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ABSTRACT

A neural network deployed in the wild may be asked to make predictions for inputs
that were drawn from a different distribution than that of the training data. A
plethora of work has demonstrated that it is easy to find or synthesize inputs for
which a neural network is highly confident yet wrong. Generative models are
widely viewed to be robust to such mistaken confidence as modeling the density of
the input features can be used to detect novel, out-of-distribution inputs. In this
paper we challenge this assumption. We find that the density learned by flow-based
models, VAEs, and PixelCNNs cannot distinguish images of common objects
such as dogs, trucks, and horses (i.e. CIFAR-10) from those of house numbers
(i.e. SVHN), assigning a higher likelihood to the latter when the model is trained
on the former. Moreover, we find evidence of this phenomenon when pairing
several popular image data sets: FashionMNIST vs MNIST, CelebA vs SVHN,
ImageNet vs CIFAR-10 / CIFAR-100 / SVHN. To investigate this curious behavior,
we focus analysis on flow-based generative models in particular since they are
trained and evaluated via the exact marginal likelihood. We find such behavior
persists even when we restrict the flows to constant-volume transformations. These
transformations admit some theoretical analysis, and we show that the difference
in likelihoods can be explained by the location and variances of the data and the
model curvature. Our results caution against using the density estimates from deep
generative models to identify inputs similar to the training distribution until their
behavior for out-of-distribution inputs is better understood.

1 INTRODUCTION

Deep learning has achieved impressive success in applications for which the goal is to model a
conditional distribution p(y|x), with y being a label and x the features. While the conditional
model p(y|x) may be highly accurate on inputs x sampled from the training distribution, there
are no guarantees that the model will work well on x’s drawn from some other distribution. For
example, Louizos & Welling (2017) show that simply rotating an MNIST digit can make a neural
network predict another class with high confidence (see their Figure 1a). Ostensibly, one way to
avoid such overconfidently wrong predictions would be to train a density model p(x;θ) (with θ
denoting the parameters) to approximate the true distribution of training inputs p∗(x) and refuse to
make a prediction for any x that has a sufficiently low density under p(x;θ). The intuition is that the
discriminative model p(y|x) likely did not observe enough samples in that region to make a reliable
decision for those inputs. This idea has been proposed by various papers, cf. (Bishop, 1994), and as
recently as in the panel discussion at Advances in Approximate Bayesian Inference (AABI) 2017
(Blei et al., 2017).

Anomaly detection is just one motivating example for which we require accurate densities, and
others include information regularization (Szummer & Jaakkola, 2003), open set recognition (Herbei
& Wegkamp, 2006), uncertainty estimation, detecting covariate shift, active learning, model-based
reinforcement learning, and transfer learning. Accordingly, these applications have lead to widespread
interest in deep generative models, which take many forms such as variational auto-encoders (VAEs)
(Kingma & Welling, 2014; Rezende et al., 2014), generative adversarial networks (GANs) (Goodfel-
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low et al., 2014), auto-regressive models (van den Oord et al., 2016b;a), and invertible latent variable
models (Tabak & Turner, 2013). The last two classes—auto-regressive and invertible models—are
especially attractive since they offer exact computation of the marginal likelihood, requiring no
approximate inference techniques.

In this paper, we investigate if modern deep generative models can be used for anomaly detection,
as suggested by Bishop (1994) and the AABI pannel (Blei et al., 2017), expecting a well-calibrated
model to assign higher density to the training data than to some other data set. However, we find this
to not be the case: when trained on CIFAR-10 (Krizhevsky & Hinton, 2009), VAEs, autoregressive
models, and flow-based generative models all assign a higher density to SVHN (Netzer et al., 2011)
than to the training data. We find this observation to be quite problematic and unintuitive since
SVHN’s digit images are so visually distinct from the dogs, horses, trucks, boats, etc. found in
CIFAR-10. Yet this phenomenon is not restricted to CIFAR-10 vs SVHN, and we report similar
findings for models trained on CelebA and ImageNet. We go on to study these curious observations
in flow-based models in particular since they allow for exact marginal density calculations. When the
flow is restricted to have constant volume across inputs, we show that the out-of-distribution behavior
can be explained in terms of the data’s variance and the model’s curvature.

To the best of our knowledge, we are the first to report these unintuitive findings for a variety of deep
generative models and image data sets. Moreover, our experiments with flow-based models isolate
some crucial experimental variables such as the effect of constant-volume vs non-volume-preserving
transformations. Lastly, our analysis provides some simple but general expressions for quantifying
the gap in the model density between two data sets. We close the paper by urging more study of the
out-of-training-distribution properties of deep generative models. Understanding their behaviour in
this setting is crucial for their deployment to the real world.

2 BACKGROUND

We begin by establishing notation and reviewing the necessary background material. We denote
matrices with upper-case and bold letters (e.g. X), vectors with lower-case and bold (e.g. x), and
scalars with lower-case and no bolding (e.g. x). As our focus is on generative models, let the
collection of all observations be denoted byX = {xn}Nn=1 with x representing a vector containing
all features and, if present, labels. All N examples are assumed independently and identically drawn
from some population x ∼ p∗(x) (which is unknown) with support denoted X . We define the model
density function to be p(x;θ) where θ ∈ Θ are the model parameters, and let the model likelihood
be denoted p(X;θ) =

∏N
n=1 p(xn;θ).

2.1 TRAINING NEURAL GENERATIVE MODELS

Given (training) data X and a model class {p(·;θ) : θ ∈ Θ}, we are interested in finding the
parameters θ that make the model closest to the true but unknown data distribution p∗(x). We can
quantify this gap in terms of a Kullback–Leibler divergence (KLD):

KLD[p∗(x)||p(x;θ)] =

∫
p∗(x) log

p∗(x)

p(x;θ)
dx ≈ − 1

N
log p(X;θ)−H[p∗] (1)

where the first term in the right-most expression is the average log-likelihood and the second is the
entropy of the true distribution. As the latter is a fixed constant, minimizing the KLD amounts to
finding the parameter settings that maximize the data’s log density: θ∗ = arg maxθ log p(X;θ) =

arg maxθ
∑N

n=1 log p(xn;θ). Note that p(xn;θ) alone does not have any interpretation as a prob-
ability. To extract probabilities from the model density, we need to integrate over some region
Ω: P (Ω) =

∫
Ω
p(x;θ)dx. Adding noise to the data during model optimization can mock this

integration step, encouraging the density model to output something nearer to probabilities (Theis
et al., 2016):

log

∫
p(xn + δ;θ)p(δ) dδ ≥ Eδ [log p(xn + δ;θ)] ≈ log p(xn + δ̃;θ)

where δ̃ is a sample from p(δ). The resulting objective is a lower-bound, making it a suitable
optimization target. All models in all of the experiments that we report are trained with input noise.
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Due to this ambiguity between densities and probabilities, we call the quantity log p(X + ∆̃;θ) a
‘log-likelihood,’ even ifX is drawn from a distribution unlike the training data.

Regarding the choice of density model, we could choose one of the standard density functions for
p(xn;θ), e.g. a Gaussian, but these may not be suitable for modeling the complex, high-dimensional
data sets we often observe in the real world. Hence, we want to parametrize the model density with
some high-capacity function f , which is usually chosen to be a neural network. That way the model
has a somewhat compact representation and can be optimized via gradient ascent. We experiment
with three variants of neural generative models: autoregressive, latent variable, and invertible. In the
first class, we study the PixelCNN (van den Oord et al., 2016b), and due to space constraints, we refer
the reader to van den Oord et al. (2016b) for its definition. As a representative of the second class, we
use a VAE (Kingma & Welling, 2014; Rezende et al., 2014). See Rosca et al. (2018) for descriptions
of the precise versions we use. Lastly, invertible flow-based generative models are the third class. We
define them in detail below since we study them with the most depth.

2.2 GENERATIVE MODELS VIA CHANGE OF VARIABLES

The VAE and many other generative models are defined as a joint distribution between the observed
and latent variables. However, another path forward is to perform a change of variables. In this case
x and z are one and the same, and there is no longer any notion of a product space X × Z . Let
f : X 7→ Z be a diffeomorphism from the data space X to a latent space Z . Using f then allows us
to compute integrals over z as an integral over x and vice versa:∫

z

pz(z) dz =

∫
x

pz(f(x))

∣∣∣∣∂f∂x
∣∣∣∣ dx =

∫
x

px(x) dx =

∫
z

px(f−1(z))

∣∣∣∣∂f−1∂z

∣∣∣∣ dz (2)

where |∂f/∂x| and |∂f−1/∂z| are known as the volume elements as they adjust for the volume
change under the alternate measure. Specifically, when the change is w.r.t. coordinates, the volume
element is the determinant of the diffeomorphism’s Jacobian matrix, which we denote as |∂f/∂x|.
The change of variables formula is a powerful tool for generative modeling as it allows us to define
a distribution p(x) entirely in terms of an auxiliary distribution p(z), which we are free to choose,
and f . Denote the parameters of the change of variables model as θ = {φ,ψ} with φ being the
diffeomorphism’s parameters, i.e. f(x;φ), and ψ being the auxiliary distribution’s parameters, i.e.
p(z;ψ). We can perform maximum likelihood estimation for the model as follows:

θ∗ = arg max
θ

log px(X;θ) = arg max
φ,ψ

N∑
n=1

log pz(f(xn;φ);ψ) + log

∣∣∣∣∂fφ∂xn

∣∣∣∣ . (3)

Optimizing ψ must be done carefully so as to not result in a trivial model. For instance, optimization
could make p(z;ψ) close to uniform if there are no constraints on its variance. For this reason, most
implementations leave ψ as fixed (usually a standard Gaussian) in practice. Likewise, we assume it as
fixed from here forward, thus omitting ψ from equations to reduce notational clutter. After training,
samples can be drawn from the model via the inverse transform: x̃ = f−1(z̃;φ), z̃ ∼ p(z).

For the particular form of f , most work to date has constructed the bijection from affine coupling
layers (ACLs) (Dinh et al., 2017), which transform x by way of translation and scaling operations.
Specifically, ACLs take the form: fACL(x;φ) = [exp{s(xd:;φs)} � x:d + t(xd:;φt),xd:] , where
� denotes an element-wise product. This transformation, firstly, splits the input vector in half, i.e.
x = [x:d,xd:] (using Python list syntax). Then the second half of the vector is fed into two arbitrary
neural networks (possibly with tied parameters) whose outputs are denoted t(xd:;φt) and s(xd:;φs),
with φ· being the collection of weights and biases. Finally, the output is formed by (1) scaling the
first half of the input by one neural network output, i.e. exp{s(xd:;φs)} � x:d, (2) translating the
result of the scaling operation by the second neural network output, i.e. (·) + t(xd:;φt), and (3)
copying the second half of x forward, making it the second half of fACL(x;φ), i.e. fd: = xd:. ACLs
are stacked to make rich hierarchical transforms, and the latent representation z is output from this
composition, i.e. zn = f(xn;φ). A permutation operation is required between ACLs to ensure the
same elements are not repeatedly used in the copy operations. We use f without subscript to denote
the complete transform and overload the use of φ to denote the parameters of all constituent layers.

This class of transform is known as non-volume preserving (NVP) (Dinh et al., 2017) since the
volume element does not necessarily evaluate to one and can vary with each input x. Although

3



Published as a conference paper at ICLR 2019

non-zero, the log determinant of the Jacobian is still tractable: log |∂fφ/∂x| =
∑D

j=d sj(xd:;φs).
A diffeomorphic transform can also be defined with just translation operations, as was done in earlier
work by Dinh et al. (2015), and this transformation is volume preserving (VP) since the volume
term is one and thus has no influence in the likelihood calculation. We will examine another class of
flows we term constant-volume (CV) since the volume, while not preserved, is constant across all x.
Appendix A provides additional details on implementing flow-based generative models.

3 MOTIVATING OBSERVATIONS

Given the impressive advances of deep generative models, we sought to test their ability to quantify
when an input comes from a different distribution than that of the training set. This calibration
w.r.t. out-of-distribution data is essential for applications such as safety—if we were using the
generative model to filter the inputs to a discriminative model—and for active learning. For the
experiment, we trained the same Glow architecture described in Kingma & Dhariwal (2018)—except
small enough that it could fit on one GPU1—on FashionMNIST and CIFAR-10. Appendix A provides
additional implementation details. We then calculated the log-likelihood (higher value is better) and
bits-per-dimension (BPD, lower value is better)2 of the test split of two different data sets of the same
dimensionality—MNIST (28× 28) and SVHN (32× 32× 3) respectively. We expect the models to
assign a lower probability to this data because they were not trained on it. Samples from the Glow
models trained on each data set are shown in Figure 13 in the Appendix.

Data Set Avg. Bits Per Dimension
Glow Trained on FashionMNIST

FashionMNIST-Train 2.902
FashionMNIST-Test 2.958
MNIST-Test 1.833

Glow Trained on MNIST

MNIST-Test 1.262

Data Set Avg. Bits Per Dimension
Glow Trained on CIFAR-10

CIFAR10-Train 3.386
CIFAR10-Test 3.464
SVHN-Test 2.389

Glow Trained on SVHN

SVHN-Test 2.057

Figure 1: Testing Out-of-Distribution. Log-likelihood (expressed in bits per dimension) calculated
from Glow (Kingma & Dhariwal, 2018) on MNIST, FashionMNIST, SVHN, CIFAR-10.

Beginning with FashionMNIST vs MNIST, the left subtable of Figure 1 shows the average BPD of
the training data (FashionMNIST-Train), the in-distribution test data (FashionMNIST-Test), and the
out-of-distribution data (MNIST-Test). We see a peculiar result: the MNIST split has the lowest BPD,
more than one bit less than the FashionMNIST train and test sets. To check if this is due to outliers
skewing the average, we report a (normalized) histogram in Figure 2 (a) of the log-likelihoods for the
three splits. We see that MNIST (red bars) is clearly and systematically shifted to the RHS of the plot
(highest likelihood).

Moving on to CIFAR-10 vs SVHN, the right subtable of Figure 1 again reports the BPD of the training
data (CIFAR10-Train), the in-distribution test data (CIFAR10-Test), and the out-of-distribution data
(SVHN-Test). We again see the phenomenon: the SVHN BPD is one bit lower than that of both
in-distribution data sets. Figure 2 (b) shows a similar histogram of the log-likelihoods. Clearly the
SVHN examples (red bars) have a systematically higher likelihood, and therefore the result is not
caused by any outliers.

Subfigures (c) and (d) of Figure 2 show additional results for CelebA and ImageNet. When trained
on CelebA, Glow assigns a higher likelihood to SVHN (red bars), a data set the model has never seen
before. Similarly, when trained on ImageNet, Glow assigns a higher likelihood to the test splits of
SVHN (red), CIFAR-10 (yellow), and CIFAR-100 (green). The difference is quite drastic in the case
of SVHN (red) but modest for the two CIFAR splits. This phenomenon is not symmetric. CIFAR-10
does not have a higher likelihood under a Glow trained on SVHN; see Figure 6 in Appendix B

1Although we use a smaller model, it still produces good samples, which can be seen in Figure 13 of the
Appendix, and competitive BPD (CIFAR-10: 3.46 for ours vs 3.35 for theirs).

2See Theis et al. (2016, Section 3.1) for the definitions of log-likelihood and bits-per-dimension.
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(a) Train on FashionMNIST, Test on MNIST (b) Train on CIFAR-10, Test on SVHN

(c) Train on CelebA, Test on SVHN (d) Train on ImageNet,
Test on CIFAR-10 / CIFAR-100 / SVHN

Figure 2: Histogram of Glow log-likelihoods for FashionMNIST vs MNIST (a), CIFAR-10 vs SVHN
(b), CelebA vs SVHN (c), and ImageNet vs CIFAR-10 / CIFAR-100 / SVHN (d).

for these results. We report results only for Glow, but we observed the same behavior for RNVP
transforms (Dinh et al., 2017).

We next tested if the phenomenon occurs for other common deep generative models: PixelCNNs
and VAEs. We do not include GANs in the comparison since evaluating their likelihood is an open
problem. Figure 3 reports the same histograms as above for these models, showing the distribution of
log p(x) evaluations for FashionMNIST vs MNIST (a, b) and CIFAR-10 vs SVHN (c, d). The training
splits are again denoted with black bars, and the test splits with blue, and the out-of-distribution splits
with red. The red bars are shifted to the right in all four plots, signifying the behavior exists in spite
of the differences between model classes.

4 DIGGING DEEPER INTO THE FLOW-BASED MODEL

While we observed the out-of-distribution phenomenon for PixelCNN, VAE, and Glow, now we
narrow our investigation to just the class of invertible generative models. The rationale is that
they allow for better experimental control as, firstly, they can compute exact marginal likelihoods
(unlike VAEs), and secondly, the transforms used in flow-based models have Jacobian constraints
that simplify the analysis we present in Section 5. To further analyze the high likelihood of the
out-of-distribution (non-training) samples, we next report the contributions to the likelihood of each
term in the change-of-variables formula. At first this suggested the volume element was the primary
cause of SVHN’s high likelihood, but further experiments with constant-volume flows show the
problem exists with them as well.

Decomposing the change-of-variables objective. To further examine this curious phenomenon,
we inspect the change-of-variables objective itself, investigating if one or both terms give the out-
of-distribution data a higher value. We report the constituent log p(z) and log |∂fφ/∂x| terms for
NVP-Glow in Figure 4, showing histograms for log p(z) in subfigure (a) and for log |∂fφ/∂x| in
subfigure (b). We see that p(z) behaves mostly as expected. The red bars (SVHN) are clearly shifted
to the left, representing lower likelihoods under the latent distribution. Moving on to the volume
element, this term seems to cause SVHN’s higher likelihood. Subfigure (b) shows that all of the
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(a) PixelCNN: FashionMNIST vs MNIST (b) VAE: FashionMNIST vs MNIST
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(c) PixelCNN: CIFAR-10 vs SVHN
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(d) VAE: CIFAR-10 vs SVHN

Figure 3: PixelCNN and VAE. Log-likelihoods calculated by PixelCNN (a, c) and VAE (b, d) on
FashionMNIST vs MNIST (a, b) and CIFAR-10 vs SVHN (c, d). VAE models are the convolutional
categorical variant described by Rosca et al. (2018).

(a) CIFAR-10: log p(z) (b) CIFAR-10: Volume
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(c) CV-Glow Likelihoods

0 20000 40000 60000 80000 100000

iterations

2.0

2.5

3.0

3.5

4.0

4.5

B
it

s-
p
e
r-

d
im

e
n
si

o
n
 (

b
p
d
) CIFAR-10 TRAIN

CIFAR-10 TEST

SVHN TEST

(d) Log-Likelihood vs Iter.

Figure 4: Decomposing the Likelihood of NVP-Glow / CV-Glow Results. The histograms in (a) and (b)
show NVP-Glow’s log-likelihood decomposed into contributions from the z-distribution and volume
element, respectively, for CIFAR-10 vs SVHN. Subfigure (c) shows log-likelihood evaluations for
constant-volume (CV) Glow, again when trained on CIFAR-10 and tested on SVHN. Subfigure
(d) reports NVP-Glow’s BPD over the course of training, showing that the phenomenon happens
throughout and could not be prevented by early stopping.

SVHN log-volume evaluations (red) are conspicuously shifted to the right—to higher values—when
compared to CIFAR-10’s (blue and black). Since SVHN’s p(z) evaluations are only slightly less than
CIFAR-10’s, the volume term dominates, resulting in SVHN having a higher likelihood.

Is the volume the culprit? In addition to the empirical evidence against the volume element, we
notice that one of the terms in the change-of-variables objective—by rewarding the maximization of
the Jacobian determinant—encourages the model to increase its sensitivity to perturbations in X . This
behavior starkly contradicts a long history of derivative-based regularization penalties that reward the
model for decreasing its sensitivity to input directions. For instance, Girosi et al. (1995) and Rifai
et al. (2011) propose penalizing the Frobenius norm of a neural network’s Jacobian for classifiers and
autoencoders respectively. See Appendix C for more analysis of the log volume element.

To experimentally control for the effect of the volume term, we trained Glow with constant-volume
(CV) transformations. We modify the affine layers to use only translation operations (Dinh et al.,
2015) but keep the 1× 1 convolutions as is. The log-determinant-Jacobian is then HW

∑
k log |Uk|,
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where |Uk| is the determinant of the convolutional weights Uk for the kth flow. This makes the
volume element constant across all inputs x, allowing us to isolate its effect while still keeping the
model expressive. Subfigures (c) and (d) of Figure 4 show the results for this model, which we term
CV-Glow (constant-volume Glow). Subfigure (c) shows a histogram of the log p(x) evaluations, just
as shown before in Figure 2, and we see that SVHN (red) still achieves a higher likelihood (lower
BPD) than the CIFAR-10 training set. Subfigure (d) shows the SVHN vs CIFAR-10 BPD over the
course of training for NVP-Glow. Notice that there is no cross-over point in the curves.

Other experiments: random and constant images, ensembles. Other work on generative models
(Sønderby et al., 2017; van den Oord et al., 2018) has noted that they often assign the highest likelihood
to constant inputs. We also test this case, reporting the BPD in Appendix Figure 8 for NVP-Glow
models. We find constant inputs have the highest likelihood for our models as well: 0.589 BPD for
CIFAR-10. We also include in the table the BPD of random inputs for comparison.

We also hypothesized that averaging over the parameters may mitigate the phenomenon. While
integration over the entire parameter space would be ideal, this is analytically and computationally
difficult for Glow. Lakshminarayanan et al. (2017) show that deep ensembles can guard against
over-confidence for anomalous inputs while being more practical to implement. We opted for this
approach, training five Glow models independently and averaging their likelihoods to evaluate test
data. Each model was given a different initialization of the parameters to help diversify the ensemble.
Figure 9 in Appendix F reports a histogram of the log p(x) evaluations when averaging over the
ensemble. We see nearly identical results: SVHN is still assigned a higher likelihood than the
CIFAR-10 training data.

5 SECOND ORDER ANALYSIS

In this section, we aim to provide a more direct analysis of when another distribution might have higher
likelihood than the one used for training. We propose analyzing the phenomenon by way of linearizing
the difference in expected log-likelihoods. This approach undoubtedly gives a crude approximation,
but as we show below, it agrees with and gives insight into some of the observations reported above.
Consider two distributions: the training distribution x ∼ p∗ and some dissimilar distribution x ∼ q
also with support on X . For a given generative model p(x;θ), the adversarial distribution q will have
a higher likelihood than the training data’s if Eq[log p(x;θ)]−Ep∗ [log p(x;θ)] > 0. This expression
is hard to analyze directly so we perform a second-order expansion of the log-likelihood around an
interior point x0. Applying the expansion log p(x;θ) ≈ log p(x0;θ)+∇x0

log p(x0;θ)T (x−x0)+
1
2 Tr{∇2

x0
log p(x0;θ)(x− x0)(x− x0)T } to both likelihoods, taking expectations, and canceling

the common terms, we have:

0 < Eq[log p(x;θ)]− Ep∗ [log p(x;θ)]

≈ ∇x0
log p(x0;θ)T (Eq[x]− Ep∗ [x]) +

1

2
Tr{∇2

x0
log p(x0;θ)(Σq −Σp∗)}

(4)

where Σ = E
[
(x− x0)(x− x0)T

]
, the covariance matrix, and Tr{·} is the trace operation. Since

the expansion is accurate only locally around x0, we next assume that Eq[x] = Ep∗ [x] = x0. While
this at first glance may seem like a strong assumption, it is not too removed from practice since data
is usually centered before being fed to the model. For SVHN and CIFAR-10 in particular, we find
this assumption to hold; see Figure 5 (a) for the empirical means of each dimension of CIFAR-10
(green) and SVHN (orange). All of SVHN’s means fall within the empirical range of CIFAR-10’s,
and the maximum difference between any dimension is less than 38 pixel values. Assuming equal
means, we then have:

0 < Eq[log p(x;θ)]− Ep∗ [log p(x;θ)] ≈ 1

2
Tr{∇2

x0
log p(x0;θ)(Σq −Σp∗)}

=
1

2
Tr

{[
∇2
x0

log pz(f(x0;φ)) +∇2
x0

log

∣∣∣∣∂fφ∂x0

∣∣∣∣] (Σq −Σp∗)

}
,

(5)

where the second line assumes the generative model to be flow-based.

Analysis of CV-Glow. We use the expression in Equation 5 to analyze the behavior of CV-Glow on
CIFAR-10 vs SVHN, seeing if the difference in likelihoods can be explained by the model curvature
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and data’s second moment. The second derivative terms simplify considerably for CV-Glow with a
spherical latent density. Given a C × C kernel Uk, with k indexing the flow and C the number of
input channels, the derivatives are ∂fh,w,c/∂xh,w,c =

∏
k

∑C
j=1 uk,c,j , with h and w indexing the

spatial height and width and j the columns of the kth flow’s 1× 1 convolutional kernel. The second
derivative is then ∂2fh,w,c/∂x

2
h,w,c = 0, which allows us to write

Tr
{[
∇2
x0

log p(x0;θ)
]

(Σq −Σp∗)
}

=
∂2

∂z2
log p(z;ψ)

C∑
c=1

 K∏
k=1

C∑
j=1

uk,c,j

2∑
h,w

(σ2
q,h,w,c − σ2

p∗,h,w,c).

The derivation is given in Appendix G. Plugging in the second derivative of the Gaussian’s log
density—a common choice for the latent distribution in flow models (Dinh et al., 2017; Kingma &
Dhariwal, 2018)—and the empirical variances, we have:

ESVHN[log p(x;θ)]− ECIFAR-10[log p(x;θ)]

≈ −1

2σ2
ψ

[
α2
1(49.6− 61.9) + α2

2(52.7− 59.2) + α2
3(53.6− 68.1)

]
=

1

2σ2
ψ

[
α2
1 · 12.3 + α2

2 · 6.5 + α2
3 · 14.5

]
≥ 0 where αc =

K∏
k=1

C∑
j=1

uk,c,j

(6)

and where σ2
ψ is the variance of the latent distribution. We know the final expression is greater than

or equal to zero since all α2
c ≥ 0. Equality is achieved only for σ2

ψ →∞ or in the unusual case of at
least one all-zero row in any convolutional kernel for all channels. Thus, the second-order expression
does indeed predict we should see a higher likelihood for SVHN than for CIFAR-10. Moreover, we
leave the CV-Glow’s parameters as constants to emphasize the expression is non-negative for any
parameter setting. This finding is supported by our observations that using an ensemble of Glows
resulted in an almost identical likelihood gap (Figure 9) and that the gap remained relatively constant
over the course of training (Figure 4d). Furthermore, the ∂2 log p(z;ψ)/∂z2 term would be negative
for any log-concave density function, meaning that changing the latent density to Laplace or logistic
would not change the result.

(a) Histogram of per-dimension means and variances (empirical).

10500 10000 9500 9000 8500 8000 7500 7000 6500 6000

log p(X)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014 CIFAR10

CIFAR10_GRAY

SVHN

SVHN_GRAY

(b) Graying images increases likelihood.

Figure 5: Empirical Distributions and Graying Effect. Note that pixels are converted from 0-255
scale to 0-1 scale by diving by 256. See Figure 10 for results on datasets of 28× 28× 1 images.

Our conclusion is that SVHN simply "sits inside of" CIFAR-10—roughly same mean, smaller
variance—resulting in its higher likelihood. This insight also holds true for the additional results
presented in subfigures (c) and (d) of Figure 2. Examining Figure 5 (a) again, we see that ImageNet,
the CIFARs, and SVHN all have nearly overlapping means and that ImageNet has the highest
variance. Therefore we expect SVHN and the CIFARs to have a higher likelihood than ImageNet
on an ImageNet-trained model, which is exactly what we observe in Figure 2 (d). Moreover, the
degree of the differences in likelihoods agrees with the differences in variances. SVHN clearly has
the smallest variance and the largest likelihood. In turn, we can artificially increase the likelihood
of a data set by shrinking its variance. For RGB images, shrinking the variance is equivalent to
’graying’ the images, i.e. making the pixel values closer to 128. We show in Figure 5 (b) that doing
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exactly this improves the likelihood of both CIFAR-10 and SVHN. Reducing the variance of the
latent representations has the same effect, which is shown by Figure 12 in the Appendix.

6 RELATED WORK

This paper is inspired by and most related to recent work on evaluation of generative models. Worthy
of foremost mention is the work of Theis et al. (2016), which showed that high likelihood is neither
sufficient nor necessary for the model to produce visually satisfying samples. However, their paper
does not consider out-of-distribution inputs. In this regard, there has been much work on adversarial
inputs (Szegedy et al., 2014). While the term is used broadly, it commonly refers to inputs that
have been imperceptibly modified so that the model can no longer provide an accurate output (a
mis-classification, usually). Adversarial attacks on generative models have been studied by (at least)
Tabacof et al. (2016) and Kos et al. (2018), but these methods of attack require access to the model.
We, on the other hand, are interested in model calibration for any out-of-distribution set and especially
for common data sets not constructed with any nefarious intentions nor for attack on a particular
model. Various papers (Hendrycks & Gimpel, 2017; Lakshminarayanan et al., 2017; Liang et al.,
2018) have reported that discriminative neural networks can produce overconfident predictions on
out-of-distribution inputs. In a related finding, Lee et al. (2018) reported that it was much harder to
recognize an input as out-of-distribution when the classifier was trained on CIFAR-10 in comparison
to training on SVHN.

Testing the robustness of deep generative models to out-of-distribution inputs had not been investigated
previously, to the best of our knowledge. However, there is work concurrent with ours that has tested
their ability to detect anomalous inputs. Shafaei et al. (2018) and Hendrycks et al. (2019) also
observe that PixelCNN++ cannot provide reliable outlier detection. Hendrycks et al. (2019) mitigate
the CIFAR-10 vs SVHN issue by exposing the model to outliers during training. They do not
consider flow-based models. Škvára et al. (2018) experimentally compare VAEs and GANs against
k-nearest neighbors (kNNs), showing that VAEs and GANs outperform kNNs only when known
outliers can be used for hyperparameter selection. In the work most similar to ours, Choi & Jang
(2018) report the same CIFAR-10 vs SVHN phenomenon for Glow—independently confirming our
motivating observation. As a fix, they propose training an ensemble of generative models with an
adversarial objective and testing for out-of-training-distribution inputs by computing the Watanabe-
Akaike information criterion via the ensemble. This work is complementary to ours since they focus
on providing a detection method whereas we are interested in understanding how and when the
phenomenon can arise. The results we present in Equation 6 do not apply to Choi & Jang (2018)’s
models since they use scaling operations in their affine coupling layers, making them NVP.

7 DISCUSSION

We have shown that comparing the likelihoods of deep generative models alone cannot identify
the training set or inputs like it. Therefore we urge caution when using these models with out-
of-training-distribution inputs or in unprotected user-facing systems. Moreover, our analysis in
Section 5 shows that the CIFAR-10 vs SVHN phenomenon would persist for any constant-volume
Glow no matter the parameter values nor the choice of latent density (as long as it is log-concave).
While we cannot conclude that this is a pathology in deep generative models, it does suggest the
need for further work on generative models and their evaluation. The models we tested seem
to be capturing low-level statistics rather than high-level semantics, and better inductive biases,
optimization procedures, or uncertainty quantification may be necessary. Yet, deep generative models
can detect out-of-distribution inputs when using alternative metrics (Choi & Jang, 2018) and modified
training procedures (Hendrycks et al., 2019). The problem then may be a fundamental limitation of
high-dimensional likelihoods. Until these open problems are better understood, we must temper the
enthusiasm with which we preach the benefits of deep generative models.
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A ADDITIONAL IMPLEMENTATION DETAILS

A.1 FLOW-BASED MODELS

We have described the core building blocks of invertible generative models above, but there are several
other architectural choices required in practice. Due to space requirements, we only describe them
briefly, referring the reader to the original papers for details. In the most recent extension of this line
of work, Kingma & Dhariwal (2018) propose the Glow architecture, with its foremost contribution
being the use of 1× 1 convolutions in place of discrete permutation operations. Convolutions of this
form can be thought of as a relaxed but generalized permutation, having all the representational power
of the discrete version with the added benefit of parameters amenable to gradient-based training.
As the transformation function becomes deeper, it becomes prone to the same scale pathologies as
deep neural networks and therefore requires a normalization step of some form. Dinh et al. (2017)
propose incorporating batch normalization and describe how to compute its contribution to the
log-determinant-Jacobian term. Kingma & Dhariwal (2018) apply a similar normalization, which
they call actnorm, but it uses trainable parameters instead of batch statistics. Lastly, both Dinh et al.
(2017) and Kingma & Dhariwal (2018) use multi-scale architectures that factor out variables at
regular intervals, copying them forward to the final latent representation. This gradually reduces the
dimensionality of the transformations, improving upon computational costs.

For our MNIST experiments, we used a Glow architecture of 2 blocks of 16 affine coupling layers,
squeezing the spatial dimension in between the 2 blocks. For our CIFAR experiments, we used 3
blocks of 8 affine coupling blocks, applying the multi-scale architecture between each block. For
all coupling blocks, we used a 3-layer Highway network with 200 hidden units for MNIST and 400
hidden units for CIFAR. The networks we trained were shallower than those in Kingma & Dhariwal
(2018). We also found that initializing the last layer of the coupling networks to 0 was sufficient to
prevent scale pathologies, hence we did not use any form of normalization (batchnorm nor actnorm)
for ease of initialization and training in a distributed setting. Convolution kernels were initialized
with a truncated normal with variance 1/

√
D where D is fan-in size, except where zero-initialization

is prescribed by Glow. All networks were trained with the RMSProp optimizer, with a learning rate
of 1e− 5 for 100K steps, decaying by half at 80K and 90K steps. We used a prior with zero mean
and unit variance for all experiments. We applied L2 regularization of 5e− 2 to CIFAR experiments.
All experiments used batch size 32.

For CV-Glow, we used additive rather than affine coupling blocks, which removes the influence of
coupling blocks on the log-det-Jacobian term. The volume change of the 1× 1 convolutions depend
on its weights rather than the input, so the network has a constant volume change.

A.2 PIXELCNN

We trained a GatedPixelCNN with a categorical distribution. For FashionMNIST, we used a network
with 5 gated layers with 32 features, and the final skip connection layer with size 256. We trained for
100K steps with the Adam optimizer and an initial learning rate of 1e− 4, and decaying at 80K and
90K steps. For CIFAR experiments, we used 15 dated layers with 128 features, and a skip connection
size of 1024. Convolutions were initialized with Tensorflow’s variance scaling initializer with a
uniform distribution and a scale of 1. We trained for 200K steps with the RMSProp optimizer with an
initial learning rate of 1e− 4, decaying by 1/3 at 120K, 180K, and 195K steps. All experiments used
batch size 32.

A.3 VARIATIONAL AUTO-ENCODERS

We refer to (Rosca et al., 2018, Appendix K) for additional details on the VAEs used in our CIFAR
experiments. We used the CIFAR configurations without modification. For FashionMNIST, we used
the encoder given in Table 4 of (Rosca et al., 2018, Appendix K, Table 4) and a decoder composed of
one linear layer with 7 ∗ 7 ∗ 64 hidden units, followed by a reshape and three transposed convolutions
of feature sizes 32, 32, 256 and strides 2, 2, 1. Weights were initialized with a normal distribution
with variance 0.02. We trained for 200K steps using the RMSProp optimizer, with a constant learning
rate of 1e− 4.
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B RESULTS ILLUSTRATING ASYMMETRIC BEHAVIOR

(a) Train on MNIST, Test on FashionMNIST
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(b) Train on SVHN, Test on CIFAR-10

Figure 6: Histogram of Glow log-likelihoods for MNIST vs FashionMNIST and SVHN vs CIFAR-10.
Note that the model trained on SVHN (MNIST) is able to assign lower likelihood to CIFAR-10
(FashionMNIST), which illustrates the asymmetry compared to Figure 2.

C ANALYZING THE CHANGE-OF-VARIABLES FORMULA AS AN
OPTIMIZATION FUNCTION

Consider the intuition underlying the volume term in the change of variables objective (Equation 3).
As we are maximizing the Jacobian’s determinant, it means that the model is being encouraged to
maximize the ∂fj/∂xj partial derivatives. In other words, the model is rewarded for making the
transformation sensitive to small changes in x. This behavior starkly contradicts a long history of
derivative-based regularization penalties. Dating back at least to (Girosi et al., 1995), penalizing
the Frobenius norm of a neural network’s Jacobian—which upper bounds the volume term3—has
been shown to improve generalization. This agrees with intuition since we would like the model
to be insensitive to small changes in the input, which are likely noise. Moreover, Bishop (1995)
showed that training a network under additive Gaussian noise is equivalent to Jacobian regularization,
and Rifai et al. (2011) proposed contractive autoencoders, which penalize the Jacobian-norm of the
encoder. Allowing invertible generative models to maximize the Jacobian term without constraint
suggests, at minimum, that these models will not learn robust representations.

Limiting Behavior. We next attempt to quantify the limiting behavior of the log volume element.
Let us assume, for the purposes of a general treatment, that the bijection fφ is an L-Lipschitz function.
Both terms in Equation 3 can be bounded as follows:

log p(x;θ) = log pz(f(x;φ))︸ ︷︷ ︸
O(maxz log pz(z)

+ log

∣∣∣∣∂fφ∂x
∣∣∣∣︸ ︷︷ ︸

O(D logL)

≤ max
z

log pz(z) +D logL (7)

where L is the Lipschitz constant, D the dimensionality, and O(maxz log pz(z)) an expression for
the (log) mode of p(z). We will make this mode term for concrete for Gaussian distributions below.
The bound on the volume term follows from Hadamard’s inequality:

log

∣∣∣∣∂fφ∂x
∣∣∣∣ ≤ log

D∏
j=1

∣∣∣∣∂fφ∂x ej
∣∣∣∣ ≤ log(L |e·|)D = D logL

where ej is an eigenvector. While this expression is too general to admit any strong conclusions, we
can see from it that the ‘peakedness’ of the distribution represented by the mode must keep pace with
the Lipschitz constant, especially as dimensionality increases, in order for both terms to contribute
equally to the objective.

We can further illuminate the connection between L and the concentration of the latent distribution
through the following proposition:

3It is easy to show the upper bound via Hadamard’s inequality: det ∂f/∂x ≤ ||∂f/∂x||F .
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Proposition 1. Assume x ∼ p∗ is distributed with moments E[x] = µx and V ar[x] = σ2
x. Moreover,

let f : X 7→ Z be L-Lipschitz and f(µx) = µz . We then have the following concentration inequality
for some constant δ:

P (|f(x)− µz| ≥ δ) ≤
L2σ2

x

δ2
.

Proof : From the fact that f is L-Lipschitz, we know |f(x)− µz| ≤ L
∣∣x− f−1(µz)

∣∣. Assuming
µx = f−1(µz)), we can apply Chebyshev’s inequality to the RHS: Pr(L

∣∣x− f−1(µz)
∣∣ ≥ δ) ≤

L2σ2
x/δ

2. Since L
∣∣x− f−1(µz)

∣∣ ≥ |f(x)− µz|, we can plug the RHS into the inequality and the
bound will continue to hold.

From the inequality we can see that the latent distribution can be made more concentrated by
decreasing L and/or the data’s variance σ2

x. Since the latter is fixed, optimization only influences L.
Yet, recall that the volume term in the change-of-variables objective rewards increasing f ’s derivatives
and thus L. While we have given an upper bound and therefore cannot say that increasing L will
necessarily decrease concentration in latent space, it is for certain that leaving L unconstrained does
not directly pressure the f(x) evaluations to concentrate.

Previous work (Dinh et al., 2015; 2017; Kingma & Dhariwal, 2018) has almost exclusively used
a factorized zero-mean Gaussian as the latent distribution, and therefore we examine this case in
particular. The log-mode can be expressed as −D/2 · log 2πσ2

z , making the likelihood bound

log N(f(x;φ); 0, σ2
zI) + log

∣∣∣∣∂fφ∂x
∣∣∣∣ ≤ −D2 log 2πσ2

z +D logL. (8)

We see that both terms scale with D although in different directions, with the contribution of the
z-distribution becoming more negative and the volume term’s becoming more positive. We performed
a simulation to demonstrate this behavior on the two moons data set, which is shown in Figure 7 (a).
We replicated the original two dimensions to create data sets of dimensionality of up to 100. The
results are shown in Figure 7 (b). The empirical values of the two terms are shown by the solid lines,
and indeed, we see they exhibit the expected diverging behavior as dimensionality increases.

(a) Two Moons Data Set (2D)

(b) Exponential Parametrization (c) Sigmoid Parametrization

Figure 7: Limiting Bounds. We trained an RNVP transformation on two moons data sets—which is
shown in (a) for 2 dimensions—of increasing dimensionality, tracking the empirical value of each
term against the upper bounds. Subfigure (b) shows Glow with an exp parametrization for the scales
and (c) shows Glow with a sigmoid parametrization.

D GLOW WITH SIGMOID PARAMETRIZATION

Upon reading the open source implementation of Glow,4 we found that Kingma & Dhariwal (2018)
in practice parametrize the scaling factor as sigmoid(s(xd:;φs)) instead of exp{s(xd:;φs)}. This

4https://github.com/openai/glow/blob/master/model.py#L376
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choice allows the volume only to decrease and thus results in the volume term being bounded as
(ignoring the convolutional transforms)

log

∣∣∣∣∂fφ∂x
∣∣∣∣ =

F∑
f=1

df∑
j=1

log sigmoid(sf,j(xdf :;φs)) ≤ FD log 1 = 0 (9)

where f indexes the flows and df the dimensionality at flow f . Interestingly, this parametrization has
a fixed upper bound of zero, removing the dependence on D found in Equation 8. We demonstrate
the change in behavior introduced by the alternate parametrization via the same two moon simulation.
The only difference is that the RNVP transforms use a sigmoid parametrizations for the scaling
operation. See Figure 7 (c) for the results: we see that now both change-of-variable terms are
oriented downward as dimensionality grows. We conjecture this parametrization helps condition the
log-likelihood, limiting the volume term’s influence, when training the large models (∼ 90 flows)
used by Kingma & Dhariwal (2018). However, it does not fix the out-of-distribution over-confidence
we report in Section 3.

E CONSTANT AND RANDOM INPUTS

Data Set Avg. Bits Per Dimension
Glow Trained on FashionMNIST

Random 8.686
Constant (0) 0.339

Data Set Avg. Bits Per Dimension
Glow Trained on CIFAR-10

Random 15.773
Constant (128) 0.589

Figure 8: Random and constant images. Log-likelihood (expressed in bits per dimension) of random
and constant inputs calculated from NVP-Glow for models trained on FashionMNIST (left) and
CIFAR-10 (right).

F ENSEMBLING GLOWS

The likelihood function technically measures how likely the parameters are under the data (and
not how likely the data is under the model), and perhaps a better quantity would be the posterior
predictive distribution p(xtest|xtrain) = 1

M

∑
m p(xtest|θm) where we draw samples from posterior

distribution θm ∼ p(θ|xtrain). Intutitively, it seems that such an integration would be more robust
than a single maximum likelihood point estimate. As a crude approximation to Bayesian inference,
we tried averaging over ensembles of generative models since Lakshminarayanan et al. (2017)
showed that ensembles of discriminative models are robust to out-of-distribution inputs. We compute
an “ensemble predictive distribution” as p(x) = 1

M

∑
m p(x;θm), where m indexes over models.

However, as Figure 9 shows, ensembles did not significantly change the relative difference between
in-distribution (CIFAR-10, black and blue) and out-of-distribution (SVHN, red).

G DERIVATION OF CV-GLOW’S LIKELIHOOD DIFFERENCE

We start with Equation 5:

1

2
Tr

{[
∇2
x0

log pz(f(x0;φ)) +∇2
x0

log

∣∣∣∣∂fφ∂x0

∣∣∣∣] (Σq −Σp∗)

}
.

The volume element for CV-Glow does not depend on x0 and therefore drops from the equation:

∇2
x0

log

∣∣∣∣∂fφ∂x0

∣∣∣∣ = ∇2
x0
HW

∑
k

log |Uk| = 0 (10)
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Figure 9: Ensemble of Glows. The plot above shows a histogram of log-likelihoods computed using
an ensemble of Glow models trained on CIFAR-10, tested on SVHN. Ensembles were not found to
be robust against this phenomenon.

where Uk denotes the kth 1× 1-convolution’s kernel. Moving on to the first term, the log probability
under the latent distribution, we have:

∇2
x0

log p(f(x0);ψ) = ∇2
x0

{
−1

2σ2
ψ

||f(x0)||22 −
D

2
log 2πσ2

ψ

}

= ∇x0

{
−1

σ2
ψ

(∑
d

fd(x0)

)
∇x0

f(x0)

}

=
−1

σ2
ψ

[
∇x0

f(x0)(∇x0
f(x0))T +

(∑
d

fd(x0)

)
∇2
x0
f(x0)

]
.

(11)

Since f is comprised of translation operations and 1× 1 convolutions, its partial derivatives involve
just the latter (as the former are all ones), and therefore we have the partial derivatives:

∂fh,w,c(x0)

∂xh,w,c
=

K∏
k=1

Ck∑
j=1

uk,c,j ,
∂2fh,w,c(x0)

∂x2h,w,c

= 0 (12)

where h and w index the input spatial dimensions, c the input channel dimensions, k the series of
flows, and j the column dimensions of the Ck × Ck-sized convolutional kernel Uk. The diagonal
elements of ∇x0

f(x0)(∇x0
f(x0))T are then (

∏K
k=1

∑Ck

j=1 uk,c,j)
2, and the diagonal element of

∇2
x0
f(x0) are all zero.

Then returning to the full equation, for the constant-volume Glow model we have:

1

2
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log
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∇2
x0
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(Σq −Σp∗)
}

=
−1

2σ2
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Tr
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(Σq −Σp∗)

}

=
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ψ
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� (Σq −Σp∗)

}
l,m

.

(13)
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Lastly, we assume that both Σq and Σp∗ are diagonal and thus the element-wise multiplication with
∇2
x0

log p(f(x0)) collects only its diagonal elements:

−1

2σ2
ψ

∑
l,m

{[
∇x0f(x0)(∇x0f(x0))T +

(∑
d

fd(x0)

)
∇2
x0
f(x0)

]
� (Σq −Σp∗)

}
l,m

=
−1

2σ2
ψ

H∑
h

W∑
w

C∑
c

 K∏
k=1

Ck∑
j=1

uk,c,j

2

(σ2
q,h,w,c − σ2

p∗,h,w,c)

=
−1

2σ2
ψ

C∑
c

 K∏
k=1

Ck∑
j=1

uk,c,j

2
H∑
h

W∑
w

(σ2
q,h,w,c − σ2

p∗,h,w,c)

(14)

where we arrived at the last line by rearranging the sum to collect the shared channel terms.

H HISTOGRAM OF DATA STATISTICS

(a) Datasets of 28× 28× 1 images: MNIST, FashionMNIST and NotMNIST.

Figure 10: Data statistics: Histogram of per-dimensional mean, computed as µd = 1
N

∑N
n=1 xnd,

and per-dimensional variance, computed as σ2
d = 1

N−1
∑N

n=1(xnd − µd)2. Note that pixels are
converted from 0-255 scale to 0-1 scale by diving by 256. See Figure 5a for results on datasets of
32× 32× 3 images: SVHN, CIFAR-10, CIFAR-100, CelebA and ImageNet.
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(a) Latent codes for CIFAR10-SVHN trained on CIFAR-10.
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(b) Latent codes for FashionMNIST-MNIST trained on FashionMNIST.

Figure 11: Analysis of codes obtained using CV-Glow model. Histogram of means (left column)

µd = 1
N

∑N
n=1 znd, standard deviation (middle column) σd =

√
1

N−1
∑N

n=1(znd − µd)2 and norms

normalized by
√
D (right column) computed as |zn|√

D
=
√

1
D

∑
d z

2
nd.

I RESULTS ILLUSTRATING EFFECT OF GRAYING ON CODES

Figure 12 shows the effect of graying on codes.
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(a) CV-Glow trained on CIFAR-10: Effect of graying on CIFAR-10 and SVHN codes

Figure 12: Effect of graying on codes. Left (mean), middle (standard deviation) and norm (right).
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J SAMPLES

(a) MNIST samples (b) FashionMNIST samples

(c) CIFAR-10 samples (d) SVHN samples

Figure 13: Samples. Samples from CV-Glow models used for analysis.
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