacked with four word sequences to ”spew
racist output”. Many production chatbots check each word in a generated utterance against a blacklist
of curse words, but this fails to solve subtler failure modes. Even in a cooperative setting, typos,
inaccuracies, and other frequent mistakes in the training data will be reproduced by the model at
inference time. See et al. (2019) find that GM ”often repeat or contradict previous statements” and
frequently produce generic, boring utterances like ”I don’t know”.

Our discriminative approach attempts to remedy these shortcomings by restricting generations to a
manageable set of high quality exemplar responses. We ensure that exemplars are all factual, sensible

1We use this term to refer to models that generate responses one word at a time, regardless of training
objective or decoder sampling method.
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and grammatical by allowing experts to edit them before or after training. For example, if we wanted
to switch from recommending users sleep 6-8 hours per night to recommending 7-9 hours, we could
simply update the message associated with the output class and the discriminative model would
immediately generate the new advice in the same conversational context, without retraining.

Experts can also remove response classes with short, generic exemplars before training to redirect
responses towards more productive content. For example the class associated with that makes sense,
could be removed with the intention of increasing the likelihood of generating that makes sense. How
bad is the pain on a 1-10 scale?.

We address a key difficulty in this setup – creating non-overlapping response groups that cover a wide
range of situations – with weak supervision. A pretrained similarity model merges nearly identical
responses into clusters, and a human merges the most frequently occurring of these clusters into
larger response classes.

To summarize, we propose a system that can generate reasonable responses across multiple domains
while restricting generations to a fixed set of high quality responses that are easy to control. We
expect our approach to be most useful in task-oriented settings with a wider range of topics, like
patient diagnostics and customer service interactions.

The paper is organized as follows: Section 2 discusses related conversational agents and their methods.
Section 3 documents our approach, with special attention to the procedure for creating a manageable
number of response classes that manage to cover a wide range of conversational contexts. Section
4 explains our main results and the results of experiments which compare the quality of responses
suggested by different classification architectures and response class generation procedures.

2 RELATED WORK

Generative Models: Wolf et al. (2019) won the 2018 NeurIPS PersonaChat competition with
”TransferTransfo”, a generative transformer approach. The model starts training with pretrained
weights from the GPT2 transformer, then finetunes with the PersonaChat data on a combination of
two loss functions: next-utterance classification loss and language modeling (next word prediction)
loss. Each task is performed with an associated linear layer that consumes the hidden state of the
final self-attention block of the transformer, and both losses are backpropogated into the original
transformer weights. Generation is performed with beam search. We compare our architecture to a
modified version of this approach in the Section 4.

Keskar et al. (2019) prepend source URLs to documents during language model pretraining in order
to allowing generation conditioned on a source. For example, one could generate in the style of
Wikipedia, hopefully preventing expletives and generic utterances.

See et al. (2019) directly control repetition, specificity, response relatedness and question asking with
a similar conditional training technique. The authors also use weighted decoding, which increases
the likelihood of generating tokens that exhibit a certain feature, for example rareness.

Our approach differs from this stream of research by removing the generative decoding step altogether,
and therefore allows direct control of responses and faster inference.

Ranking Models, including Dinan et al. (2018) and Zhou et al. (2018), operate on datasets of
(context, candidate response, y) triples, where y is a binary label indicating whether
the candidate response was the one observed in the conversational data. These models enjoy the same
control guarantees as our discriminative approach, since they select responses from a fixed bank,
but inference requires both a system to retrieve candidate responses and one forward pass for every
candidate response. Our approach chooses between all candidate responses in one forward pass.

Discriminative Models:

The closest work to ours is Wan & Chen (2018)’s AirBNB customer service chatbot, which also
uses a discriminative approach, but does not attempt to cover the whole response space and differs
architecturally.

Whereas our approach restricts the output space to 187 responses that attempt to cover the whole
output space, the AirBNB system chooses from 71 one sentence investigative questions, each
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representing a cluster of questions, and leaves other response types, like statements and courtesy
questions, to a separate model. Although the authors do not report how much of their data these 71
clusters cover, we suspect that it is large, and that their conversations are more homogeneous than
ours, since our largest 71 clusters cover only 6% of our data 2 The authors improve class diversity by
enforcing that every issue type, a category selected by the user during the chat, is represented by at
least one cluster, whereas our approach uses only raw chat logs.

Architecturally, we replace the hierarchical context encoder popularized by Serban et al. (2015) with
a larger pretrained language model and show that this approach achieves better performance and
much faster training time in Section 4.

3 APPROACH

3.1 SETUP

We aim to use the last t turns of conversational context to suggest a response for a doctor to send to a
patient. Our process involves two stages. First, we create groups of interchangeable doctor utterances,
which we call response classes and use as labels for the next step. Then, we train a classifier to predict
a response class given the context that preceded it.

Figure 1: A doctor facing suggested response. The model must generate high quality responses in a
variety of medical (left) and social (right) contexts.

3.2 GENERATING RESPONSE CLASSES WITH WEAK SUPERVISION

Figure 2: Response Class Generation Pipeline

We aim to generate response classes (RCs), where each RC is a group of interchangeable responses
observed in the conversation data, with the following characteristics:

2(15% if we restrict to questions.)
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1. Low overlap between RCs. When interchangeable responses are assigned to different RCs it
creates label noise, making the classification task more difficult.

2. Coverage. If every good response observed in the data is included in an RC, it would increase
the likelihood that the classifier can access to a response that matches the conversational
context.

3. Sufficient train examples in each RC

We show our five stage procedure in Figure 2, and detail the steps below. First, we lower case all
doctor utterances observed in the data, replace patient and doctor identifying information with special
tokens, and remove punctuation. We consider only the preprocessed responses R that appear more
than once in order to make subsequent steps computationally cheaper.

Steps 1 and 2 Since estimating the similarity of every pair of responses is an O(R2) operation
and most pairs are likely to have negligible similarity, we restrict computing similarities to pairs of
responses that are within a semantic neighborhood. More specifically, we encode each response r
as a vector using j = 4 different pretrained sentence encoders, and take the 10 nearest neighbors of
each responses for each:

CandidatePairs =
⋃

r∈R,j∈encoders

(r,KNN(encj,r, encj,R, 10))

We use InferSent (Conneau et al., 2017), the finetuned AWD-LSTM language model, the average
Glove (Pennington et al., 2014) word vector for the response, and the TFIDF weighted average of the
Glove vectors.

Step 3 For each candidate pair, we run a supervised similarity model, BERT (Devlin et al., 2018)
pretrained on Quora Question Pairs (Wang et al., 2018), to predict the probability that each response
pair’s constituents are semantically similar. We store the dissimilarity of each pair in a sparse distance
matrix, with a distance of 1 (the maximum) if two responses were not generated as candidate pairs.

Di,j =

{
(1− ProbSimilari,j), if (i, j) ∈ CandidatePairs

1, otherwise
.

Step 4: We run Agglomerative Clustering (Pedregosa et al., 2011) on D. Two clusters are only
merged if all the responses in both clusters have Di,j ≤ .25. The algorithm terminates when no more
clusters can be merged.

(Optional) Step 5 Manually Merge Clusters into Response Classes

• Create a dataset where each row represents a cluster, and contains (centroid text, # occur-
rences of cluster constituents), sorted by # occurrences, where the centroid is the most
frequently occurring response in the cluster.
• For each row in the dataset, the labeler decides whether the cluster centroid text belongs in

any existing response class. If so, all constituents of the associated cluster are added to the
matching response class. Otherwise, a new response class is created with the constituents of
the associated cluster.

We merge all responses that have the same impact on the user, and could therefore be used inter-
changeably. For example, even though ”How long have you had the symptoms?” and ”When did the
symptoms start?” do not mean the same thing, they are both members of the same response class.

If step 5 is skipped, the clusters produced by step 4 are used as response classes.

3.3 CLASSIFICATION: CONVERSATION CONTEXT→ RESPONSE CLASS

We train our discriminative response suggestion model to associate a conversational context with the
response class observed in the data. (Context, ResponseClass) pairs are only included in
the training data if the true response is a member of a response class. We call these included pairs
labeled.

We follow (Howard & Ruder, 2018)’s ULMFit approach with only minor modifications. Like the
original work, we start with an AWD-LSTM language model pretrained on the wiki103 dataset
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(Merity et al., 2016), finetune the language model on our interaction history, and attach a classifier
head to predict the response class given the concat pooled representation of final hidden state of the
language model.

To accommodate larger batch size than the original work, which we found to help performance, we
truncate context sequences to the last 304 tokens before passing them through the language model.
This allows us to train with batches of 512 examples.

To encode information about speaker changes, we insert two special tokens: one that indicates the
beginning of the patient’s turn and one that indicates the beginning of the doctor’s turn.

Finally, we add Label Smoothing (Pereyra et al., 2017) with t = 0.1 to the cross entropy loss function.
Label smoothing smooths one-hot encoded classification labels towards 1

numClasses , and reduces the
impact of mislabeled examples on classification training.

Inference is relatively straightforward. We run the trained classifier and look up the exemplar for the
most likely response class, as shown in Figure 3.

Figure 3: Inference and training procedures, starting from a conversational context on the left.

4 EXPERIMENTS

4.1 DATA

For language model finetuning, we use 300,000 doctor/patient interactions containing 1.8 million
rounds of Doctor/patient exchanges, collected through a web and mobile application for primary
care consultations. These exchanges cover a wide variety of medical domains. We use the most
recent 100,000 interactions, which contain 700,000 rounds as input to the response class generation
procedure, which yields 72,981 labeled pairs for classification training. The number of turns per
conversation and length of each turn varies widely, as shown in Table 1.

Table 1: Conversation Level Statistics
Mean Standard Dev.

# Utterances 10.8 7.85
Words per utterance 20.4 21.8

4.2 CLUSTERING RESULTS AND DISCUSSION

Clustering Statistics Preprocessing and filtering yielded 60,000 frequent responses. Candidate
Generation (step 2) yielded 1 million pairs for evaluation. Automated clustering (step 4) yielded
40,000 response clusters with high within-group similarity but many overlapping groups; the largest
cluster is 10 distinct responses and 87% of clusters contain only one response. In the manual step 5,
one labeler created 187 groups from the 3,000 most frequently occurring clusters in 3 hours. This
leaves roughly 90% of responses unlabeled.

We hypothesize that our automated clustering procedure leaves many interchangeable clusters un-
merged because the sentence encoders were trained to encode a sentence’s meaning rather than
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conversational impact. For example, no encoder produces (”You’re welcome. Hoping for the best.”,
”Take care, my pleasure.”) as a candidate pair.

One advantageous property of our approach is that the manual merging step need not be fully
completed, unlike Wan & Chen (2018)’s. Their KMeans clustering step generates fewer, larger
clusters. Curators then go through each cluster and remove heterogeneous constituents, so every
response must be considered. This would have taken us 40 hours. 3

4.3 EVALUATION

Expert evaluations for end-to-end comparisons. To compare discriminative and generative ap-
proaches, we construct a test set constructed of unseen (conversation, true response)
pairs. Roughly 91% of test data responses are unlabeled. We call a response unlabeled if it is not an
exact duplicate (in it’s preprocessed form) of a response one of our 187 response classes.

Given the low correlation of automated metrics such as BLEU score to human judgment of response
quality reported in Liu et al. (2016), a group of medical doctors evaluated the quality of generated
responses on the test data. For a given conversational context, evaluators compared the doctor
response observed in the data to a model’s suggested response in a model-blind setting. Evaluators
reported whether a model’s response is either (a) equivalent to the true response, (b) different but
higher quality, (c) different but equal quality, or (d) different but lower quality. For example, ”Hoping
for the best, take care.” and ”Take care!!!!” would be marked equivalent. The results are shown in
Tables 2 and 5.

Accuracy for comparing classifiers. Tables 3 and 4, which compare different classifiers on the
same dataset, measure accuracy on unseen labeled data.

4.4 RESULTS

Table 2: We find that on 775 test set conversations, the discriminative model compares favorably
to the generative model. Evaluators reported whether a model’s response could be categorized as
options (a) through (d). More details are explained in Section 4.3. Inference time is measured as
the average time to generate a response for one suggestion on a V100 GPU with batch size 1. Both
models take the last 6 turns of conversation history as input.

Generative Discriminative

a. Equivalent to true response 56% 71%
b. Different, higher quality 1% 6%
c. Different, equal quality 25% 11%
d. Different, lower quality 18% 12%
Inference Time 800ms 200ms

Table 3: Architecture comparison: all experiments were completed on a single V100 GPU. † follows
Wolf et al. (2019), § follows Serban et al. (2015) and Wan & Chen (2018). All QRNN based
experiments use random initialization, and 3 layers with hidden size 64. Baselines are discussed in
more detail on the next page.
Architecture 4 turn accuracy 8 turn accuracy Encoder Finetune Time Train Time

ULMFit 56.7% 57.0% 12h 40 mins
QRNN 49.3% 49.2% 0 2h
Hierarchical ULMFit 53.8% 54.9% 12h 18h
Hierarchical QRNN § 47.8% 49.4% 0 6h
Transformer † 56.6% 56.8% 12h 6h

3Another speed vs. label noise tradeoff in our approach: the labeler only considers the new centroid when
making a merge decision. Bad merges executed by Agglomerative Clustering are never reviewed, and will result
in mislabeled training points. If a centroid is not interchangeable with it’s cluster constituents, these errors can
silently propagate.
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Generative Baseline For a generative baseline, we use the AWD-LSTM language model 4 before
classification finetuning. For this reason, the context representation used by the classification model
head and the language model (generative) head tend to be very similar. We use greedy decoding
because beam search was too slow to meet our latency requirements.

Hierarchical Baselines To facilitate comparison with hierarchical encoding (HRED) 5 used by
Wan & Chen (2018), we tested two different architectures: hierarchical ULMFit (pretrained) and
hierarchical QRNN (trained from scratch). In both settings, the higher level context RNN was a
randomly initialized QRNN. We found that flat ULMFit significantly outperformed its hierarchical
counterpart while hierarchical and flat QRNN performed comparably. Serban et al. (2015) who find a
0.18% accuracy improvement from HRED over a vanilla RNN on their MovieTriples dataset.

We hypothesize that adding hierarchy to ULMFit decreased performance because of the large variance
in the length of turns in our data. Turns vary from 2 to 304 tokens, after truncation, requiring models
that consume 3D hierarchical encodings to consume large amounts of padding and smaller batch
sizes.6 Hierarchical ULMFit on 8 turns could only be trained with batch size 32, while the non-
hierarchical ULMFit can fit 512 examples. As mentioned earlier, larger batch size seems to helped
ULMFit.

Transformer Baseline To compare with Wolf et al. (2019), we finetune a pretrained double headed
transformer on our conversation data, discard the language modeling and multiple choice heads, and
attach a one layer classification head that is trained until convergence. As shown in Table 3, this
results in similar accuracy to the ULMFit architecture but is much more computationally expensive
(10x train time, 20x slower inference).

How much history is useful? We find, somewhat counterintuitively, that the ULMFit classifier
does not benefit from using more than the last 6 turns of conversation history, as shown in Table 4.
Similarly, Table 3 shows that even for the larger transformer classifier, using the last 8 turns (vs. 4
turns) of history delivers little improvement in classification accuracy.

Max Turns of History 1 2 3 4 5 6 7 All

Accuracy 44.5% 53.3% 55.3% 56.7% 56.3% 57.7% 57.4% 57.0%

Table 4: One turn is all messages sent consecutively by one conversation participant. Observations
are truncated to the most recent n turns.

Well calibrated probabilities

Figure 4: The rate of bad suggested responses falls if we ”opt-out”, and don’t suggest any response
when the model’s predicted probability is low. ”Opt Out Frequency” measures how often the model
chooses not to suggest a response, while ”Usable Suggestion Rate” measures how often the suggested
response is not worse than the doctor response observed in the data.

4Pretrained on wiki103, fientuned on our chat logs until convergence (12 hours).
5Serban et al. (2015) explain the idea nicely: ”The encoder RNN encodes the tokens appearing within the

utterance, and the context RNN encodes the temporal structure of the utterances appearing so far in the dialogue,
allowing information and gradients to flow over longer time spans.”

6HRED requires 3D tensors with shape (batch size, max # of turns, max turn length) so short utterances in
conversations that also have long utterances get lots of padding.
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Since the discriminative model must choose from a fixed bank of responses, it will occasionally
see context that does not match any of the responses it is trained on. In these circumstances, it
should not suggest any reply to the doctor. Figure 4 shows that if we restrict our evaluations to the
50% of contexts where the classifier is the most confident (as measured by the maximum predicted
probability), the rate of bad suggested responses falls from 11% to 1.8%.

How much manual labeling is needed? Table 5 shows the response quality produced by discrim-
inative models trained on different datasets. In the 40 class experiment (Row 1), we generate the
dataset by following the five step approach described in Section 3, but stop manually merging clusters
after only 20 minutes of work. This results in significantly fewer response classes, less training data,
and lower response quality.

A more promising approach takes the other extreme. In the 5,296 class experiment (Row 3), we
perform no manual merging of clusters and observe a smaller reduction in response quality, even
though classifier accuracy (not shown) falls sharply. In fact, response quality is still slightly higher
than the generative model’s in this setting.

Table 5: † Generated with process described in Section 3, including manual merge step. φ Same
approach with no manual merging step. Bad responses percentage is calculated on 775 test set
examples using the the manual evaluation process outlined above. Unique per 100 responses
measures how many unique responses are generated per 100 conversation contexts, and is computed
on bootstraps from 1000 test set responses. The ground truth data averages 92 unique responses per
100.
# Classes Weakly Labeled Examples Bad Responses Manual Effort Unique per 100 responses

40† 19,300 38% 20 Mins 17
187† 72,981 11% 3 Hours 28
5,296φ 130,128 17% 0 58
Generative 0 18% 0 86

Error Analysis If evaluators marked a response as ”Worse” than the true response, we asked them
why. For both models, the primary reason was asking for information that had already been requested
or given. This represented roughly 60% of errors for both the generative and discriminative (187
class model). Roughly 15% of GM errors were about nonsensical responses (roughly 15% of errors),
including ”It is not advisable to take Sudafed with Sudafed”. The discriminative model has no
nonsensical responses, but generates ”You’re welcome” in nearly every sign-off, even if the patient
never said ”thank you”, a mistake the generative model never makes.

5 CONCLUSION

In this work, we propose a classification model that leverages advances in pretraining techniques to
generate useful responses in a wide variety of contexts while restricting generations to a fixed, easy
to update set of high quality responses. This allows full control of generations, but also helps the
average suggested response quality, compared to a generative model with a nearly identical backbone.

The key error source for both models, asking the same question twice could be more easily fixed for
the discriminative model, by using the second most likely class if the most likely class has already
been generated in a conversation. For the generative model, this could be addressed with conditional
training, following See et al. (2019).

The key difficulty in this approach, and opportunity for future work, is the creation of response
classes. We might be able to obviate the need for a manual merging step, for example, by allowing
creation (through merging) of clusters with pairs of constituents that were not generated as candidates
or by training a separate classifier to predict which response class an unseen response belongs to.

Finally, we intend to test whether the control for flexibility tradeoff provides similar quality improve-
ments in other conversational domains.
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