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Improved Text-Image Matching by Mitigating Visual Semantic Hubs
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Abstract

The hubness problem widely exists in high-
dimensional embedding space and is a fundamen-
tal source of error for cross-modal matching tasks.
In this work, we study the emergence of hubs in
Visual Semantic Embeddings (VSE) with applica-
tion to text-image matching. We introduce novel
methods that mitigate hubs during both training
and inference. For training, we analyze the pros
and cons of two widely adopted optimization
objectives and propose a novel hubness-aware
loss function. The loss is self-adaptive in the
sense that it utilizes local statistics to scale up the
weights of “hubs” within a mini-batch. For infer-
ence, we propose a heuristic algorithm that im-
poses hard constraints on the existence of hubs in
the predicted graph. It can be combined with pre-
viously proposed cross-modal retrieval criterion
which together achieve even better performance.
We experiment our methods with various con-
figurations of model architectures and datasets.
Both the loss function and the heuristic algorithm
exhibit surprisingly good robustness and bring
consistent improvement on the task of text-image
matching across all settings. Specifically, we
report results on Flickr30k and MS-COCO
datasets that are above the state-of-the-art.

1 Introduction

The hubness problem is a general phenomenon in
high-dimensional space where a small set of source
vectors, dubbed hubs, appear too frequently in the
neighborhood of target vectors (Radovanović et al.,
2010). As embedding learning going deeper, it has
been a concern in various contexts including object
classification (Tomašev et al., 2011), image feature
matching (Jegou et al., 2008) in Computer Vision
and word embedding evaluation (Schnabel et al.,
2015; Faruqui et al., 2016), word translation (Dinu
et al., 2015; Lazaridou et al., 2015) in NLP. It is
described as “a new aspect of the dimensionality
curse”(Bellman, 1961; Schnitzer et al., 2012).

In this work, we study the hubness problem in the
task of text-image matching. In recent years, deep
neural models have gained a significant edge over non-
neural methods in cross-modal matching tasks (Wang
et al., 2016). Text-image matching has been one of the
most popular ones among them. Most deep methods
involve two phases: 1) training: two neural encoders
(one for image and one for text) are learned end-to-
end, mapping texts and images into a joint space,
where items (either texts or images) with similar
meanings are close to each other; 2) inference: for a
query vector in modality A, a nearest neighbor search
is performed to match the query vector against all
item vectors in modality B. As the embedding space is
learned through jointly modeling vision and language,
it is often referred as Visual Semantic Embeddings
(VSE). Recent work on VSE has shown a clear trend
of growing dimensions in order to obtain better em-
bedding quality (Wehrmann, 2018). With embeddings
going deeper, visual semantic hubs increase dramat-
ically. This property is undesired as we firmly know
that a one-to-one mapping exists among text and im-
age points during both training (within a mini-batch)
and inference (within the validation/test set).

However, the hubness problem is not well ad-
dressed by current methods neither in training nor
inference. For training, current VSE models use either
sum-margin (SUM, Eq. (2)) or max-margin (MAX,
Eq. (3)) ranking loss to cluster the positive pairs and
push away the negative pairs. SUM is robust across
various settings but does not utilize information from
hard samples and does not address the hubness prob-
lem at all. MAX excels at mining hard samples and
achieves state-of-the-art on MS-COCO (Faghri et al.,
2018). However, it also does not explicitly consider
the hubness problem, nor does it resist noise well. To
combine robustness with information from hard sam-
ples and hubs, we propose a self-adjustable hubness-
aware loss called HAL. It is inspired by Zelnik-Manor
and Perona who used local statistics to reweight affini-
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ties among two sets of points to automate spectral
clustering. HAL leverages information of hubs to auto-
matically adjust weights of negative samples. It learns
from hard samples and is robust to noise at the same
time by taking multiple samples into account. Specif-
ically, we exploit a sample’s relationship with its k-
nearest neighbor queries within a mini-batch to decide
its weight. The larger a hub is, the more it contributes
to the loss. Through a thorough empirical comparison,
we show that our method outperforms SUM and MAX

loss on various datasets and architectures.
The inference phase of text-image matching mainly

refers to the process of obtaining an actual matching
from the text and image embeddings. Dinu et al.
showed how naive nearest neighbor search (NNS)
is flawed for this need. However, to the best of our
knowledge, it has been the only strategy adopted
by deep text-image matching methods in recent
years. While it receives little attention in text-image
matching, it can be formulated as a well-studied
problem in Combinatorial Optimization (CO): the
assignment problem. And most recently, within
the NLP community, it is extensively studied in the
context of Bilingual Lexicon Induction (BLI) which
aims to produce a one-to-one mapping among two
sets of word vectors. Smith et al. used Inverted
Softmax (IS) to reweight similarity scores leveraging
an item’s distance with all queries. Lample et al.
proposed Cross-modal Local Scaling (CSLS) to
reduce the scores of items that appear frequently in
the neighborhood of multiple queries. Both IS and
CSLS are targeting the cross-modal hubs with soft
criteria. As we do have the strong prior that the final
text-image correspondence is a bipartite matching1,
we impose a hard constraint on the predicted graph.
We propose a heuristic algorithm called Relaxed
Greedy Matching (RGM). It is adapted from Greedy
Matching (GM) algorithm proposed by Kollias et al.
but exhibits much better empirical performance by a
small modification which we will explain in detail in
section 3.3.3. We will show in experiments how RGM

can be combined with IS/CSLS and achieve R@K
scores that are well above the widely used NNS.

The two major contributions of this work are:
• a self-adaptive hubness-aware loss function

(HAL) that achieves the state-of-the-art across
different datasets and model architectures;
• a heuristic algorithm that produces refined

1In CO, a matching in a bipartite graph is a set of edges
chosen in such a way that no two edges share an endpoint. In
our context, it means no item should be the nearest neighbor of
more than one query.

prediction from an embedding similarity matrix
which further advances the state-of-the-art.

2 Related Work

In this section, we introduce works from two fields
which are highly-related to our work: 1) text-image
matching and VSE; 2) tackling the hubness problem
in various contexts.

2.1 Text-image Matching and VSE

Since the dawn of deep learning, works have emerged
using a two-branch architecture to connect language
and vision. In 2010, Weston et al. trained a shallow
neural network to map word-image pairs into a
joint space for image annotation. In 2013, Frome
et al. brought up the term VSE and trained joint
embeddings for sentence-image pairs. Later works
extended VSE for the task of text-image matching
(Hodosh et al., 2013; Kiros et al., 2015; Gong et al.,
2014; Vendrov et al., 2016; Hubert Tsai et al., 2017;
Faghri et al., 2018; Wang et al., 2019), which is also
our task of interest. Notice that text-image matching
is different from generating novel captions for images
(Lebret et al., 2015; Karpathy and Fei-Fei, 2015) but
to retrieve existing descriptive texts or images in a
database.

While many of these works improve model
architectures for training VSE, few have tackled the
shortcomings in learning objectives. Faghri et al.
made the latest attempt to reform the long being used
SUM loss. Their proposed MAX loss is indeed a
much stronger baseline than SUM in most data and
model configurations. But it fails significantly when
the dataset is small or noise is contained. Shekhar
et al.; Shi et al. raised concerns over this issue. They
mainly focused on creating better training data while
we target the training objective itself.

2.2 Tackling the Hubness Problem

We have stated what the hubness problem is in the
introduction. Now we introduce works from 1) Bilin-
gual Lexicon Induction (BLI) and 2) Combinatorial
Optimization that could be used to tackle the problem.

BLI is the task of inducing word translations from
monolingual corpora in two languages (Irvine and
Callison-Burch, 2017). The bilingual word vectors are
usually trained from methods based on Distributional
Semantics like (Mikolov et al., 2013). The word trans-
lation problem thus converts to finding the appropriate
matching among two sets of vectors (which is similar
to our task of interest). Smith et al.; Lample et al.
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proposed to first conduct a direct Procrustes Analysis
and then use criteria that heavily punish hubs during
inference to reduce the hubness problem. Joulin et al.
integrated the inference criterion CSLS from (Lample
et al., 2018) into a least-square loss and trained a
transformation matrix end-to-end. Though this work
has a similar philosophy to ours, it is specifically
designed for BLI and only trains one linear layer over
two sets of word vectors. When CSLS is appended
to a triplet loss like ours, it is merely a resampling of
hard samples, making it non-special in terms of both
form and intuition.

As mentioned in the introduction, the inference
phase of text-image matching can also be formulated
as an assignment problem. We can completely elim-
inate the existence of hubs by solving the matching
problem this way as all queries would be matched
to a fixed number of items (and vice versa). Kuhn
proposed the famous Hungarian algorithm for produc-
ing maximum weight matching in the 1950s. Murty
extended the idea to the k-best assignment algorithm
to obtain a list of k-best candidates for all queries
(so a ranking is accessible). However, (Kuhn, 1955;
Murty, 1968) run inO(n3) and are thus inapplicable
for large scale embeddings. Our method (RGM) is
modified from a recent heuristic algorithm proposed
by Kollias et al. and is capable of real-time inference.

3 Method

We first introduce the basic formulation of VSE model
in section 3.1. In section 3.2 and 3.3, we review sev-
eral existing methods that we will compare to and also
combine with; then propose our intended methods
for training and inference respectively. In the end, we
state the tools used for measuring hubs in section 3.4.

3.1 Basic Formulation

The bidirectional text-image matching framework
consists of a text encoder and an image encoder. The
text encoder is composed of word embeddings, a
GRU (Chung et al., 2014) (or other sequential models)
layer and a temporal pooling layer. The image
encoder is usually a deep CNN and a linear layer. We
use ResNet152 (He et al., 2016), Inception-ResNet-v2
(IRv2) (Szegedy et al., 2017) and VGG19 (Simonyan
and Zisserman, 2014) pre-trained on ImageNet (Deng
et al., 2009) in our models. We denote them as
functions f and g, which map text and image to some
vectors of size d respectively.

For a text-image pair (t,i), the similarity of t and i

is measured by cosine of their normalized encodings:

s(i,t)=

〈
f(t)

‖f(t)‖2
,
g(i)

‖g(i)‖2

〉
:Rd×Rd→R. (1)

During training, a margin based triplet ranking loss
is adopted to cluster positive pairs and push negative
pairs away from each other. There are mainly two
prevalent choices which are SUM and MAX. We
introduce them in the next section along with our
newly proposed loss HAL.

3.2 Training Objectives
In section 3.2.1 and 3.2.2 we restate the two popular
loss functions that have been adopted for training VSE
and analyze their pros and cons. In section 3.2.3 we
introduce our proposed Hubness-Aware Loss (HAL).

3.2.1 Sum-margin Loss (SUM)
SUM has been used for training VSE since the start
of this line of work (Frome et al., 2013; Kiros et al.,
2015). Its early form can be found in (Weston et al.,
2010) which was used for training joint word-image
embeddings. SUM is defined as:

min
θ

∑
i∈I

∑
t̄∈T\{t}

[α−s(i,t)+s(i,̄t)]+

+
∑
t∈T

∑
ī∈I\{i}

[α−s(t,i)+s(t,̄i)]+,
(2)

where [·]+ = max(0,·); α is a preset margin; T and
I are all text and image encodings in a mini-batch;
t is the descriptive text for image i and vice versa;
t̄ denotes non-descriptive texts for i while ī denotes
non-descriptive images for t.

3.2.2 Max-margin Loss (MAX)
Faghri et al. proposed MAX fairly recently (2018).
Though MAX was not used in the context of VSE be-
fore, it was thoroughly exploited in other embedding
learning tasks (Wu et al., 2017). MAX differs from
SUM by considering only the hardest negative sample
within the mini-batch (instead of summing over all
margins).

min
θ

∑
i∈I

max
t̄∈T\{t}

[α−s(i,t)+s(i,̄t)]+

+
∑
t∈T

max
ī∈I\{i}

[α−s(t,i)+s(t,̄i)]+,
(3)

Pseudo hardest negatives. The existence of
pseudo hardest negative in training data is a major
problem for MAX. During training, as only the
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hardest sample in a mini-batch is considered, if
that sample happens to be incorrectly labeled or
inaccurate, misleading gradients would be imposed
on the network. Notice that SUM eases such noise
in labels by taking all samples in a mini-batch into
account. When a small set of samples are with false
labels, their false gradients would be canceled out
by other correct negatives within the mini-batch,
preventing the model from an optimization failure
or overfitting to incorrect labels. That being said,
SUM fails to make use of hard samples and does not
address the hubness problem at all. It thus performs
poorly on a well-labeled dataset like MS-COCO.

3.2.3 The Hubness-Aware Loss (HAL)
On the one hand, we desire a certain degree of
robustness through considering multiple samples; on
the other hand, we wish the samples being considered
are hard enough - so that the training is effective.
We tackle this problem leveraging information from
visual semantic hubs. Inspired by Zelnik-Manor
and Perona, we propose a self-adaptive loss that
reweights samples within a mini-batch according to
local statistics. More specifically, HAL assigns more
weights to negatives which appear to be hubs (being
close neighbors to multiple queries).

We define a function kNN(x,M,k) to return the k
closest points (measured by l2 distance) in point set
M to x and HAL can be formulated as:

s′(i,t)=s(i,t)·e
∑

t̄∈K1

s(i,̄t)
|K1|

+
∑

ī∈K2

s(̄i,t)
|K2| (4)

where K1 =kNN(i,T\{t},k),K2 =kNN(t,I\{i},k).
Then we normally apply SUM on the similarity
matrix reweighted by Eq. (2). Though the default
configuration of HAL is Eq. (4)+(2), MAX could also
be combined by switching Eq. (2) to Eq. (3).

HAL vs MAX. As pointed out by Lazaridou
et al., MAX actually implicitly mitigates the hubness
problem by targeting the hardest sample only. A hub,
by definition, is a close (potentially nearest) neighbor
to multiple queries and would thus be punished
by MAX for multiple times (in different batches).
Lazaridou et al.’s experiments also verified such
theory empirically. However, it is a risky choice as
the hardest sample within a mini-batch can easily be
a pseudo hardest negative as analyzed in section 3.2.2.
As we would show in experiments, HAL prevails in
a broader range of data and model configurations. In
some specific circumstances where both training data
and encoders are of ideal quality, we could combine
MAX with HAL to reach optimal performance.

Also, HAL is essentially leveraging more infor-
mation than MAX. SUM considers the anchor’s
relation with the positive and all negatives; MAX

goes one step further to also exploit relations among
the negatives; HAL digs into negatives’ relations
with other queries (besides the anchor) to decide the
importance of negatives.

3.3 Inference Objectives
The standard procedure for text-image matching
inference is a naive nearest neighbor search (NNS).
This, however, easily leads to severe hubness problem
as suggested by Dinu et al.; Lazaridou et al.. We
thus leverage the prior that “one item should not be
a close neighbor to too many queries” to improve
the predicted matching. In the following, we will
introduce a class of cross-modal matching algorithms
that punish the existence of hubs during inference. In
section 3.3.1 and 3.3.2 we briefly introduce two soft
criteria: IS and CSLS proposed by Smith et al. and
Lample et al. for the task of BLI (however have never
been used for text-image matching). In section 3.3.3,
we explain our proposed Relaxed Greedy Matching
(RGM) that post-processes a similarity matrix and
produces a refined matching.

3.3.1 Inverted Softmax (IS)
IS estimates the confidence of a prediction i→t not
by similarity score s(i,t), but the score reweighted
by t’s similarity with other queries:

s′(i,t)=
eβs(i,t)∑

ī∈I\{i}e
βs(̄i,t)

(5)

where β is a temperature. Intuitively, it scales down
the similarity if t is also very close to other queries.

3.3.2 Cross-modal Local Scaling (CSLS)
CSLS aims to decrease a query vector’s similarity
to item vectors lying in dense areas while increase
similarity to isolated2 item vectors. Specifically, we
update the similarity scores with the formulas:

s′(i,t)=2s(i,t)− 1

k

∑
it∈K1

s(it,t);

s′(i,t)=2s(i,t)− 1

k

∑
ti∈K2

s(i,ti)
(6)

where K1 =kNN(t,I,k) and K2 =kNN(i,T,k); first
and second line are for text→image and image→text
inference respectively.

2Dense and isolated are in terms of query.
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3.3.3 Relaxed Greedy Matching (RGM)
Kollias et al. proposed a heuristic algorithm called
Greedy Matching (GM) for producing a one-to-one
mapping from a similarity matrix. It is a simple itera-
tive approach: 1) sort elements in a similarity matrix
S; 2) the highest score s(i,j) is located, the pairing
(i,j) is recorded and scores involving either index i
or j are deleted; 3) repeat step 2) until one of the two
sets gets all its points paired.

Notice that their approach only produces one single
matching instead of a k-best matching set which
can be used to calculate R@k scores. We extend it
to a generalized form by allowing one index to be
recorded for k times. And instead of constraining each
index to be matched for k times only, we associate
k with a relaxation factor λ. So that a total number
of λk times of records are allowed for producing
a k-best matching3. We thus call our algorithm
Relaxed Greedy Matching (RGM). Essentially, RGM

is compulsively limiting the size of hubs. Notice
that when λ → ∞, RGM is equivalent to NNS as
no constraint is imposed anymore. We will show
in experiments that GM actually harms inference
performance in most cases. But RGM, instead, can
improve it by allowing the existence of “small” hubs.

RGM runs in O(n2 logn). While RGM can do
real-time inference for a test set of size 5, 000 or
25,000, exact matching algorithms like Hungarian
(Kuhn, 1955) and Murty’s (Murty, 1968) which run
in O(n3) couldn’t. In fact, they are hundreds and
thousands of times slower when applied on problems
of this scale: when n = 5,000, n

logn ≈ 587; when
n=25,000, n

logn≈2,469.

3.4 Measuring Hubness
As our methods stress the idea of mitigating the
hubness problem in VSE, we desire certain quanti-
tative tools to actually measure the degree of hubness
(before and after applying our methods).

We use similar tools as Radovanović et al.; Zhang
et al.. Suppose there are two sets of points T,I. For
some t ∈ T , Nk describes the frequency of sample
t being a top-k neighbour over all points in I. LetNk
be the distribution of Nk(·). Then the skewness of
Nk characterizes the existence of “popular” neighbors
in I for points in T (if the hubness problem is severe,
Nk skews to the right). Formally, skewness of Nk
can be formulated as

skew(Nk)=

∑n
i=1(Nk(i)−E[Nk])

3

n·Var[Nk]
3
2

. (7)

3A listing of pseudocode of RGM can be found in appendices.

In experiments, we include this indicator for all
models trained and investigate its relation to other
metrics. We also plot the change of distribution Nk
to intuitively show how visual semantic hubs are
affected by our proposed methods.

4 Experiments

We list our experimental setups in section 4.1. Then
we compare and analyze training objectives in
section 4.2 and inference objectives in section 4.3.

4.1 Experimental Setups

Dataset. We use MS-COCO (Lin et al., 2014) and
Flickr30k (Young et al., 2014) as our experimental
datasets. For MS-COCO, there have been several dif-
ferent splitting protocols being used in the community.
We use the same split as (Karpathy and Fei-Fei, 2015):
113,287 images for training, 5,000 for validation
and 5,000 for testing5. During testing, scores are
computed as the average of 5 folds of 1k images. As
many of the previous works report test results on a 1k
test set (a subset of the 5k one), we would experiment
with both protocols. We refer to the 1k test set as c1
and the 5k test set as c2. Flickr30k has 30,000 images
for training; 1,000 for validation; 1,000 for testing.

Evaluation metrics. We use R@Ks (recall at
K), Med r, Mean r, rsum and hs-sum to evaluate
the results. R@K: the ratio of “# of queries that
the ground-truth item is ranked in top K” to “total
# of queries” (we use K ∈ {1,5,10}); Med r: the
median of the ground-truth ranking; Mean r: the
mean of the ground-truth ranking; rsum: the sum of
R@{1,5,10} for both text→image and image→text;
hs-sum: the sum of skew(Nk) where k={1,5,10}
for both text→image and image→text. R@Ks and
rsum are the higher the better while Med r, Mean
r and hs-sum are the lower the better. We compute
all metrics for both text→image and image→text
retrieval. During training, we follow the convention
of taking the model with the maximum rsum on
validation set as the best model for testing.

Model, training and inference details. We use
300-d word embeddings and 1024 internal states
for GRU text encoder (all randomly initialized with
Xavier init. (Glorot and Bengio, 2010)); all image en-
codings are obtained from image encoders pre-trained
on ImageNet (for fair comparison, we don’t finetune
any image encoders); d=1024 for both text and im-
age embeddings; margin α=0.2 for all loss functions.

5Note that 1 image in MS-COCO and Flickr30k has 5
captions, so 5 text-image pairs are used for every image.
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Table 1: Quantitative results on Flickr30k (Young et al., 2014).

# architecture loss image→text text→image

R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r rsum hs-sum

1.1
GRU+VGG19

SUM 30.0 59.6 67.7 4.0 34.7 22.8 49.4 61.4 6.0 47.5 291.0 10.77
1.2 MAX 30.1 56.3 67.9 4.0 30.5 21.3 47.1 58.7 6.0 40.2 281.4 10.83
1.3 HAL 32.3 61.0 71.7 3.0 29.2 24.8 50.6 62.8 5.0 38.9 303.2 9.03

1.4 Order (VGG19, ours4)
(Vendrov et al., 2016)

SUM 29.3 56.1 68.0 4.0 25.6 22.7 49.5 62.0 6.0 34.7 287.7 13.26
1.5 MAX 23.9 51.4 62.3 5.0 33.6 19.3 45.6 57.5 7.0 37.1 259.9 22.08
1.6 HAL 30.2 58.6 70.4 3.0 27.0 23.1 50.8 62.0 5.0 36.7 295.1 17.98

Table 2: Quantitative results on MS-COCO (Lin et al., 2014). First three blocks (line 2.1-2.12) are using protocol c2 (5k test set);
last block (line 2.13-2.23) is using c1 (1k test set) in convenience of comparing with results reported in previous works.

# architecture loss image→text text→image

R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r rsum hs-sum

2.1

GRU+VGG19

SUM 46.9 79.7 89.5 2.0 5.9 37.0 73.1 85.3 2.0 11.1 411.5 15.73
2.2 MAX 51.8 82.1 90.5 1.0 5.1 39.0 73.9 84.7 2.0 12.0 421.9 14.54
2.3 HAL 51.3 82.2 91.0 1.0 4.8 38.9 74.7 86.4 2.0 8.1 424.5 13.64
2.4 MAX+HAL 52.0 81.8 90.5 1.0 5.3 39.1 73.4 84.6 2.0 9.8 421.5 13.70

2.5

GRU+IRv2

SUM 50.9 82.7 92.2 1.4 4.1 39.5 75.8 87.2 2.0 9.4 428.3 16.04
2.6 MAX 57.0 86.2 93.8 1.0 3.5 43.3 77.9 87.9 2.0 8.6 446.0 13.87
2.7 HAL 54.5 85.1 93.1 1.0 3.8 42.4 77.2 88.2 2.0 7.4 440.5 14.89
2.8 MAX+HAL 58.6 87.2 94.2 1.0 3.4 44.3 78.3 88.2 2.0 7.5 450.9 13.86

2.9

GRU+ResNet152

SUM 53.2 85.0 93.0 1.0 3.9 41.9 77.2 88.0 2.0 8.7 438.3 15.15
2.10 MAX 58.7 88.2 94.8 1.0 3.2 45.0 78.9 88.6 2.0 8.6 454.2 13.36
2.11 HAL 58.1 87.6 94.5 1.0 3.3 44.1 79.1 89.0 2.0 6.9 452.4 12.57
2.12 MAX+HAL 61.9 88.8 95.2 1.0 3.0 46.4 79.0 88.9 2.0 7.6 460.2 12.42

2.13 (Kiros et al., 2015) (ours) 49.9 79.4 90.1 2.0 5.2 37.3 74.3 85.9 2.0 10.8 416.8 -
2.14 (Vendrov et al., 2016) 46.7 - 88.9 2.0 5.7 37.9 - 85.9 2.0 8.1 - -
2.15 (Huang et al., 2017) 53.2 83.1 91.5 1.0 - 40.7 75.8 87.4 2.0 - 431.8 -
2.16 (Liu et al., 2017) 56.4 85.3 91.5 - - 43.9 78.1 88.6 - - 443.8 -
2.17 (You et al., 2018) 56.3 84.4 92.2 1.0 - 45.7 81.2 90.6 2.0 - 450.4 -
2.18 (Wehrmann, 2018) (d=1024) 57.8 87.9 95.6 1.0 3.3 44.2 80.4 90.7 2.0 5.4 456.6 -
2.19 (Faghri et al., 2018) 58.3 86.1 93.3 1.0 - 43.6 77.6 87.8 2.0 - 446.7 -
2.20 (Faghri et al., 2018) (ours) 60.5 89.6 94.9 1.0 3.1 46.1 79.5 88.7 2.0 8.5 459.3 -
2.21 GRU+ResNet152, HAL 59.6 90.4 96.3 1.0 3.0 47.0 80.9 90.7 2.0 6.4 464.9 -
2.22 GRU+ResNet152, MAX+HAL 62.5 89.9 96.0 1.0 3.0 47.4 81.0 89.6 2.0 6.2 466.4 -
2.23 GRU+ResNet152, MAX+HAL (k=1) 64.2 90.3 97.0 1.0 2.6 48.4 80.6 89.7 2.0 7.2 470.2 -

During training, we start with a learning rate of
0.001 and decay it by 10 times after every 10 epochs.
Except that for all that use MAX, we follow the
original configuration proposed by Faghri et al. and
start with a learning rate of 0.0002, decaying it by 10
every 15 epochs. We train all models for 30 epochs
with a batch size of 128. All models are optimized
using an Adam optimizer (Kingma and Ba, 2015).

For inference during testing, we use β=30 for IS;
k=10 for CSLS across all models. For RGM we use
the λs that maximize R@K scores on validation set.

4.2 Comparison of Training Objectives

Comparing HAL, SUM and MAX. Table 1 and
2 present our quantitative results on Flickr30k and
MS-COCO respectively6. On Flickr30k, we exper-
iment two models and HAL achieves significantly
better performance than MAX and SUM on both. On
MS-COCO c2, HAL beats SUM but is slightly worse

6To make the comparison fair, all results in this section are
using naive nearest neighbor search (NNS) for inference. We
discuss better methods for inference in section 3.3.

than MAX. Though MAX is very competitive on
MS-COCO, it fails badly on Flickr30k. This serves
as an evidence of MAX easily overfitting to small
datasets. Faghri et al. showed that data augmentation
techniques like random crop applied on input images
can improve MAX’s performance over small datasets.

But notice that HAL can actually be combined
with MAX by first modifying the scoring matrix then
choosing only the hardest sample. The hardest sample
would still self-adjust its scale according to the density
of its neighborhood. Though there would be no dif-
ference of scales within a mini-batch, HAL enforces
an order to scales of hardest samples among different
batches. Relatively easier hardest samples result in
smaller gradients than those harder hardest samples.
The combined loss MAX+HAL achieves better perfor-
mance than both MAX and HAL. However, this com-
bination might not always work, especially on noisy or
small datasets where the base loss MAX is flawed by
its nature. On the contrary, HAL is likely to maintain
its good performance regardless of the data distribu-
tion and should be the loss of choice in most settings.
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The impact of k in HAL. HAL has one hy-
perparameter k, which characterizes the scope of
neighborhood being considered for local statistics.
HAL achieves comparable results regardless of the
choice of k as suggested in Figure 1. We experiment
GRU+VGG19 on Flickr30k with different loss
functions. And we plot rsum against k ranging
from 1 to 10: HAL is noticeably better than the two
baselines all the time. We choose k = 3 (which is
the best among all) for all other experiments if not
explicitly mentioned.

0 1 2 3 4 5 6 7 8 9 10
k

280

285

290

295

300

rs
um

HAL
SUM
MAX

Figure 1: Plotting two baselines and HAL’s rsum against k
ranging from 1 to 10. All loss functions are using GRU+VGG19
as the base model and are trained & tested on Flickr30k.

HAL vs. State-of-the-art. Table 2 line 2.13-2.23
list quantitative results of both our proposed methods
(2.21-2.23) and numbers reported in previous
works (2.13-2.20). Though we only use routine
encoder architectures (GRU and ResNet152), with
HAL/MAX+HAL, our model reaches much better
rsum than the ones reported before. On this
specific configuration, as the dataset is clean and
image embeddings (obtained from ResNet152)
are of high quality, we are safe to provide more
precise supervision to the model - by setting HAL’s
hyperparameter k to 1 (only consider the top-1
neighbor when deciding weight of a negative sample),
the model on line 2.23 reaches to a rsum of 470.2.

Hub’s relation to performance. HAL exploits the
information from hubs to reweight negative samples
and it achieves outstanding empirical performance.
But metrics regularly used for text-image matching do
not tell what exactly happens to hubs. In Table 1 and
2, we list a new metric hs-sum, which characterizes
the existence of hubs as described in both the method
and evaluation metric section. Higher hs-sum means
more severe hubness problem in embeddings. The
tables show that except line 1.4-1.6, all embeddings
trained with HAL/MAX+HAL have lower hs-sum
than the ones trained with SUM/MAX. And there
is also strong inverse correlation between rsum and
hs-sum, suggesting that better embeddings do have
less hubness problem. We plot an embedding’s N1

distribution (text→image) in Figure 2 as an example.
It is quite clear that HAL successfully regularizes the
“outlier”s (large hubs) and the tail is pulled back to
the left comparing to SUM and MAX.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
log10(N1)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

lo
g1

0(
p(

N1
))

SUM
MAX
HAL

Figure 2: Comparing the N1 distributions (text→image) of
embeddings obtained from model line 2.1-2.3 (Nk defined in
section 3.4). We take log10 of both N1 and p(N1) for better
visualization effect. All are using test set MS-COCO c2.

4.3 Comparison of Inference Objectives

Table 3: Comparing inference methods on models from Table 1
line 1.3 and Table 2 line 2.1, 2.12. All are using MS-COCO c2.

# model & dataset inference rsum

4.1

GRU+VGG19
HAL
Flickr30k
(line 1.3)

NNS 303.2
4.2 GM 298.8
4.3 RGM 307.1
4.4 IS 308.2
4.5 CSLS 307.3
4.6 IS+RGM 308.5
4.7 CSLS+RGM 309.6

4.8

GRU+VGG19
SUM
MS-COCO
(line 2.1)

NNS 411.5
4.9 GM 411.2
4.10 RGM 415.9
4.11 IS 422.2
4.12 CSLS 427.6
4.13 IS+RGM 424.2
4.14 CSLS+RGM 429.1

4.15

GRU+ResNet152
MAX+HAL
MS-COCO
(line 2.12)

NNS 460.2
4.16 GM 455.6
4.17 RGM 462.0
4.18 IS 471.2
4.19 CSLS 472.0
4.20 IS+RGM 472.2
4.21 CSLS+RGM 472.0

Comparing and combining RGM, IS and CSLS.
We first quantitatively compare NNS, GM (Kollias
et al., 2012), RGM, IS(Smith et al., 2017), CSLS (Lam-
ple et al., 2018) and also RGM+IS/CSLS in Table 37.
We pick three embeddings of MS-COCO c2 (Table 1
line 1.3 and Table 2 line 2.1, 2.12) trained in section
4.2 for this comparison. When used alone, RGM gen-
erally performs worse than IS and CSLS. On model
line 1.3, RGM and CSLS are comparable (∼307)
while IS is slightly better (∼308). On model line 2.1
and 2.12, IS and CSLS beat RGM by a large margin.
However, RGM can be integrated with IS/CSLS

7We only report rsum here. But full table with all R@Ks
can be found in appendices Table 4.



8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Confidential Review Copy. DO NOT DISTRIBUTE.

as a post-processing procedure and refines their
results. RGM advances the best results from IS/CSLS

further (+∼2) across all three models. The combined
methods improve rsum by 6.4,17.6,12.0 comparing
to NNS. We also include GM in comparison. As
suggested in the table, eliminating hubs actually
harms inference performance (−4.3, −0.3, −4.6
comparing to NNS). We will further discuss how size
of hubs affects empirical results in section 4.3.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
log10(N10)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

lo
g1

0(
p(

N1
0)

)

log10(20)
NNS
IS
CSLS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
log10(N10)

3.0

2.5

2.0

1.5

1.0

lo
g1

0(
p(

N1
0)

)

log10(20)

RGM
IS+RGM
CSLS+RGM

Figure 3: Comparing different inference methods’ N10

distributions (text→image) (Nk defined in section 3.4).
Using model in Table 2 line 2.1. All embeddings
produced on MS-COCO c2 test set. Notice that on the
second figure, with RGM (λ = 2), all hubs are rigidly
regularized to to be as small as log1020.

To demonstrate how different inference methods
have affected the existence of hubs more intuitively,
we plot the N10 distributions for all methods listed
in Table 3 as an example. The results are in Figure 3.
Again, large hubs (characterized by k= 10) exist in
the form of “long tail” trailing to the right of the main
body. The more hubness there is, the more the graph
skews to the right. The first figure shows that IS and
CSLS successfully pull the long tail backward. The
second figure shows that our proposed RGM “clips”
the long tails compulsively. Specifically, in this figure,
the size of hubs is limited to be≤ log1020. Through
this plotting, we can also qualitatively tell why RGM

barely improves a high-quality model like line 4.20,
4.21: when IS and CSLS have already made tail retract
enough, there is little room for RGM to function.

Small hubs improve performance. The intuition

for introducing a relaxed GM is, empirically speaking,
tolerance of small hubs might in reverse raise R@Ks.
This might be a bit counter-intuitive as we thought all
hubs are harmful. But tolerating small hubs actually
makes the algorithm more robust, especially when
an item is quite certain a query should be in its
neighborhood but uncertain its exact ranking. We
notice a clear trend in Figure 4 that the R@10s first
increase as relaxation factor λ grows, then decrease
after a certain point and finally converge with the
unconstrained versions’, which is equivalent to not
having RGM at all. RGM estimates a suitable λ on
validation set and takes advantage of the performance
boost from having small hubs.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
lambda (RGM)

71.50

71.75

72.00

72.25

72.50

72.75

73.00

73.25

73.50

im
ag

e 
to

 te
xt

 - 
R@

10

NNS
IS
CSLS
RGM
IS+RGM
CSLS+RGM

Figure 4: Comparing multiple inference methods com-
bined with RGM. R@10 (image→text) against k ranging
from 1 to 10 is plotted. Using model in Table 1 line 1.3.

5 Conclusion

We introduce novel tools for mitigating visual
semantic hubs in both training and inference phase
of text-image matching. For training, we propose a
self-adaptive loss (HAL) that leverages information
of hubs, giving considerations to both robustness
and hard negative mining. For inference, we propose
the Relaxed Greedy Matching algorithm (RGM)
which can be combined with existing cross-modal
mapping criteria that punish hubs. Both methods are
comparable or better than the state-of-the-art across
different datasets and model architectures. Despite
empirical results, we also offer insights on how the
existence of hubs has affected models’ performance.
Though our methods have only experimented on the
task of text-image matching, they can be presumably
applied on all cross-modal matching tasks.
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tional retrieval made simple. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 7718–7726.

Jason Weston, Samy Bengio, and Nicolas Usunier. 2010.
Large scale image annotation: learning to rank with
joint word-image embeddings. Machine learning,
81(1):21–35.

Chao-Yuan Wu, R Manmatha, Alexander J Smola, and
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A Appendices

The appendices include pseudocode of RGM and the
full version of Table 3.

Algorithm 1 Relaxed Greedy Matching (RGM)

Input: X: similarity matrix; k: size of neighborhood
considered for computing R@k; λ: relaxation
coefficient

Output: a stack S that records all matchings
1: a,b← shape ofX
2: N←a×b
3: M←min(a,b)
4: Ru← a zero vector of sizem
5: Cu← a zero vector of size n
6: S←stack() // an empty stack
7: x ← flatten(X) // matrix to a list of

elements
8: ix←argsort(x) // indices of x being sorted

in descent order
9: id←0

10: matched←0
11: whilematched<M×k do
12: i←ix[id] div n
13: j←ix[id] mod n
14: if Ru[i] < k and Cu[j] < round(λ × k)

then
15: S.push([i,j])
16: Ru[i]←Ru[i]+1
17: Cu[j]←Cu[j]+1
18: matched←matched+1
19: end if
20: id←id+1
21: end while
22: return S
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Table 4: Comparing various inference methods on models from Table 1 line 1.3 and Table 2 line 2.1, 2.12 (full table).

# model & dataset Inference image→text text→image

R@1 R@5 R@10 R@1 R@5 R@10 rsum

4.1

GRU+VGG19
HAL
Flickr30k
(line 1.3)

NNS 32.3 61.0 71.7 24.8 50.6 62.8 303.2
4.2 GM 29.3 60.6 71.9 24.2 50.5 62.3 298.8
4.3 RGM 33.3 62.2 72.8 24.9 50.8 63.1 307.1
4.4 IS 33.9 62.1 72.3 24.9 51.6 63.4 308.2
4.5 CSLS 33.9 61.4 72.1 25.3 51.5 63.0 307.3
4.6 IS+RGM 33.7 62.4 73.2 24.9 51.0 63.3 308.5
4.7 CSLS+RGM 34.3 62.4 72.7 25.3 51.6 63.3 309.6

4.8

GRU+VGG19
SUM
MS-COCO
(line 2.1)

NNS 46.9 79.7 89.5 37.0 73.1 85.3 411.5
4.9 GM 44.4 81.6 89.4 37.2 73.3 85.3 411.2
4.10 RGM 48.0 81.0 90.6 37.2 73.6 85.5 415.9
4.11 IS 53.2 82.2 90.9 38.4 73.2 84.2 422.2
4.12 CSLS 52.3 82.8 91.0 40.4 75.0 86.1 427.6
4.13 IS+RGM 53.2 82.2 91.1 38.6 73.8 85.3 424.2
4.14 CSLS+RGM 52.8 83.0 91.4 40.4 75.2 86.3 429.1

4.15

GRU+ResNet152
MAX+HAL
MS-COCO
(line 2.12)

NNS 61.9 88.8 95.2 46.4 79.0 88.9 460.2
4.16 GM 56.5 89.6 95.0 46.7 79.2 88.6 455.6
4.17 RGM 62.7 89.1 95.4 46.4 79.4 89.0 462.0
4.18 IS 67.0 90.9 96.0 47.5 80.3 89.6 471.2
4.19 CSLS 65.6 90.8 95.9 48.6 81.2 89.9 472.0
4.20 IS+RGM 67.1 91.1 96.0 47.8 80.6 89.6 472.2
4.21 CSLS+RGM 65.9 90.7 95.9 48.7 81.1 89.7 472.0


