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Abstract

Machine reading comprehension is a key part
of natural language understanding. Due to
wide range of applications, machine reading
comprehension has attracted considerable in-
terest from both commercial and academic en-
tities. Recently, deep neural network based
models have been able to achieve near human
performance on certain types of reading com-
prehension datasets (Rajpurkar et al., 2016;
Devlin et al., 2018; Hermann et al., 2015; Seo
et al., 2016). Newer and much harder datasets
have been proposed that require more sophisti-
cated reasoning capabilities. One such dataset
was proposed by Khashabi et al.(2018) called
MultiRC. In this work, we propose a multi-
stage approach which significantly improves
the previous state of the art results on MultiRC
(Khashabi et al., 2018).

1 Introduction

Deep neural network (DNN) models have lead
to significantly improved performance, close to
or even better than humans, on existing span
based reading comprehension datasets like the
Stanford Question Answering Dataset (SQuAD)
and cloze style datasets like CNN/Dailymail (Ra-
jpurkar et al., 2016; Devlin et al., 2018; Hermann
et al., 2015; Seo et al., 2016). For span based QA
datasets, the answer being a span of the paragraph
limits the difficulty of the question as the answer is
present verbatim in the paragraph and does not test
the model’s ability to reason or infer across mul-
tiple sentences in a deeper way (Khashabi et al.,
2018). Similarly, for cloze style datasets the an-
swer is typically a single missing word from a sen-
tence, usually an entity referred to elsewhere in
the passage. This again requires limited reasoning
ability (Chen et al., 2016).

Recently, multiple datasets have been proposed
to test a question-answering model’s ability to rea-

son and perform inference across multiple sen-
tences in a passage. On some of these datasets,
the performance of the current state of the art QA
models significantly lags behind the human perfor-
mance. Examples of such datasets include Mul-
tiRC (Khashabi et al., 2018), OpenBookQA (Mi-
haylov et al., 2018), ARC (Clark et al., 2018), etc.
In particular, MultiRC (Khashabi et al., 2018) was
designed specifically to be more challenging than
the existing datasets.

In this paper, we propose a multi-stage ap-
proach to tackle the problem of performing infer-
ence using information from multiple sentences.
The aforementioned sentences are usually spread
across the passage. We evaluate our approach
on two datasets, MultiRC and OpenBookQA. Our
proposed approach significantly improves upon
the current state of the art results on MultiRC
dataset and matches the current state of art per-
formance on OpenBookQA achieved by non-
ensemble models.

2 Approach

The general idea behind our approach is to broadly
emulate a multi-stage process usually followed by
humans in multiple choice reading comprehension
tasks. Typically, to answer questions related to a
given passage one starts off by quickly reading the
whole passage at the start to get a general idea of
the passage topic and gist of important concepts
mentioned in the passage. After the initial reading,
one starts considering each question individually.
For a particular question, the text from the ques-
tion and all its associated options are used to iden-
tify the most relevant portions of the passage. Sub-
sequently, one can usually eliminate one or more
of the answer choices as being obviously irrelevant
using the information gathered from the previous
step. Finally, a suitable answer is chosen from the
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remaining candidates based on the information in-
ferred using the previously identified relevant por-
tions.

Figure 1: An illustration of the proposed approach

In the following subsections, we provide more
details about each stage of our proposed approach:

2.1 Stage 1: Context Filtering (CF)

In the first stage, we train a model to classify, for
each question, the portions of the given passage as
either relevant or not. For this purpose, the ques-
tion and all its candidate options are used. Portions
classified as relevant for a particular question are
extracted and used in the subsequent stages. We
use sentences as the level of granularity for this ex-
traction task. This helps us avoid truncating long
passages arbitrarily which might lead to the elim-
ination of relevant portions of the passage. Thus,
in this stage, it is desirable that the model elimi-
nates most of the irrelevant sentences and retains
a reasonably high number of relevant sentences.
We achieve this by choosing an operating point
with a high precision and a reasonably good recall
on the precision-recall curve for the model. This
stage can be trained in a supervised manner by ei-
ther using the information present in the dataset it-
self (if available) or using models trained on span
based datasets, since models trained on span based
datasets are effectively performing the same task
as identifying relevant portions of the passage for
each question.

2.2 Stage 2: Irrelevant Answer Elimination
(IAE)

In the second stage, we train a dedicated model
to classify every answer option using the corre-
sponding question and the relevant portions of the
passage extracted in the previous stage as either ir-
relevant or not. An option classified as irrelevant
by the model is eliminated from further consider-
ation. Here, the model’s goal is to eliminate as
many incorrect options as possible while avoiding
elimination of possibly correct options. This stage
reduces the number of candidate options for each
question significantly. This leads to a significant
reduction in the complexity of the task performed
in the final stage.

2.3 Stage 3: Answering Questions (AQ)

After the previous two stages, we obtain a signif-
icant reduction in the complexity and size of the
task. Thus, the level of reasoning abilities required
of the final model to achieve high performance is
significantly reduced. The filtered context and the
remaining options are used to infer the correct an-
swer(s).

3 Experiments

3.1 Experiment Settings

We use an open source PyTorch implementation of
the pretrained BERTBASE made available by Hug-
ging Face (2019) at each stage. We train each
model for a maximum of 10 epochs. The models
typically converge within 3 epochs.

Since we implement our approach by using
BERTBASE to perform the tasks at each stage, we
use the performance of BERTBASE on the full task
as a baseline and provide that information for each
experiment. We chose BERTBASE to perform the
task at each stage due to its impressive perfor-
mance across various NLP tasks (Devlin et al.,
2018). We formulate the classification task as
described in the original paper. We did not use
BERTLARGE due to resource limitations.

We evaluate our proposed approach on two
datasets: MultiRC (Khashabi et al., 2018) and
OpenBookQA (Mihaylov et al., 2018). Further-
more, we also use RACE dataset (Lai et al., 2017)
for pretraining our models while evaluating our
approach on OpenBookQA. We provide more de-
tails in the following subsections.
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Model EM F1m F1a
BERTBASE 17.73 68.46 66.11
Reading Strategies 22.60 71.50 69.20
Reading Strategies + 21.80 73.10 70.50
CF + AQ * 25.29 69.77 67.98
CF + IAE + AQ * 42.07 80.77 79.40

Table 1: Model EM: exact match, F1m: macro-average
F1, F1a: micro-average F1 scores (%) on MultiRC
dev set, * indicates usage of BERTBASE, + indicates en-
semble model

3.2 MultiRC

MultiRC (Khashabi et al., 2018) is a multiple
choice reading comprehension dataset. The ques-
tions included in this dataset were chosen to have
answers which used information spread across
multiple sentences. MultiRC does not have a fixed
number of candidate answers for questions and
there are usually multiple correct answer for a
question (Khashabi et al., 2018). Furthermore, a
majority of correct answers cannot be found ver-
batim in the context provided for answering the
questions. These factors make it much more chal-
lenging than some of the existing multiple choice
datasets, as evidenced by the large gap between
the human and current state of the art deep learn-
ing model performance.

For the context filtering stage, we train a clas-
sification model on the MultiRC dataset which
already includes information about the relevant
sentences used for each question. We train the
model using the sentences used information from
the train set. Since the MultiRC dataset does not
have a publicly available test dataset, we evaluate
on the dev set. For the IAE stage, we consider each
question-answer pair independently along with the
filtered context obtained from the previous stage
and classify the option as relevant or irrelevant.
For the final stage, since the number of candidate
options is not fixed and there can be a variable
number of correct choices, we again consider each
non eliminated answer independently for classifi-
cation as correct or incorrect.

In table 1, we report the results of our experi-
ments. To analyze the contribution of each com-
ponent we also report the results obtained without
the IAE stage. From the results achieved, it is evi-
dent that both stages contribute to the overall per-
formance. Our approach significantly outperforms
the existing state of the art (Sun et al., 2018).

3.3 OpenBookQA

OpenBookQA (Mihaylov et al., 2018) is a mul-
tiple choice reading comprehension dataset mod-
eled to emulate the open book exam setting used to
assess an individual’s understanding of a particu-
lar topic. The questions in this dataset are based on
elementary level science facts. In contrast to other
reading comprehension datasets, OpenBookQA
does not provide a separate context for each ques-
tion. A common set of 1326 sentences containing
elementary level science facts are provided which
can be used to answer the questions. The questions
are designed to test both common knowledge and
the linguistic knowledge (Mihaylov et al., 2018) as
opposed to just the linguistic knowledge tested by
some other reading comprehension datasets like
SQuAD (Rajpurkar et al., 2016).

For OpenBookQA dataset, apart from applying
our approach in a way similar to how it was ap-
plied on the MultiRC dataset, we also apply an
augmented version of our approach. The main
difference between the non-augmented and aug-
mented approach is that in the augmented ap-
proach, the models used in the last two stages are
first pretrained on RACE (Lai et al., 2017) dataset
and then finetuned on the target dataset. The rea-
son for using the augmented approach is to acquire
some common knowledge needed to answer ques-
tions (Mihaylov et al., 2018). RACE is one of the
largest existing multiple choice dataset and exist-
ing work has (Pan et al., 2019) shown that pre-
training on RACE leads to an improvement on a
model’s performance on OpenBookQA.

As mentioned earlier, OpenBookQA provides a
common corpus of 1326 sentences for all the ques-
tions. Both the augmented and non-augmented ap-
proaches share the first stage. For OpenbookQA
the first stage is split into two steps. First step
is to pick out top 15 sentences from the common
corpus for each question using TF-IDF and co-
sine similarity. We compute cosine similarity be-
tween the text obtained by concatenating question
text and the corresponding option texts and all the
sentences in the common corpus. For the second
step, we use the same model that was used for the
MultiRC dataset for context filtering, since Open-
BookQA does not provide sentences used infor-
mation in its training dataset. Furthermore, in con-
trast to MultiRC, we do not consider each of the
sentence selected in the first step independently.
We use the model to obtain relevance probabilities
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Model Accuracy
BERTBASE 52.20
BERTLARGE (AllenAI, 2018) 60.40
BERTBASE [CF + AQ] 52.20
BERTBASE [CF + IAE + AQ] 62.20

Table 2: Non-augmented Model accuracies (%) on
OpenBookQA test set

for each of the selected sentences for each ques-
tion and then pick 6 sentences with highest rele-
vance probability for each question.

We follow the same procedure for the second
and third stage as described in the MultiRC sec-
tion for OpenBookQA with two changes. The first
change pertains to the fact that in OpenBookQA
dataset each question has 4 candidate options with
only 1 correct answer. This allows us to consider
all 4 options at the same time while answering
a question. Keeping this fact in mind, we train
the models in the second and third stage to output
probabilities for each option. In the second stage,
the options with top 2 probabilities are eliminated
(correspond to the 2 most irrelevant candidates)
and in the third stage, the option with highest prob-
ability is picked as the final answer. The second
change which applies only to the augmented ap-
proach is pretraining the models described earlier.

We report the performance of the non-
augmented approach in table 2 and the augmented
approach in table 3. Our non-augmented ap-
proach significantly outperforms the BERTBASE
baseline and it also outperforms the BERTLARGE
trained only on the OpenBookQA dataset (Al-
lenAI, 2018). In table 2, we compare the per-
formance of the augmented approach with other
BERTLARGE based approaches, all of which in-
clude pretraining on other datasets in their train-
ing regimen. The augmented approach achieves
the same result as the current non-ensemble state
of the art approach reported by Pan et al (2019).

4 Discussion

Our approach logically divides the main task into
three sub-tasks with much lower complexity. This
allows each of the sub-tasks to be performed more
effectively leading to the increase in overall per-
formance.

The proposed multi-stage approach has some
inherent advantages when compared to an end-to-
end model. The output of each of the stages is

Model Accuracy
BERTLARGE(MS AI, 2019) 63.80
BERTLARGE(Pan et al., 2019) 68.00 *

BERTLARGE(Pan et al., 2019) 69.60 +

BERTBASE [CF + AQ] 56.60
BERTBASE [CF + IAE + AQ] 68.00 *

Table 3: Augmented Model accuracies (%) on Open-
BookQA test set, * indicates current non-ensemble
state of the art, + indicates current state of the art en-
semble model

highly interpretable and can be analyzed to im-
prove the performance at each stage. The model
used at each stage can be replaced with a model
of more appropriate complexity depending on the
dataset.

The proposed multi-stage approach has lower
resource requirements, particularly when making
use of resource intensive models like BERT. Train-
ing such models as an end to end model or ensem-
bling requires significant GPU memory.

For the MultiRC dataset, our model uses a com-
parable number of parameters to the previous state
of the art (Sun et al., 2018) (which is based on
OpenAI’s GPT (Radford and Sutskever, 2018)),
but significantly outperforms it on all metrics.

For the OpenbookQA dataset, our approach
achieves comparable performance to the current
state of the art which uses an ensemble. Since our
model does not use ensembling and is based on
BERTBASE rather than BERTLARGE, it uses signif-
icantly fewer number of parameters.

5 Conclusion and Future Work

We proposed a multi-stage approach modeled on
the process typically followed by humans to per-
form multiple choice reading comprehension task.
Our approach significantly outperformed the pre-
vious state of the art on the MultiRC dataset
and performed impressively on the OpenBookQA
dataset indicating its effectiveness in handling
challenging datasets requiring advanced reasoning
capabilities.

In the future, we would like to develop an end
to end architecture that can reasonably model the
same multi-step process. We would also like to ex-
plore how the performance changes with the usage
of more specialized model for different stages.
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