LEARNING TO UNDERSTAND GOAL SPECIFICATIONS

BY MODELLING REWARD

Dzmitry Bahdanau* Felix Hill Jan Leike Edward Hughes
Mila, Université de Montréal DeepMind DeepMind DeepMind
dimabgv@gmail.com
Arian Hosseini Pushmeet Kohli Edward Grefenstette'
Mila, Université de Montréal DeepMind DeepMind
egrefen@fb.com
ABSTRACT

Recent work has shown that deep reinforcement-learning agents can learn to follow
language-like instructions from infrequent environment rewards. However, this
places on environment designers the onus of designing language-conditional reward
functions which may not be easily or tractably implemented as the complexity of
the environment and the language scales. To overcome this limitation, we present
a framework within which instruction-conditional RL agents are trained using
rewards obtained not from the environment, but from reward models which are
jointly trained from expert examples. As reward models improve, they learn to
accurately reward agents for completing tasks for environment configurations—and
for instructions—not present amongst the expert data. This framework effectively
separates the representation of what instructions require from how they can be
executed. In a simple grid world, it enables an agent to learn a range of commands
requiring interaction with blocks and understanding of spatial relations and under-
specified abstract arrangements. We further show the method allows our agent to

adapt to changes in the environment without requiring new expert examples.

1 INTRODUCTION

Developing agents that can learn to follow user instruc-
tions pertaining to an environment is a longstanding goal
of AI research (s). Recent work has
shown deep reinforcement learning (RL) to be a promising
paradigm for learning to follow language-like instructions
in both 2D and 3D worlds (e.g. ();

(), see Section 4 for a review). In each
of these cases, being able to reward an agent for success-
fully completing a task specified by an instruction requires
the implementation of a full interpreter of the instruction
language. This interpreter must be able to evaluate the
instruction against environment states to determine when
reward must be granted to the agent, and in doing so re-
quires full knowledge (on the part of the designer) of the
semantics of the instruction language relative to the envi-
ronment. Consider, for example, 4 arrangements of blocks
presented in Figure 1. Each of them can be interpreted as

Figure 1: Different valid goal states for
the instruction “build an L-like shape
from red blocks”.

a result of successfully executing the instruction “build an L-like shape from red blocks”, despite
the fact that these arrangements differ in the location and the orientation of the target shape, as
well as in the positioning of the irrelevant blue blocks. At best (e.g. for instructions such as the

*Work done during an internship at DeepMind.
TNow at Facebook Al Research.

aforementioned one), implementing such an interpreter is feasible, although typically onerous in
terms of engineering efforts to ensure reward can be given—for any admissible instruction in the
language—in potentially complex or large environments. At worst, if we wish to scale to the full
complexity of natural language, with all its ambiguity and underspecification, this requires solving
fundamental problems of natural language understanding.

If instruction-conditional reward functions cannot conveniently or tractably be implemented, can
we somehow learn them in order to then train instruction-conditional policies? When there is a
single implicit task, Inverse Reinforcement Learning (IRL; s ; s

) methods in general, and Generative Adversarial Imitation Learning (R)
in particular, have yielded some success in jointly learning reward functions from expert data and
training policies from learned reward models. In this paper, we wish to investigate whether such
mechanisms can be adapted to the more general case of jointly learning to understand language which
specifies task objectives (e.g. instructions, goal specifications, directives), and use such understanding
to reward language-conditional policies which are trained to complete such tasks. For simplicity,
we explore a facet of this general problem in this paper by focussing on the case of declarative
commands that specify sets of possible goal-states (e.g. “arrange the red blocks in a circle.”), and
where expert examples need only be goal states rather than full trajectories or demonstrations, leaving
such extensions for further work. We introduce a framework—Adversarial Goal-Induced Learning
from Examples (AGILE)—for jointly training an instruction-conditional reward model using expert
examples of completed instructions alongside a policy which will learn to complete instructions by
maximising the thus-modelled reward. In this respect, AGILE relies on familiar RL objectives, with
free choice of model architecture or training mechanisms, the only difference being that the reward
comes from a learned reward model rather than from the environment.

We first verify that our method works in settings where a comparison between AGILE-trained policies
with policies trained from environment reward is possible, to which end we implement instruction-
conditional reward functions. In this setting, we show that the learning speed and performance of
A3C agents trained with AGILE reward models is superior to A3C agents trained against environment
reward, and comparable to that of true-reward A3C agents supplemented by auxiliary unsupervised
reward prediction objectives. To simulate an instruction-learning setting in which implementing
a reward function would be problematic, we construct a dataset of instructions and goal-states for
the task of building colored orientation-invariant arrangements of blocks. On this task, without us
ever having to implement the reward function, the agent trained within AGILE learns to construct
arrangements as instructed. Finally, we study how well AGILE’s reward model generalises beyond
the examples on which it was trained. Our experiments show it can be reused to allow the policy to
adapt to changes in the environment.

2 ADVERSARIAL GOAL-INDUCED LEARNING FROM EXAMPLES

Here, we introduce AGILE (“Adversarial Goal-Induced Learning from Examples”, in homage to the
adversarial learning mechanisms that inspire it), a framework for jointly learning to model reward
for instructions, and learn a policy from such a reward model. Specifically, we learn an instruction-
conditional policy my with parameters 6, from a data stream G™ obtained from interaction with the
environment, by adjusting 6 to maximise the expected total reward R (6) based on stepwise reward
74 given to the policy, exactly as done in any normal Reinforcement Learning setup. The difference
lies in the source of the reward: we introduce an additional discriminator network Dy, the reward
model, whose purpose is to define a meaningful reward function for training 9. We jointly learn this
reward model alongside the policy by training it to predict whether a given state s is a goal state for a
given instruction ¢ or not. Rather than obtain positive and negative examples of (instruction, state)
pairs from a purely static dataset, we sample them from a policy-dependent data stream. This stream
is defined as follows: positive examples are drawn from a fixed dataset D of instructions c; paired
with goal states s;; negative examples are drawn from a constantly-changing buffer of states obtained
from the policy acting on the environment, paired with the instruction given to the policy. Formally,
the policy is trained to maximize a return R, () and the reward model is trained to minimize a

cross-entropy loss Lp(¢), the equations for which are:

00

R, (0) = E Z’ytflft—&—ozH(ﬂ'g), (D
(¢,81:00)~GT0 =1

Lp(¢)= E —log(l—Dglc,s))+ E —logDy(ci,gi). 2
(e,s)~B (¢irg9:)~D

where
ft = [D¢(C, St) > 05]

In the equations above, the Iverson Bracket [. ..] maps truth to 1 and falsehood to 0, e.g. [x > 0] =1
iff x > 0 and O otherwise. < is the discount factor. With (¢, s1.0c) ~ G, we denote a state
trajectory that was obtained by sampling (¢, s9) ~ G and running 7y conditioned on ¢ starting from
s0. B denotes a replay buffer to which (¢, s) pairs from T-step episodes are added; i.e. it is the
undiscounted occupancy measure over the first T' steps. D(c, s) is the probability of (¢, s) having a
positive label according to the reward model, and thus [Dy(c, s;) > 0.5] indicates that a given state
s¢ is more likely to be a goal state for instruction ¢ than not, according to D. H (my) is the policy’s
entropy, and « is a hyperparameter. The approach is illustrated in Fig 2. Pseudocode is available in
Appendix A. We note that Equation 1 differs from a traditional RL objective only in that the modelled
reward 7 is used instead of the ground-truth reward r;. Indeed, in Section 3, we will compare policies
trained with AGILE to policies trained with traditional RL, simply by varying the reward source from
the reward model to the environment.

instruction
(instruction, state)
| r ;

state

policy environment reward model
action
reward
(a) Policy Training
instruction dataset of
{instruction, state) {instruction, goal state)
l B i i A
policy state environment reward model A/B?
action

(b) Reward Model Training

Figure 2: Information flow during AGILE training. The policy acts conditioned on the instruction
and is trained using the reward from the reward model (Figure 2a). The reward model is trained,
as a discriminator, to distinguish between “A”, the (instruction, goal-state) pairs from the dataset
(Figure 2b), and “B”, the (instruction, state) pairs from the agent’s experience.

Dealing with False Negatives Let us call I'(c) the objective set of goal states which satisfy in-
struction ¢ (which is typically unknown to us). Compared to the ideal case where all (¢, s) would
be deemed positive if-and-only-if s € I'(c), the labelling of examples implied by Equation 2 has
a fundamental limitation when the policy performs well. As the policy improves, by definition, a
increasing share of (¢, s) € B are objective goal-states from I'(c). However, as they are treated
as negative examples in Equation 2, the discriminator accuracy drops, causing the policy to get
worse. We therefore propose the following simple heuristic to rectify this fundamental limitation by
approximately identifying the false negatives. We rank (c, s) examples in B according to the reward
model’s output Dy (c, s) and discard the top 1 — p percent as potential false negatives. Only the other
p percent are used as negative examples of the reward model. Formally speaking, the first term in
Equation 2 becomes E(c.s)~Bp,., — log(1 — Dy(c, s)), where Bp, , stands for the p percent of B

selected, using Dy, as described above. We will henceforth refer to p as the anticipated negative rate.
Setting p to 100% means using Bp,, 100 = B like in Equation 2, but our preliminary experiments
have shown clearly that this inhibits the reward model’s capability to correctly learn a reward function.
Using too small a value for p on the other hand may deprive the reward model of the most informative
negative examples. We thus recommend to tune p as a hyperparameter on a task-specific basis.

Reusability of the Reward Model An appealing advantage of AGILE is the fact that the reward
model D, and the policy 7 learn two related but distinct aspects of an instruction: the reward model
focuses on recognizing the goal-states (what should be done), whereas the policy learns what to do in
order to get to a goal-state (how it should be done). The intuition motivating this design is that the
knowledge about how instructions define goals should generalize more strongly than the knowledge
about which behavior is needed to execute instructions. Following this intuition, we propose to reuse
a reward model trained in AGILE as a reward function for training or fine-tuning policies.

Relation to GAIL AGILE is strongly inspired by—and retains close relations to—Generative
Adversarial Imitation Learning (GAIL; s), which likewise trains both a reward
function and a policy. The former is trained to distinguish between the expert’s and the policy’s
trajectories, while the latter is trained to maximize the modelled reward. GAIL differs from AGILE
in a number of important respects. First, AGILE is conditioned on instructions c so a single AGILE
agent can learn combinatorially many skills rather than just one. Second, in AGILE the reward
model observes only states s; (either goal states from an expert, or states from the agent acting on
the environment) rather than state-action traces (s1, a1), (s2, az), . . ., learning to reward the agent
based on “what” needs to be done rather than according to “how” it must be done. Finally, in
AGILE the policy’s reward is the thresholded probability [Dy(c, s;)] as opposed to the log-probability
log Dg(s¢,a¢) used in GAIL. Our reasoning for this change is that, when adapted to the setting
with goal-specifications, a GAIL-style reward log Dy(c, s;) could take arbitrarily low values for
intermediate states visited by the agent, as the reward model Dy becomes confident that those are not
goal states. Empirically, we found that dropping the logarithm from GAIL-style rewards is indeed
crucial for AGILE’s performance, and that using the probability Dy(c, s;) as the reward 7, results in
a performance level similar to that of the discretized AGILE reward 7'y = [Dy(c, s¢)].

3 EXPERIMENTS

We experiment with AGILE in a grid world environment that we call GridLU, short for Grid Language
Understanding and after the famous SHRDLU world (s). GridLU is a fully observable
grid world in which the agent can walk around the grid (moving up, down left or right), pick blocks
up and drop them at new locations (see Figure 3 for an illustration and Appendix C for a detailed
description of the environment).

3.1 MODELS

All our models receive the world state as a 56x56 RGB image. With regard to processing the
instruction, we will experiment with two kinds of models: Neural Module Networks (NMN) that treat
the instruction as a structured expression, and a generic model that takes an unstructured instruction
representation and encodes it with an LSTM.

Because the language of our instructions is generated from a simple grammar, we perform most
of our experiments using policy and reward model networks that are constructed using the NMN
(,) paradigm. NMN is an elegant architecture for grounded language pro-
cessing in which a tree of neural modules is constructed based on the language input. The
visual input is then fed to the leaf modules, which send their outputs to their parent modules,
which process is repeated until the root of the tree. We mimick the structure of the instructions
when constructing the tree of modules; for example, the NMN corresponding to the instruction
c1=NorthFrom(Color(‘red’, Shape(circle’, SCENE)), Color(‘blue’, Shape(‘square’, SCENE))) per-
forms a computation hy pr N = MNorth From (mred(mcircle (hé))a mblue(msqua'r‘e (ha)))), where m,
denotes the module corresponding to the token x, and h; is a representation of state s. Each module
m,, performs a convolution (weights shared by all modules) followed by a token-specific Feature-Wise
Linear Modulation (FiLM) (,): my(hyy hy) = ReLU ((147) ©(Wik[hy; hy])®B2),

where h; and h,. are module inputs, 7, is a vector of FILM multipliers, 3, are FiLM biases, ® and
@ are element-wise multiplication and addition with broadcasting, * denotes convolution. The
representation hg is produced by a convnet. The NMN’s output i s n undergoes max-pooling and
is fed through a 1-layer MLP to produce action probabilities or the reward model’s output. Note, that
while structure-wise our policy and reward model are mostly similar, they do not share parameters.

NMN is an excellent model when the language structure is known, but this may not be the case
for natural language. To showcase AGILE’s generality we also experiment with a very basic
structure-agnostic architecture. We use FiLM to condition a standard convnet on an instruction
representation hy g produced by an LSTM. The k-th layer of the convnet performs a computation
hi = ReLU((1+ k) © (Wi * hi—1) @ Bi), where v = W)/ hpsrar + by, Br = W}thST]M + bf-
The same procedure as described above for i/ is used to produce the network outputs using the
output hs of the 5 layer of the convnet.

In the rest of the paper we will refer to the architectures described above as FILM-NMN and FiLM-
LSTM respectively. FILM-NMN will be the default model in all experiments unless explicitly
specified otherwise. Detailed information about network architectures can be found in Appendix G.

3.2 TRAINING DETAILS

For the purpose of training the policy networks both within AGILE, and for our baseline trained from
ground-truth reward r; instead of the modelled reward 7;, we used the Asynchronous Advantage
Actor-Critic (A3C;)). Any alternative training mechanism which uses reward could
be used—since the only difference in AGILE is the source of the reward signal, and for any such
alternative the appropriate baseline for fair comparison would be that same algorithm applied to train
a policy from ground-truth reward. We will refer to the policy trained within AGILE as AGILE-A3C.
The A3C’s hyperparameters « and A were set to 0.99 and 0 respectively, i.e. we did not use without
temporal difference learning for the baseline network. The length of an episode was 30, but we trained
the agent on advantage estimation rollouts of length 15. Every experiment was repeated 5 times. We
considered an episode to be a success if the final state was a goal state as judged by a task-specific
success criterion, which we describe for the individual tasks below. We use the success rate (i.e. the
percentage of successful episodes) as our main performance metric for the agents. Unless otherwise
specified we use the NMN-based policy and reward model in our experiments. Full experimental
details can be found in Appendix D.

GridLu Relations episode
Green triangle Eel Line
west of
. ared circle
I:“ Diagonal .
> Triangle
Line g
GridLu Al isod Diagonal Snake
ridLu Arrangements episode Connect
Triangle
H K HEA B
Diagonal Line Adjacent
AND Green Connect
N = HER -3

GridLU Arrangements vocabulary

Figure 3: Initial state and goal state for GridLU-Relations (top-left) and GridLU-Arrangements
episodes (bottom-left), and the complete GridLU-Arrangements vocabulary (right), each with exam-
ples of some possible goal-states.

3.3 GRIDLU-RELATIONS

Our first task, GridLU-Relations, is an adaptation of the SHAPES visual question answering
dataset (R) in which the blocks can be moved around freely. GridLU-Relations
requires the agent to induce the meaning of spatial relations such as above or right of, and to ma-
nipulate the world in order to instantiate these relationships. Named GridLU-Relations, the task
involves five spatial relationships (NorthFrom, SouthFrom, EastFrom, WestFrom, SameLocation),
whose arguments can be either the blocks, which are referred to by their shapes and colors, or the
agent itself. To generate the full set of possible instructions spanned by these relations and our grid
objects, we define a formal grammar that generates strings such as:

NorthFrom(Color(‘red’, Shape(‘circle’, SCENE)), Color(‘blue’, Shape(‘square’, SCENE))) (3)

This string carries the meaning ‘put a red circle north from (above) a blue square’. In general, when a
block is the argument to a relation, it can be referred to by specifying both the shape and the color,
like in the example above, or by specifying just one of these attributes. In addition, the AGENT
constant can be an argument to all relations, in which case the agent itself must move into a particular
spatial relation with an object. Figure 3 shows two examples of GridLU-Relations instructions and
their respective goal states. There are 990 possible instructions in the GridLU-Relations task, and the
number of distinct training instances can be loosely lower-bounded by 1.8 - 107 (see Appendix E for
details).

Notice that, even for the highly concrete spatial relationships in the GridLU-Relations language,
the instructions are underspecified and somewhat ambiguous—is a block in the top-right corner of
the grid above a block in the bottom left corner? We therefore decided (arbitrarily) to consider all
relations to refer to immediate adjacency (so that Instruction equation 3 is satisfied if and only if
there is a red circle in the location immediately above a blue square). Notice that the commands are
still underspecified in this case (since they refer to the relationship between two entities, not their
absolute positions), even if the degree of ambiguity in their meaning is less than in many real-world
cases. The policy and reward model trained within AGILE then have to infer this specific sense of
what these spatial relations mean from goal-state examples, while the baseline agent is allowed to
access our programmed ground-truth reward. The binary ground-truth reward (true if the state is a
goal state) is also used as the success criterion for evaluating AGILE.

Having formally defined the semantics of the relationships and programmed a reward function, we
compared the performance of an AGILE-A3C agent against a priviliged baseline A3C agent trained
using ground-truth reward. Interestingly, we found that AGILE-A3C learned the task more easily than
standard A3C (see the respective curves in Figure 4). We hypothesize this is because the modeled
rewards are easy to learn at first and become more sparse as the reward model slowly improves.
This naturally emerging curriculum expedites learning in the AGILE-A3C when compared to the
A3C-trained policy that only receives signal upon reaching a perfect goal state.

We did observe, however, that the A3C algorithm could be improved significantly by applying the
auxiliary task of reward prediction (RP; ,), which was applied to language
learning tasks by () (see the A3C and A3C-RP curves in Figure 4). This
objective reinforces the association between instructions and states by having the agent replay the
states immediately prior to a non-zero reward and predict whether or not it the reward was positive
(i.e. the states match the instruction) or not. This mechanism made a significant difference to the
A3C performance, increasing performance to 99.9%. AGILE-A3C also achieved nearly perfect
performance (99.5%). We found this to be a very promising result, since within AGILE, we induce
the reward function from a limited set of examples.

The best results with AGILE-A3C were obtained using the anticipated negative rate p = 25%. When
we used larger values of p AGILE-A3C training started quicker but after 100-200 million steps the
performance started to deteriorate (see AGILE curves in Figure 4), while it remained stable with
p = 25%.

Data efficiency These results suggest that the AGILE reward model was able to induce a near
perfect reward function from a limited set of (instruction, goal-state) pairs. We therefore explored
how small this training set of examples could be to achieve reasonable performance. We found that
with a training set of only 8000 examples, the AGILE-A3C agent could reach a performance of 60%

(massively above chance). However, the optimal performance was achieved with more than 100,000
examples. The full results are available in Appendix D.

Generalization to Unseen Instructions In the experiments we have reported so far the AGILE
agent was trained on all 990 possible GridLU-Relation instructions. In order to test generalization
to unseen instructions we held out 10% of the instructions as the test set and used the rest 90% as
the training set. Specifically, we restricted the training instances and (instruction, goal-state) pairs
to only contain instructions from the training set. The performance of the trained model on the test
instructions was the same as on the training set, showing that AGILE did not just memorise the
training instructions but learnt a general interpretation of GridLU-Relations instructions.

AGILE with Structure-Agnostic Models We report the results for AGILE with a structure-
agnostic FILM-LSTM model in Figure 4 (middle). AGILE with p = 25% achieves a high 97.5%
success rate, and notably it trains almost as fast as an RL-RP agent with the same architecture.

100.0

97.5
95.0
92.5
90.0

success rate in %
success rate in %
accuracy in %

| —— A3C-RPLSTM 87.5
—— A3C-RP NMN 85.0

—— AGILE-A3C LSTM p=25 — p=100 — p=50
P 82.5 P [

/ AGILE-A3C p=50

/ —— AGILE-A3C p=25 AGILE-A3C NMN p=25 — p=75 p=25
0.5 - 0.5 80.0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
environment steps le8 environment steps le8 environment steps le8

Figure 4: Left: learning curves for A3C, A3C-RP (both using ground truth reward), and AGILE-A3C
with different values of the anticipated negative rate p on the GridLU-Relations task. We report
success rate (see Section 3). Middle: learning curves for policies trained with ground-truth RL, and
within AGILE, with different model architectures. Right: the reward model’s accuracy for different
values of p.

Analyzing the reward model We compare the binary reward provided by the reward model with
the ground-truth from the environment during training on the GridLU-Relation task. With p = 25%
the accuracy of the reward model peaks at 99.5%. As shown in Figure 4 (right) the reward model
learns faster in the beginning with larger values of p but then deteriorates, which confirms our
intuition about why p is an important hyperparameter and is aligned with the success rate learning
curves in Figure 4 (left). We also observe during training that the false negative rate is always kept
reasonably low (<3% of rewards) whereas the reward model will initially be more generous with
false positives (20-50% depending on p during the first 20M steps of training) and will produce an
increasing number of false positives for insufficiently small values of p (see plots in Appendix E). We
hypothesize that early false positives may facilitate the policy’s training by providing it with a sort of
curriculum, possibly explaining the improvement over agents trained from ground-truth reward, as
shown above.

The reward model as general reward function An instruction-following agent should be able to
carry-out known instructions in a range of different contexts, not just settings that match identically
the specific setting in which those skills were learned. To test whether the AGILE framework is
robust to (semantically-unimportant) changes to the environment dynamics, we first trained the policy
and reward model as normal and then modified the effective physics of the world by making all red
square objects immovable. In this case, following instructions correctly is still possible in almost
all cases, but not all solutions available during training are available at test time. As expected, this
change impaired the policy and the agent’s success rate on the instructions referring to a red square
dropped from 98% to 52%. However, after fine-tuning the policy (additional training of the policy
on the test episodes using the reward from the previously-trained-then-frozen reward model), the
success rate went up to 69.3% (Figure 5). This experiment suggests that the AGILE reward model
learns useful and generalisable linguistic knowledge. The knowledge can be applied to help policies
adapt in scenarios where the high-level meaning of commands is familiar but the low-level physical
dynamics is not.

M Train Test M Fine-tuning
80

60

20

Figure 5: Fine-tuning for an immovable red square.

3.4 GRIDLU-ARRANGEMENTS TASK

The experiments thus far demonstrate that even without directly using the reward function AGILE-
A3C performs comparably to its pure A3C counter-part. However, the principal motivation for
the AGILE framework is to avoid programming the reward function. To model this setting more
explicitly, we developed the task GridLU-Arrangements, in which each instruction is associated
with multiple viable goal-states that share some (more abstract) common form. The complete set of
instructions and forms is illustrated in Figure 3. To get training data, we built a generator to produce
random instantiations (i.e. any translation, rotation, reflection or color mapping of the illustrated
forms) of these goal-state classes, as positive examples for the reward model. In the real world, this
process of generating goal-states could be replaced by finding, or having humans annotate, labelled
images. In total, there are 36 possible instructions in GridLU-Arrangements, which together refer
to a total of 390 million correct goal-states (see Appendix F for details). Despite this enormous
space of potentially correct goal-states, we found that for good performance it was necessary to train
AGILE on only 100,000 (less than 0.3%) of these goal-states, sampled from the same distribution as
observed in the episodes. To replicate the conditions of a potential AGILE application as close as
possible, we did not write a reward function for GridLU-Arrangements (even though it would have
been theoretically possible), and instead carried out all evaluation manually.

The training regime for GridLU-Arrangements involved two classes of episodes (and instructions).
Half of the episodes began with four square blocks (all of the same color), and the agent, in random
unique positions, and an instruction sampled uniformly from the list of possible arrangement words. In
the other half of the episodes, four square blocks of one color and four square blocks of a different color
were initially each positioned randomly. The instruction in these episodes specified one of the two
colors together with an arrangement word. We trained policies and reward models using AGILE with
10 different seeds for each level, and selected the best pair based on how well the policy maximised
modelled reward. We then manually assessed the final state of each of 200 evaluation episodes, using
human judgement that the correct shape has been produced as success criterion to evaluate AGILE.
We found that the agent made the correct arrangement in 58% of the episodes. The failure cases were
almost always in the episodes involving eight blocks'. In these cases, the AGILE agent tended towards
building the correct arrangement, but was impeded by the randomly positioned non-target-color
blocks and could not recover. Nonetheless, these scores, and the compelling behaviour observed in the
video (https://www.youtube.com/watch?v=07S-x3MkEoQ), demonstrate the potential
of AGILE for teaching agents to execute semantically vague or underspecified instructions.

4 RELATED WORK

Learning to follow language instructions has been approached in many different ways, for example
by reinforcement learning using a reward function programmed by a system designer.

(2017); (2017); (2017); (2018); (2017);
() consider instruction-following in 2D or 3D environments and reward the agent for arriving at
the correct location or object. () and () train RL agents to produce

goal-states given instructions. As discussed, these approaches are constrained by the difficulty of
programming language-related reward functions, a task that requires an programming expert, detailed
access to the state of the environment and hard choices above how language should map to the world.
Agents can be trained to follow instructions using complete demonstrations, that is sequences of
correct actions describing instruction execution for given initial states.

"The agent succeeded on 92% (24%) with 4 (8) blocks.

https://www.youtube.com/watch?v=07S-x3MkEoQ

(); () train semantic parsers to produce a formal
representation of the query that when fed to a predefined execution model matches exactly the
sequence of actions from the demonstration. (); () sidestep
the intermediate formal representation and train a Conditional Random Field (CRF) and a sequence-
to-sequence neural model respectively to directly predict the actions from the demonstrations. A
underlying assumption behind all these approaches is that the agent and the demonstrator share the
same actuation model, which might not always be the case. In the case of navigational instructions
the trajectories of the agent and the demonstrators can sometimes be compared without relying on
the actions, like e.g. (), but for other types of instructions such a hard-coded
comparison may be infeasible. () train a log-linear model to map instruction
constituents into their groundings, which can be objects, places, state sequences, etc. Their approach
requires access to a structured representation of the world environment as well as intermediate
supervision for grounding the constituents.

Our work can be categorized as apprenticeship (imitation) learning, which studies learning to
perform tasks from demonstrations and feedback. Many approaches to apprenticeship learning are
variants of inverse reinforcement learning (IRL) which aims to recover a reward function from
expert demonstrations (,). As stated at the end of Section 2,
the method most closely related to AGILE is the GAIL algorithm from the IRL family (

,). There have been earlier attempts to use IRL-style methods for instruction following

(,), but unlike AGILE, they relied on the availability of
a formal reward spec1ﬁcat10n language. To our knowledge, ours and the concurrent work by
() are the first works to showcase learning reward models for instructions from pixels directly.

Besides IRL- style approaches, other apprenticeship learning methods involve trarnlng a policy (

R) or a reward function (
directly from human feedback. Several recent imitation learning works consrder using goal states
directly for defining the task (,). AGILE differs from these
approaches in that goal-states are only used to trarn the reward module, which we show generalises to
new environment configurations or instructions, relative to those seen in the expert data.

5 DISCUSSION

We have proposed AGILE, a framework for training instruction-conditional RL agents using rewards
from learned reward models, which are jointly trained from data provided by both experts and the
agent being trained, rather than reward provided by an instruction interpreter within the environment.
This opens up new possibilities for training language aware agents: in the real world, and even in
rich simulated environments (,), acquiring such data via human
annotation would often be much more Vrable than defining and implementing reward functions
programmatically. Indeed, programming rewards to teach robust and general instruction-following
may ultimately be as challenging as writing a program to interpret language directly, an endeavour
that is notoriously laborious (,), and some say, ultimately futile (,).

As well as a means to learn from a potentially more prevalent form of data, our experiments
demonstrate that policies trained in the AGILE framework perform comparably with and can learn as
fast as those trained against ground-truth reward and additional auxiliary tasks. Our analysis of the
reward model’s classifications gives a sense of how this is possible; the false positive decisions that it
makes early in the training help the policy to start learning. The fact that AGILEs objective attenuates
learning issues due to the sparsity of reward states within episodes in a manner similar to reward
prediction suggests that the reward model within AGILE learns some form of shaped reward (

,), and could serve not only in the cases where a reward function need to be learned in the
absence of true reward, but also in cases where environment reward is defined but sparse. As these
cases are not the focus of this study, we note this here, but leave such investigation for future work.

As the policy improves, false negatives can cause the reward model accuracy to deteriorate. We
determined a simple method to mitigate this, however, leading to robust training that is comparable
to RL with reward prediction and unlimited access to a perfect reward function. Another attractive
aspect of AGILE is that learning “what should be done” and “how it should be done” is performed
by two different model components. Our experiments confirm that the “what” kind of knowledge
generalizes better to new environments. When the dynamics of the environment changed at test time,

fine-tuning using frozen reward model allowed to the policy recover some of its original capability in
the new setting.

While there is a large gap to be closed between the sort of tasks and language experimented with in this
paper and those which might be presented in “real world” situations or more complex environments,
our results provide an encouraging first step in this direction. Indeed, it is interesting to consider how
AGILE could be applied to more realistic learning settings, for instance involving first-person vision
of 3D environments. Two issues would need to be dealt with, namely training the agent to factor out
the difference in perspective between the expert data and the agent’s observations, and training the
agent to ignore its own body parts if they are visible in the observations. Future work could focus
on applying third-person imitation learning methods recently proposed by () learn
the aforementioned invariances. Most of our experiments were conducted with a formal language
with a known structure, however AGILE also performed very well when we used a structure-agnostic
FiLM-LSTM model which processed the instruction as a plain sequence of tokens. This result suggest
that in future work AGILE could be used with natural language instructions.

ACKNOWLEDGMENTS

The authors want to thank Serkan Cabi for providing useful feedback. This research was enabled in
part by support provided by Compute Canada (www . computecanada.ca).

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship Learning via Inverse Reinforcement Learning. In
Proceedings of the Twenty-first International Conference on Machine Learning, ICML ’04, 2004.
URL http://doi.acm.org/10.1145/1015330.1015430.

Jacob Andreas and Dan Klein. Alignment-Based Compositional Semantics for Instruction Following.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
2015.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural Module Networks. In
Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
URL http://arxiv.org/abs/1511.02799.

Yoav Artzi and Luke Zettlemoyer. Weakly supervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Association for Computational Linguistics, 1:49-62,
2013.

Simon Brodeur, Ethan Perez, Ankesh Anand, Florian Golemo, Luca Celotti, Florian Strub, Jean
Rouat, Hugo Larochelle, and Aaron Courville. HoME: a Household Multimodal Environ-
ment. arXiv:1711.11017 [cs, eess], November 2017. URL http://arxiv.org/abs/1711.
11017. arXiv: 1711.11017.

Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-Attention Architectures for Task-Oriented Language
Grounding. In Proceedings of 32nd AAAI Conference on Artificial Intelligence, 2018. URL
http://arxiv.org/abs/1706.07230.

David L. Chen and Raymond J. Mooney. Learning to Interpret Natural Language Navigation
Instructions from Observations. In Proceedings of the Twenty-Fifth AAAI Conference on Arti-
ficial Intelligence, pp. 859—-865, 2011. URL http://dl.acm.org/citation.cfm?id=
2900423.2900560.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, pp. 4302—4310, 2017.

Misha Denil, Sergio Gmez Colmenarejo, Serkan Cabi, David Saxton, and Nando de Freitas. Pro-

grammable Agents. arXiv:1706.06383 [cs, stat], June 2017. URL http://arxiv.org/abs/
1706.06383.

10

www.computecanada.ca
http://doi.acm.org/10.1145/1015330.1015430
http://arxiv.org/abs/1511.02799
http://arxiv.org/abs/1711.11017
http://arxiv.org/abs/1711.11017
http://arxiv.org/abs/1706.07230
http://dl.acm.org/citation.cfm?id=2900423.2900560
http://dl.acm.org/citation.cfm?id=2900423.2900560
http://arxiv.org/abs/1706.06383
http://arxiv.org/abs/1706.06383

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From Language to Goals:
Inverse Reinforcement Learning for Vision-Based Instruction Following. In International Con-
ference on Learning Representations, September 2018. URL https://openreview.net/
forum?id=r11glhRgY¥YQ.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
Programs for Images using Reinforced Adversarial Learning. arXiv:1804.01118 [cs, stat], April
2018. URL http://arxiv.org/abs/1804.01118. arXiv: 1804.01118.

Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer, David
Szepesvari, Wojciech Marian Czarnecki, Max Jaderberg, Denis Teplyashin, Marcus Wainwright,
Chris Apps, Demis Hassabis, and Phil Blunsom. Grounded Language Learning in a Simulated
3d World. arXiv:1706.06551 [cs, stat], June 2017. URL http://arxiv.org/abs/1706.
06551.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pp. 4565-4573, 2016.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement Learning with Unsupervised Auxiliary Tasks. In
ICLR, November 2016. URL http://arxiv.org/abs/1611.05397.

Michael Janner, Karthik Narasimhan, and Regina Barzilay. Representation Learning for Grounded
Spatial Reasoning. Transactions of the Association for Computational Linguistics, July 2017. URL
http://arxiv.org/abs/1707.03938.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The
TAMER framework. In International Conference on Knowledge Capture, pp. 9-16, 2009.

James MacGlashan, Monica Babes-Vroman, Marie desJardins, Michael L. Littman, Smaranda
Muresan, Shawn Squire, Stefanie Tellex, Dilip Arumugam, and Lei Yang. Grounding english
commands to reward functions. In Robotics: Science and Systems, 2015.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. Listen, Attend, and Walk: Neural Mapping
of Navigational Instructions to Action Sequences. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2016. URL http://arxiv.org/abs/1506.04089.

Dipendra Misra, John Langford, and Yoav Artzi. Mapping Instructions and Visual Observations
to Actions with Reinforcement Learning. In arXiv:1704.08795 [cs], April 2017. URL http:
//arxiv.org/abs/1704.08795.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928-1937, 2016.

Andrew Y. Ng and Stuart Russell. Algorithms for Inverse Reinforcement Learning. In in Proc. 17th
International Conf. on Machine Learning, pp. 663—670. Morgan Kaufmann, 2000.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In ICML, volume 99, pp. 278-287, 1999.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning. In Proceedings of The 34st International Conference
on Machine Learning, June 2017. URL http://arxiv.org/abs/1706.05064.

Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation. In
International Conference on Learning Representations, 2018.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron Courville. FILM: Visual
Reasoning with a General Conditioning Layer. In In Proceedings of the AAAI Conference on
Artificial Intelligence, 2017. URL http://arxiv.org/abs/1709.07871.

11

https://openreview.net/forum?id=r1lq1hRqYQ
https://openreview.net/forum?id=r1lq1hRqYQ
http://arxiv.org/abs/1804.01118
http://arxiv.org/abs/1706.06551
http://arxiv.org/abs/1706.06551
http://arxiv.org/abs/1611.05397
http://arxiv.org/abs/1707.03938
http://arxiv.org/abs/1506.04089
http://arxiv.org/abs/1704.08795
http://arxiv.org/abs/1704.08795
http://arxiv.org/abs/1706.05064
http://arxiv.org/abs/1709.07871

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014. URL http://www. jmlr.org/papers/volumel5/
srivastavalda.old/source/srivastavalda.pdf.

Bradly C. Stadie, Pieter Abbeel, and Ilya Sutskever. Third-Person Imitation Learning. In /ICLR,
March 2017. URL http://arxiv.org/abs/1703.01703.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R. Walter, Ashis Gopal Banerjee, Seth
Teller, and Nicholas Roy. Understanding Natural Language Commands for Robotic Naviga-
tion and Mobile Manipulation. In Twenty-Fifth AAAI Conference on Artificial Intelligence, Au-
gust 2011. URL https://www.aaai.org/ocs/index.php/AAAI/ARAAIL]l /paper/
view/3623.

Adam Vogel and Dan Jurafsky. Learning to Follow Navigational Directions. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, pp. 806-814. Association
for Computational Linguistics, 2010. URL http://dl.acm.org/citation.cfm?id=
1858681.1858764.

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep TAMER: Interactive
agent shaping in high-dimensional state spaces. arXiv preprint arXiv:1709.10163,2017.

Edward C Williams, Nakul Gopalan, Mine Rhee, and Stefanie Tellex. Learning to parse natural
language to grounded reward functions with weak supervision. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1-7. IEEE, 2018.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A Bayesian approach for policy learning from
trajectory preference queries. In Advances in Neural Information Processing Systems, pp. 1133—
1141, 2012.

Terry Winograd. Procedures as a representation for data in a computer program for understanding
natural language. Technical report, 1971.

Terry Winograd. Understanding natural language. Cognitive Psychology, 3(1):1-191, 1972. doi: 10.
1016/0010-0285(72)90002-3. URL http://linkinghub.elsevier.com/retrieve/
pii/0010028572900023.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building Generalizable Agents with
a Realistic and Rich 3d Environment. arXiv:1801.02209 [cs], January 2018. URL http:
//arxiv.org/abs/1801.022009. arXiv: 1801.02209.

Haonan Yu, Haochao Zhang, and Wei Xu. Interactive Grounded Language Acquisition and General-
ization in 2d Environment. In ICLR, 2018. URL https://openreview.net/forum?id=
H1UOm4gA-¬eId=H1UOm4gA-.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum Entropy Inverse
Reinforcement Learning. In Proc. AAAL pp. 1433-1438, 2008.

12

http://www.jmlr.org/papers/volume15/srivastava14a.old/source/srivastava14a.pdf
http://www.jmlr.org/papers/volume15/srivastava14a.old/source/srivastava14a.pdf
http://arxiv.org/abs/1703.01703
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3623
http://dl.acm.org/citation.cfm?id=1858681.1858764
http://dl.acm.org/citation.cfm?id=1858681.1858764
http://linkinghub.elsevier.com/retrieve/pii/0010028572900023
http://linkinghub.elsevier.com/retrieve/pii/0010028572900023
http://arxiv.org/abs/1801.02209
http://arxiv.org/abs/1801.02209
https://openreview.net/forum?id=H1UOm4gA-¬eId=H1UOm4gA-
https://openreview.net/forum?id=H1UOm4gA-¬eId=H1UOm4gA-

A AGILE PSEUDOCODE

Algorithm 1 AGILE Discriminator Training

Require: The policy network 7y, the discriminator network Dy, the anticipated negative rate p, a dataset D, a
replay buffer B, the batch size BSS, a stream of training instances G, the episode length 7', the rollout length
R.

1: while Not Converged do

2: Sample a training instance (c, so) € G.

3: t<+0

4: whilet; T do

5: Act with 7g(c, s) and produce a rollout (¢, st...t+R)-

6 Add (¢, s) pairs from (c, s¢...t+r) to the replay buffer B. Remove old pairs from B if it is overflowing.

7: Sample a batch D of BS/2 positive examples from D.

8: Sample a batch D_ of BS/(2- (1 — p)) negative (c, s) examples from B.

9: Compute k = Dy(c, s) for all (¢, s) € D_ and reject the top 1 — p percent of D_ with the highest «.
The resulting D_ will contain B.S/2 examples.

10: Compute Lp(¢) = a5 > —log(1=Dy(c,s))+ > —logDylci,gi).
(¢c,s)eD_ (c,9)€ED 4

11: Compute the gradient ‘M%@) and use it to update ¢.

12: Synchronise ¢ and ¢ with other workers.

13: t+—t+R

14: end while
15: end while

Algorithm 2 AGILE Policy Training

Require: The policy network 7y, the discriminator network D, a dataset D, a replay buffer B, a stream of
training instances G, the episode length 7'.

1: while Not Converged do

2: Sample a training instance (c, so) € G.

3 t«+0

4 while t ; T do

5 Act with 7¢(c, s) and produce a rollout (¢, S¢...t+R)-
6: Use the discriminator Dy to compute the rewards 7> = [Dy(c, s7) > 0.5].
7 Perform an RL update for using the rewards 7.

8 Synchronise 6 and ¢ with other workers.

9 t+—t+R
10 end while
11: end while

B TRAINING DETAILS

We trained the policy 7y and the discriminator Dy concurrently using RMSProp as the optimizer
and Asynchronous Advantage Actor-Critic (A3C) (,) as the RL method. A baseline
predictor (see Appendix G for details) was trained to predict the discounted return by minimizing
the mean square error. The RMSProp hyperparameters were different for w9 and Dy, see Table 1. A
designated worker was used to train the discriminator (see Algorithm 1). Other workers trained only
the policy (see Algorithm 2). We tried having all workers write to the replay buffer B that was used
for the discriminator training and found that this gave the same performance as using (c, s) pairs
produced by the discriminator worker only. We found it crucial to regularize the discriminator by
clipping columns of all weights matrices to have the L2 norm of at most 1. In particular, we multiply
incoming weights w,, of each unit u by min(1,1/||w,||2) after each gradient update as proposed
by (). We linearly rescaled the policy’s rewards to the [0; 0.1] interval for both
RL and AGILE. When using RL with reward prediction we fetch a batch from the replay buffer and
compute the extra gradient for every rollout.

For the exact values of hyperparameters for the GridLU-Relations task we refer the reader to Table
1. The hyperparameters for GridLU-Arrangements were mostly the same, with the exception of the

13

episode length and the rollout length, which were 45 and 30 respectively. For training the RL baseline
for GridLU-Relations we used the same hyperparameter settings as for the AGILE policy.

Table 1: Hyperparameters for the policy and the discriminator for the GridLU-Relations task.

Group Hyperparameter Policy 79 Discriminator D
learning rate 0.0003 0.0005
decay 0.99 0.9
RMSProp € 0.1 1010
grad. norm threshold 40 25
batch size 1 256
rollout length 15 —
episode length 30 —
RL discount 0.99 —
reward scale 0.1 —
baseline cost 1.0 —
reward prediction cost (when used) 1.0 —
reward prediction batch size 4 —
num. workers training my 15 1
AGILE size of replay bpffer B — 100000
num. workers training D — 1
Regularization entropy weight o 0.01 —
max. column norm — 1

C GRIDLU ENVIRONMENT

The GridLU world is a 5 x 5 gridworld surrounded by walls. The cells of the grid can be occupied by
blocks of 3 possible shapes (circle, triangle, and square) and 3 possible colors (red, blue, and green).
The grid also contains an agent sprite. The agent may carry a block; when it does so, the agent sprite
changes color’. When the agent is free, i.e. when it does not carry anything, it is able to enter cells
with blocks. A free agent can pick a block in the cell where both are situated. An agent that carries a
block cannot enter non-empty cells, but it can instead drop the block that it carries in any non-empty
cell. Both picking up and dropping are realized by the INTERACT action. Other available actions
are LEFT, RIGHT, UP and DOWN and NOOP. The GridLU agent can be seen as a cursor (and this is
also how it is rendered) that can be moved to select a block or a position where the block should be
released. Figure 6 illustrates the GridLU world and its dynamics. We render the state of the world
as a color image by displaying each cell as an 8 x 8 patch® and stitching these patches in a 56 x 56
image*. All neural networks take this image as an input.

D EXPERIMENT DETAILS
Every experiment was repeated S times and the average result is reported.
RL vs. AGILE All agents were trained for 5 - 10 steps.

Data Efficiency We trained AGILE policies with datasets D of different sizes for 5 - 108 steps. For
each policy we report the maximum success rate that it showed in the course of training.

GridLU-Arrangements We trained the agent for 100M time steps, saving checkpoints periodically,
and selected the checkpoint that best fooled the discriminator according to the agent’s internal reward.

>We wanted to make sure the that world state is fully observable, hence the agent’s carrying state is explicitly
color-coded.

3The relatively high 8 x 8 resolution was necessary to let the network discern the shapes.

*The image size is 56 x 56 because the walls surrounding the GridLU world are also displayed.

14

LEFT

_ >

o -
—_—
A

.|

. - . o .
-~ B

Figure 6: The dynamics of the GridLU world illustrated by a 6-step trajectory. The order of the
states is indicated by arrows. The agent’s actions are written above arrows.

1.0

success rate

0.0 -
2.5 3.0 35 4.0 4.5 5.0 5.5

log 10 of the dataset size

Figure 7: Performance of AGILE for different sizes of the dataset of instructions and goal-states. For
each dataset size of we report is the best average success rate over the course of training.

Data Efficiency We measure how many examples of instructions and goal-states are required by
AGILE in order to understand the semantics of the GridLU-Relations instruction language. The
results are reported in Figure 7. The AGILE-trained agent succeeds in more than 50% of cases
starting from 8000 examples, but as many as 130000 is required for the best performance.

E ANALYSIS OF THE GRIDLU-RELATIONS TASK

E.1 GRIDLU RELATIONS INSTANCE GENERATOR

All GridLU instructions can be generated from <instruction> using the following Backus-Naur
form, with one exception: The first expansion of <olb 7> must not be identical to the second expansion
of <obj>in <bring_to_instruction>.

<shape> ::= circle | rect | triangle
<color> red | green | blue

15

<relationl> = NorthFrom | SouthFrom | EastFrom | WestFrom

<relation2> ::= <relationl> | SameLocation

<obj> ::= Color(<color>, <obj_part2>) | Shape(<shape>, SCENE)

<obj_part2> ::= Shape (<shape>, SCENE) | SCENE

<go_to_instruction> ::= <relation2> (AGENT, <obj>) | <relation2>(<obj>, AGENT)
<bring_to_instruction> ::= <relationl> (<obj>, <obj>)

<instruction> ::= <go_to_instruction> | <bring_ to_instruction>

There are 15 unique possibilities to expand the nonterminal <obj>, so there are 150
unique possibilities to expand <go_to_instruction> and 840 unique possibilities to ex-
pand <bring._to_instruction> (not counting the exceptions mentioned above). Hence
there are 990 unique instructions in total. However, several syntactically different instructions
can be semantically equivalent, such as EastFrom (AGENT, Shape (rect, SCENE)) and
WestFrom (Shape (rect, SCENE), AGENT).

Every instruction partially specifies what kind of objects need to be available in the environment.
For go-to-instructions we generate one object and for bring-to-instructions we generate two objects
according to this partial specification (unspecified shapes or colors are picked uniformly at random).
Additionally, we generate one “distractor object”. This distractor object is drawn uniformly at random
from the 9 possible objects. All of these objects and the agent are each placed uniformly at random
into one of 25 cells in the 5x5 grid.

The instance generator does not sample an instruction uniformly at random from a list of all possible
instructions. Instead, it generates the environment at the same time as the instruction according to
the procedure above. Afterwards we impose two ‘sanity checks’: are any two objects in the same
location or are they all identical? If any of these two checks fail, the instance is discarded and we
start over with a new instance.

Because of this rejection sampling technique, go-to-instructions are ultimately generated with ap-
proximately 25% probability even though they only represent ~ 15% of all possible instructions.

The number of different initial arrangements of three objects can be lower-bounded by (g) = 2300 if
we disregard their permutation. Hence every bring-to-instruction has at least K = 2300 -9 ~ 2 - 10*
associated initial arrangements. Therefore the total number of task instances can be lower-bounded
with 840 - K ~ 1.7 - 107, disregarding the initial position of the agent.

E.2 DISCRIMINATOR EVALUATION

During the training on GridLU-Relations we compared the predictions of the discriminator with those
of the ground-truth reward checker. This allowed us to monitor several performance indicators of the
discriminator, see Figure 8.

20.0

N
o
<)

— p=100 — p=50
— p=75 p=25

17.54

-
~
»

15.0 4

=
w
=}

12.54

—
N
]

10.0 4

7.5

false positives in %
~
in

5.01

false negatives in %
w S
=) =)

2.59

o
<)

|

0.0

environment steps 1e8 environment steps le8

Figure 8: The discriminator’s errors in the course of training. Left: percentage of false positives.
Right: percentage of false negatives.

16

F ANALYSIS OF THE GRIDLU-ARRANGEMENTS TASK

Instruction Syntax We used two types of instructions in the GridLU-Arrangements task, those
referring only to the arrangement and others that also specified the color of the blocks. Examples
Connected(AGENT, SCENE) and Snake(AGENT, Color(’yellow’, SCENE)) illustrate the syntax that
we used for both instruction types.

Number of Distinct Goal-States Table 2 presents our computation of the number of distinct
goal-states in the GridLU-Arrangements Task.

Table 2: Number of unique goal-states in GridLU-Arrangements task.

Possible Possible Possible Possible
arrangement Possible agent distractor distractor
Arrangement positions colors positions positions colors Total goal states
Square 16 3 25 5985 2 14,364,000
Line 40 3 25 5985 2 35,910,000
Dline 8 3 25 5985 2 7,182,000
Triangle 48 3 25 5985 2 43,092,000
Circle 9 3 25 5985 2 8,079,750
Eel 48 3 25 5985 2 43,092,000
Snake 48 3 25 5985 2 43,092,000
Connected 200 3 25 5985 2 179,550,000
Disconnected 17 3 25 5985 2 15,261,750
Total 389M
G MODELS
policy discriminator
(sigmoia
MLP

shared 3x3 conv

i

3x3 conv
NMN

»
>

*
(rtptrsies)
=

skip connection

NMN 8x8 conv

__red J (_yellow]

rect triangle

3x3 conv

%

SCENE

Figure 9: Our policy and discriminator networks with a Neural Module Network (NMN) as the core
component. The NMN’s structure corresponds to an instruction WestFrom(Color(‘red’, Shape(‘rect’,
SCENE)), Color(‘yellow’, Shape(‘triangle’, SCENE))). The modules are depicted as blue rectangles.
Subexpressions Color(’red’, ...), Shape(’rect’, ...), etc. are depicted as “red” and “rect” to save space.
The bottom left of the figure illustrates the computation of a module in our variant of NMN.

In this section we explain in detail the neural architectures that we used in our experiments. We will
use * to denote convolution, ®, @ to denote element-wise addition of a vector to a 3D tensor with
broadcasting (i.e. same vector will be added/multiplied at each location of the feature map). We used
ReLU as the nonlinearity in all layers with the exception of LSTM.

17

FiLM-NMN We will first describe the FILM-NMN discriminator D,. The discriminator takes a
56x56 RGB image s as the representation of the state. The image s is fed through a stem convnet that
consisted of an 828 convolution with 16 kernels and a 3x3 convolution with 64 kernels. The resulting
tensor hg¢ep, had a 5x5x64 shape.

As a Neural Module Metwork (,), the FILM-NMN is constructed of modules. The
module m,, corresponding to a token x takes a left-hand side input h; and a right-hand side input A,
and performs the following computation with them:

where 7, and (3, are FiLM coefficients (s) corresponding to the token z, W,,, is a
weight tensor for a 3x3 convolution with 128 input features and 64 output features. Zero-padding is
used to ensure that the output of m,, has the same shape as h; and h,.. The equation above describes
a binary module that takes two operands. For the unary modules that received only one input (e.g.
Myeds Msquare) WE present the input as i; and zeroed out h,.. This way we are able to use the same
set of weights W,,, for all modules. We have 12 modules in total, 3 for color words, 3 for shape
words, 5 for relations words and one m 4G gy module used in go-to instructions. The modules
are selected and connected based on the instructions, and the output of the root module is used for
further processing. For example, the following computation would be performed for the instruction
c1 =NorthFrom(Color(‘red’, Shape(‘circle’, SCENE)), Color(‘blue’, Shape(‘square’, SCENE))):

hnmn = MNorthFrom (mred (mcir(:le (hstem)) s Mblue (msquare (hstem,)))) (5)
and the following one for c; =NorthFrom(AGENT, Shape(‘triangle’, SCENE)):
hnmn = MNorthFrom (mAGENT (hstem)a Mtriangle (hstem)) . (6)

Finally, the output of the discriminator is computed by max-pooling the output of the FiLM-NMN
across spatial dimensions and feeding it to an MLP with a hidden layer of 100 units:

D(c, s) = o(w” ReLU (Wmaxpool(hymn) + b)),)
where w, W and b are weights and biases, o(x) = ¢* /(1 + %) is the sigmoid function.
The policy network 7y is similar to the discriminator network Dy. The only difference is that (1)

it outputs softmax probabilites for 5 actions instead of one real number (2) we use an additional
convolutional layer to combine the output of FILM-NMN and hgtep,:

hmerge = ReLU(Wmerge * [hnmna hstem] + bmerge)7 (8)
7(c, s) = softmax(WyRe LU (W1maxpool (Amerge) + b1) + b2), 9)
the output Ayyerge Of Which is further used in the policy network instead of Ay .

Figure 9 illustrates our FILM-NMN policy and discriminator networks.

FiLM-LSTM For our structure-agnostic models we use an LSTM of 100 hidden units to predict
FiLM biases and multipliers for a 5 layer convnet. More specifically, let iz s7as be the final state
of the LSTM after it consumes the instruction c. We compute the FiLM coefficients for the layer
k € [1; 5] as follows:

Yo = Wl hpsra + b, (10)
B szhLSTMerf, (11

and use them as described by the equation below:
hy = ReLU((1 + 1) © (W * hg—1) ® Br), (12)

where W, are the convolutional weights, hg is set to the pixel-level representation of the world state
s. The characteristics of the 5 layers were the following: (8x8, 16, VALID), (3x3, 32, VALID), (3x3,
64, SAME), (3x3, 64, SAME), (3x3, 64, SAME), where (mxm, Ny, p) stands for a convolutional
layer with mxm filters, n,,; output features, and p € {SAME, VALID} padding strategy. Layers
with p = VALID do not use padding, whereas in those with p = SAME zero padding is added in
order to produce an output with the same shape as the input. The layer 5 is also connected to layer 3
by a residual connection. Similarly to FILM-NMN, the output /5 of the convnet is max-pooled and
fed into an MLP with 100 hidden units to produce the outputs:

D(c, s) = o(w” ReLU (Wmazpool(hs) + b)), (13)
7(c, s) = softmax(Wo Re LU (Wimaxpool(hs) + by) + bs). (14)

18

Baseline prediction In all policy networks the baseline predictor is a linear layer that took the
same input as the softmax layer. The gradients of the baseline predictor are allowed to propagate
through the rest of the network.

Reward prediction We use the result i, q4p001 Of the max-pooling operation (which was a part of
all models that we considered) as the input to the reward prediction pathway of our model. Ry, qzp00l
is fed through a linear layer and softmax to produce probabilities of the reward being positive or zero
(the reward is never negative in AGILE).

Weight Initialization We use the standard initialisation methods from the Sonnet library’. Bias
vectors are initialised with zeros. Weights of fully-connected layers are sampled from a truncated
normal distribution with ¢ = \/% where n;,, is the number of input units of the layer. Convolutional

—
in
1

weights are sampled from a truncated normal distribution with o = TFan where fan;, is the
product of kernel width, kernel height and the number of input features.

>https://github.com/deepmind/sonnet/

19

	Introduction
	Adversarial Goal-Induced Learning from Examples
	Experiments
	Models
	Training Details
	GridLU-Relations
	GridLU-Arrangements Task

	Related Work
	Discussion
	AGILE Pseudocode
	Training Details
	GridLU Environment
	Experiment Details
	Analysis of the GridLU-Relations Task
	GridLU Relations Instance Generator
	Discriminator Evaluation

	Analysis of the GridLU-Arrangements Task
	Models

