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ABSTRACT

Deep neural networks (DNNs) are widely adopted in real-world cognitive appli-
cations because of their high accuracy. The robustness of DNN models, however,
has been recently challenged by adversarial attacks where small disturbance on in-
put samples may result in misclassification. State-of-the-art defending algorithms,
such as adversarial training or robust optimization, improve DNNs’ resilience
to adversarial attacks by paying high computational costs. Moreover, these ap-
proaches are usually designed to defend one or a few known attacking techniques
only. The effectiveness to defend other types of attacking methods, especially
those that have not yet been discovered or explored, cannot be guaranteed. This
work aims for a general approach of enhancing the robustness of DNN models
under adversarial attacks. In particular, we propose Bamboo – the first data aug-
mentation method designed for improving the general robustness of DNN without
any hypothesis on the attacking algorithms. Bamboo augments the training data
set with a small amount of data uniformly sampled on a fixed radius ball around
each training data and hence, effectively increase the distance between natural
data points and decision boundary. Our experiments show that Bamboo substan-
tially improve the general robustness against arbitrary types of attacks and noises,
achieving better results comparing to previous adversarial training methods, ro-
bust optimization methods and other data augmentation methods with the same
amount of data points.

1 INTRODUCTION

In recent years, thanks to the availability of large amounts of training data, deep neural network
(DNN) models (e.g., convolutional neural networks (CNNs)) have been widely used in many real-
world applications such as handwritten digit recognition (LeCun et al. (1998)), large-scale object
classification (Simonyan & Zisserman (2014)), human face identification (Chen et al. (2016)) and
complex control problems (Mnih et al. (2013)). Although DNN models have achieved close to
or even beyond human performance in many applications, they exposed a high sensitivity to input
data samples and therefore are vulnerable to the relevant attacks. For example, adversarial attacks
apply a “small” perturbation on input samples, which is visually indistinguishable by humans but
can result in the misclassification of DNN models. Several attacking algorithms have been also
proposed, including FGSM (Szegedy et al. (2013)), DeepFool (Moosavi Dezfooli et al. (2016)),
CW (Carlini & Wagner (2017)) and PGD (Madry et al. (2018)) etc., indicating a serious threat
against the systems using DNN models.

Many approaches have also been proposed to defend against adversarial attacks. adversarial train-
ing, for example, adds the classification loss of certain known adversarial examples into the total
training loss function: Goodfellow et al. (2014) use the FGSM noise for adversarial training and
Madry et al. (2018) use the PGD noise as the adversaries. These approaches can effectively improve
the model’s robustness against a particular attacking algorithm, but won’t guarantee the performance
against other kinds of attacks (Carlini & Wagner (2017)). Optimization based methods take the train-
ing process as a min-max problem and minimize the loss of the worst possible adversarial examples,
such as what were done by Sinha et al. (2017) and Yan et al. (2018). The approach can increase
the margin between training data points and the decision boundary along some directions. However,
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solving the min-max problem on-the-fly generates a high demand for the computational load. For
large models like VGG (Simonyan & Zisserman (2014)) and ResNet (He et al. (2016)), optimizing
the min-max problem could be extremely difficult. A large gap exists between previously proposed
algorithms aiming for defending against adversarial attacks and the goal of efficiently improving the
overall robustness of DNN models without any hypothesis on the attacking algorithms.

Generally speaking, defending against adversarial attacks can be considered as a special case of
increasing the generalizability of machine learning models to unseen data points. Data augmentation
method, which is originally proposed for improving the model generalizability, may also be effective
to improve the DNN robustness against adversarial attacks. Previous studies show that augmenting
the original training set with shifted or rotated version of the original data can make the trained
classifier robust to shift and rotate transformations of the input (Simard et al. (1998)). Training with
additional data sampled from a Gaussian distribution centered at the original training data can also
effectively enahnce the model robustness against natural noise (Chapelle et al. (2001)). The recently
proposed Mixup method (Zhang et al. (2017)) augmented the training set with linear combinations of
the original training data and surprisingly improved the DNN robustness against adversarial attacks.
Although these data augmentation methods inspired our work, they may not offer the most efficient
way to enhance the adversarial robustness of DNN as they are not designated to defend adversarial
attacks.

In this work, we propose Bamboo—a ball shape data augmentation technique aiming for improving
the general robustness of DNN against adversarial attacks from all directions. Bamboo augments the
training set with data uniformly sampled on a fixed radius ball around each training data point. Our
theoretical analysis shows that without requiring any prior knowledge of the attacking algorithm,
training the DNN classifier with our augmented data set can effectively enhance the general robust-
ness of the DNN models against the adversarial noise. Our experiments show that Bamboo offers a
significantly enhanced model robustness comparing to previous robust optimization methods, with-
out suffering from the high computational complexity of these prior works. Comparing to other data
augmentation method, Bamboo can also achieve further improvement of the model robustness using
the same amount of augmented data. Most importantly, as our method makes no prior assumption
on the distribution of adversarial examples, it is able to work against all kinds of adversarial and
natural noise. To authors’ best knowledge, Bamboo is the first data augmentation method specially
designed for improving the general robustness of DNN against all directions of adversarial attacks
and noise.

The remaining of the paper is organized as follows. Section 2 explains how to measure model robust-
ness and summaries previous research on DNN robustness improvement; In Section 3, we elaborate
Bamboo’s design principle and the corresponding theoretical analysis. Section 4 empirically dis-
cusses the parameter selection and performance of our method and compares it with some related
works; At the end, we conclude the paper and discuss the future work in Section 5.

2 BACKGROUND

2.1 MEASUREMENT OF DNN ROBUSTNESS

2.1.1 ROBUSTNESS UNDER GRADIENT BASED ATTACK

A metric for measuring the robustness of the DNN is necessary. Szegedy et al. (2013) propose the
fast gradient sign method (FGSM) noise, which is one of the most efficient and most commonly
applied attacking method. FGSM generates an adversarial example x′ using the sign of the local
gradient of the loss function J at a data point x with label y as shown in Equation (1):

x′ = x+ ε sign(∇xJ(θ, x, y)), (1)

where ε controls the strength of FGSM attack. For its high efficiency in noise generation, the clas-
sification accuracy under the FGSM attack with certain ε has been taken as a metric of the model
robustness.

As FGSM attack leverages only the local gradient for perturbing the input, gradient masking (Pa-
pernot et al. (2016)) that messes up the local gradient can effectively improve the accuracy under
FGSM attack. However, gradient masking has little effect on the decision boundary, so it may not
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increase the actual robustness of the DNN. In other words, even a DNN model achieves high accu-
racy under FGSM attack, it may still be vulnerable to other attacking methods. Madry et al. (2018)
propose projected gradient descent (PGD), which attacks the input with multi-step variant FGSM
that is projected into certain space x + S at the vicinity of data point x for each step. Equation (2)
demonstrates a single step of the PGD noise generation process.

xt+1 = Πx+S(xt + ε sign(∇xJ(θ, x, y))). (2)

Madry et al. (2018)’s work shows that comparing to FGSM, adversarial training using PGD adver-
sarial is more likely to lead to a universally robust model. Therefore the classification accuracy
under the PGD attack would also be an effective metric of the model robustness.

2.1.2 ROBUSTNESS UNDER OPTIMIZATION BASED ATTACK

Besides these gradient based methods, the generation of adversarial examples can also be viewed as
an optimization process. In this work, we mainly focus on untargeted optimization-based attacks.
Szegedy et al. (2013) describe the general objective of such attacks as Equation (3):

minimizeδ D(x, x+ δ),

s.t. C(x+ δ) 6= C(x), x+ δ ∈ [0, 1]n.
(3)

Where D is the distance measurement, most commonly the Euclidean distance; and C is the classi-
fication result of the DNN. The optimization objective is to find an adversarial example x′ = x+ δ
that results in misclassification by paying the minimum distance to the original data point x.

Note that the objective in Equation (3) includes the classification function of DNN as a constraint.
Due to the nonlinearity and the nonconvexity of the DNN classifier, the objective in Equation (3)
can not be easily optimized. In order to generate strong optimization-based attacks more efficiently,
CW attack (Carlini & Wagner (2017)) was proposed which defines a objective function f such that
C(x+δ) 6= C(x) if and only if f(x+δ) ≤ 0. Several possible choices of function f are provided in
Carlini & Wagner (2017)’s work, which are better suited for optimization comparing to the original
constraint with DNN classification function C. With the use of f , the optimization problem in
Equation (3) can be modified to:

minimizeδ D(x, x+ δ),

s.t. f(x+ δ) ≤ 0, x+ δ ∈ [0, 1]n.
(4)

It can be equivalently formulated as:

minimizeδ D(x, x+ δ) + c · f(x+ δ),

s.t. x+ δ ∈ [0, 1]n.
(5)

where c is a positive constant. The objective in Equation (5) can be optimized more easily than that
in Equation (3), leading to a higher chance of finding the optimal δ efficiently (Carlini & Wagner
(2017)). Carlini & Wagner (2017) successfully demonstrate that most of the previous works with
high performance under FGSM attack would not be robust under their CW attack.

Since the objective of CW attack is to find the minimal possible perturbation strength of a successful
attack, the resulted δ will point to the direction of the nearest decision boundary around x, and
its strength can be considered as an estimation of the distance between the testing data point and
the decision boundary. Therefore the average strength required for a successful CW attack can be
considered as a reasonable measurement of the model robustness.

In this work, we will use the average strength of untargeted CW noise across all the data in testing
set as the metric of robustness when demonstrating the effect of parameter tuning on our proposed
method. Both the average CW strength and the testing accuracy under different strengths of FGSM
and PGD attacks are taken as the metrics when comparing our method to previous works.

2.2 PREVIOUS WORKS TOWARDS INCREASING NETWORK ROBUSTNESS

One of the most straightforward ways of analyzing and improving the robustness of a DNN is to
formulate the robustness with key factors, such as the shape of the decision boundary or parameters
and weights of the DNN model. Fawzi et al. (2016)’s work empirically visualizes the shape of the
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decision boundary, the observation of which shows that the curvature of the boundary tends to be
lower when close to the training data points. This technique isn’t very helpful in practice, mainly due
to the difficulty in drawing a theoretical relationship between the decision boundary curvature and
the DNN robustness that can effectively guide the DNN training. Some other works try to derive a
bound of the DNN robustness from the network weights (Peck et al. (2017), Hein & Andriushchenko
(2017)). These obtained bounds are often too loose to be used as a guideline for robust training, or
too complicated to be considered as a factor in the training objective.

A more practical approach is adversarial training. For example, we can generate adversarial exam-
ples from the training data and then include their classification loss to the total loss function of the
training process. As the generation of the adversarial examples usually relies on existing attacking
techniques like FGSM (Goodfellow et al. (2014)), DeepFool (Yan et al. (2018)) or PGD (Madry
et al. (2018)), the method can be efficiently optimized for the limited types of known adversarial at-
tacks. However, it may not promise the robustness against other attacking methods, especially those
newly proposed ones. Alternatively, the defender may online generate the worst-case adversarial
examples of the training data and minimize the loss of such adversarial examples by solving a min-
max optimization problem during the training process. For instance, the distributional robustness
method (Sinha et al. (2017)) trains the weight θ of a DNN model so as to minimize the loss L of
adversarial example x′ which is near to original data point x but has supremum loss, such as

minimizeθ F (θ) := E[supx′{L(θ;x′)− γD(x′, x)}], (6)

where γ is a positive constant that tradeoffs between the strength and effectiveness of the generated
x′. This method can achieve some robustness improvement, but suffers from high computational cost
for optimizing both the network weight and the potential adversarial example. Also, this work only
focuses on small perturbation attacks, so the robustness guarantee may not hold on the improvement
of robustness under large attacking strength (Sinha et al. (2017)).

3 PROPOSED APPROACH

3.1 VICINITY RISK MINIMIZATION AGAINST ADVERSARIAL ATTACKS

Most of the supervised machine learning algorithms, including the ordinary training process of
DNNs, follow the principle of empirical risk minimization (ERM). ERM tends to minimize the total
risk R on the training set data, as stated in Equation (7):

minimizeθ R(θ) := E(x,y)∼P (x,y)L(f(x, θ), y), (7)

where f(·, θ) is the machine learning model with parameter θ, L is the loss function and P (x, y) is
the joint distribution of data and label in the training set.

Such an objective is based on the hypothesis that the testing data has a similar distribution as the
training data, so minimizing the loss on the training data would naturally lead to the minimum test-
ing loss. DNN, as a sufficiently flexible machine learning model, can be well optimized towards
this objective and memorize the training set distribution (Zhang et al. (2016)). However, the distri-
bution of adversarial examples generated by attacking algorithms may be different from the original
training data. Thus the memorization of DNN models would lead to unsatisfactory performance on
adversarial examples (Goodfellow et al. (2014)).

As our work aims to improve the model robustness against adversarial attacks, we propose to follow
the principle of vicinity risk minimization (VRM) instead of ERM during the training process. Firstly
proposed by Chapelle et al. (2001), the VRM principle targets to minimize the vicinity risk R̂ on
the virtual data pair (x̂, ŷ) sampled from a vicinity distribution P̂ (x̂, ŷ|x, y) generated from the
original training set distribution P (x, y). Consequently, the optimization objective of the VRM-
based training can be described as:

minimizeθ R̂(θ) := E(x̂,ŷ)∼P̂ (x̂,ŷ|x,y),(x,y)∼P (x,y)L(f(x̂, θ), ŷ). (8)

For the choice of vicinity distribution, they use Gaussian distribution centered at original training
data, which makes the model more robust to natural noise (Chapelle et al. (2001)).

Now we consider improving the robustness against adversarial attacks. It would be easier to detect
and defense the adversarial attacks if the strength of the perturbation is large, therefore most of the
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Algorithm 1: Bamboo: Ball-shape data augmentation
Input : Augmentation ratio N , Ball radius r, Original training set (X,Y )

Output: Augmented training set (X̂, Ŷ )
1 n := length(X);
2 X̂ := X , Ŷ := Y ; . Initializing augmented dataset with original training set
3 count := n;
4 for i = 1 : n do
5 x := X[i], y := Y [i];
6 for j = 1 : N do
7 count := count+ 1;
8 Sample δ ∼ N (0, I); . N refers to normal distribution and I is identity matrix
9 δr := δ

||δ||2 · r; . Normalizing the length of δ

10 X̂[count] := x+ δr, Ŷ [count] := y; . Augmenting the data into training set
11 end
12 end
13 return (X̂, Ŷ )

attacking algorithms will apply a constraint on the strength of the perturbation. So the adversarial
example x̂ can be considered as a point within a r-radius ball around the original data x. Without any
prior knowledge of the attacking algorithm, we can consider the adversarial examples as uniformly
distributed within the r-radius ball: x̂ ∼ Uniform(||x̂ − x||2≤ r). Following the VRM principle,
we can improve the robustness against adversarial attacks by optimizing the objective in Equation (8)
with vicinity distribution:

P̂ (x̂, ŷ|x, y) = Uniform(||x̂− x||2≤ r) · δ(ŷ, y). (9)

However, the input space of DNN model is usually high dimensional. Directly sampling the virtual
data point x̂ within the r-radius ball may be data inefficient. Here we propose to further improve
the data efficiency by utilizing the geometry analysis of DNN model. Previous research shows that
the curvature of DNN’s decision boundary near a training data point would most likely be very
small (Fawzi et al. (2016)), and the DNN model tends to behave linearly, especially at the vicinity of
training data points (Goodfellow et al. (2014), Fawzi et al. (2016)). These observations indicate that
the objective of minimizing the loss of data points sampled within the ball can be approximated by
minimizing the loss of data points sampled on the edge of the ball. Formally, the vicinity distribution
in Equation (9) can be modified to:

P̂ (x̂, ŷ|x, y) = Uniform(||x̂− x||2= r) · δ(ŷ, y). (10)
By optimizing the VRM objective in Equation (8) with this vicinity distribution, we can improve
the robustness of DNN against adversarial attacks with higher data efficiency in sampling the virtual
data points for augmentation.

3.2 Bamboo AND ITS INTUITIVE EXPLANATION

As explained in the previous section, minimizing the loss of data points uniformly sampled on the
edge of a r-radius ball around each point in the training set likely leads to a more robust DNN
model against adversarial attacks. So we propose Bamboo, a ball-shape data augmentation scheme
that augments the training set with N virtual data points uniformly sampled from a r-radius ball
centered at each original training data point. In practice, for each data point in the training data,
we first sample N perturbations from a Gaussian distribution with zero mean and identity matrix as
variance matrix. Then we normalize the l2 norm of each perturbation to r. Following the symmetric
property of Gaussian distributions, the normalized perturbations should be uniformly distributed on
a r-radius ball. Finally we augment the resulted data points into the training set by adding these
normalized perturbations to the original training data. Algorithm 1 provides a formal description of
the process of the proposed data augmentation method.

Figure 1 intuitively demonstrates the effect of Bamboo data augmentation. During the training pro-
cess, the decision boundary will be formed to surround all the training data points of a certain class.
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Figure 1: Intuition of Bamboo’s effect on the DNN decision boundary

(a) Without data augmentation (b) Bamboo data augmentation

Figure 2: Visualization of Bamboo’s effect on the DNN decision boundary

Since the decision boundary of the DNN model tends to have small curvature around training data
points (Fawzi et al. (2016)), including the augmented data on the ball naturally pushes the decision
boundary further away from the original training data points, therefore increases the robustness of
the learned model. In such sense, if the DNN model can perfectly fit to the augmented training set,
increasing the ball radius will increase the margin between the decision boundary and the original
training data, and more points sampled on each ball will make it less likely for the margin to get
smaller than r.

Figure 2 shows the effect of Bamboo with a simple classification problem. Here we classify 100 data
points sampled from the MNIST class of the digit “3” from another 100 data points in the class of
the digit “7” using a multi-layer perceptron with one hidden layer. The dimension of all data points
are reduced to 2-D using PCA for visualization. Figure 2a shows the decision boundary without
data augmentation, where the decision boundary is more curvy and is overfitting to the training data.
In Figure 2b, the decision boundary after applying our data augmentation becomes smoother and
is further away from original training points, implying a more robust model with the training set
augmented with our proposed Bamboo method.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

To analyze the performance of our proposed method, we test it with Cleverhans (Nicolas Papernot
(2017)), a python library based on Tensorflow that provides reliable implementation for most of
the previously proposed adversarial attack algorithms. As mentioned in Section 2.1, for evaluating
the effect of parameter r and N on the performance of our model, we use the average strength of
successful CW attack (Carlini & Wagner (2017)) as the metric of robustness. When comparing
with previous work, we use both CW attack strength (marked as CW rob in Table 1) and the testing
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accuracy under FGSM attack (Szegedy et al. (2013)) with ε = 0.1, 0.3, 0.5 respectively (marked as
FGSM1, FGSM3 and FGSM5 in Table 1). The accuracy under 50 iterations of PGD attack (Madry
et al. (2018)) with ε = 0.3 is also evaluated here (marked as PGD3 in Table 1). Moreover, to show
the robustness of the trained DNN model to unknown attack, we test the accuracy under Gaussian
noise with variance σ = 0.5 (marked as GAU5 in Table 1), which demonstrates the robustness
against attacks from all directions.

For parameter tuning, we train and test the DNN model on MNIST data set (LeCun et al.
(1998)).Both MNIST and CIFAR-10 data set (Krizhevsky & Hinton (2009)) are used for comparing
with previous work. The MNIST test adopts the network structure provided in the tutorial of Clev-
erhans, which consists of three convolutional layers with 64 8 × 8 kernels, 128 6 × 6 kernels and
128 5× 5 kernels respectively followed by a linear layer with 10 output neurons. For the CIFAR ex-
periment, we choose VGG-16 (Simonyan & Zisserman (2014)) with 10 output neurons as the DNN
model. The selection of models is made to demonstrate the scalability of these defending methods.
These DNN models, without applying any further training trick, obtain the accuracy of 98.18% on
original MNIST testing set after 10 epochs of training. The accuracy on CIFAR-10 testing set would
be 83.95% after 100 epochs of training. ImageNet (Deng et al. (2009)) is also used to compare
between Bamboo and Mixup (Zhang et al. (2017)), where we train a ResNet-18 (He et al. (2016))
network for 90 epochs with each method.

In order to analyze the effect of the defending methods on the decision boundaries of DNNs around
the testing data points, He et al. (2018) propose a linear search method to find the distance to the
nearest boundary in different directions, where they gradually perturb the input data point along ran-
dom orthogonal directions. When the prediction of the perturbed input becomes different to that of
the original input, the perturbation distance is used as an estimate of the decision boundary distance.
In our experiments, we follow the setting used in He et al. (2018)’s work, where we use 784 random
orthogonal directions for testing MNIST and 1000 random orthogonal directions for testing CIFAR-
10. For each testing data point, we find the top 20 directions with the smallest decision boundary
distance for each training method, showing how the decision boundary change with different de-
fending methods. We also compute the average of the top 20 smallest distance across all the testing
data points, implying the overall effectiveness of different methods on increasing the robustness.

To show the effectiveness of our method, we compare it with FGSM adversarial training (Goodfel-
low et al. (2014)) with ε = 0.1, 0.3, 0.5, the state-of-the-art optimization based defending method
distributional robust optimization (DIST) (Sinha et al. (2017)) and the adversarial training with PGD
attack (Madry et al. (2018)). Newly proposed data augmentation method Mixup (Zhang et al. (2017))
is also used for comparison. For the implementation of these algorithms, we adopt the original im-
plementation of adversarial training in Cleverhans, and the open-sourced Tensorflow implementa-
tions that replicate the functionality of the distributional robust optimization method1 and the Mixup
method2. The hyper-parameters of these algorithms are carefully selected to produce the best per-
formance in our experiments.

4.2 PARAMETER TUNING

As mentioned in Section 3.2, the Bamboo augmentation has two hyper-parameters: the ball radius
r and the ratio of the augmented data N . We first analyze how the testing accuracy and model
robustness change when tuning these parameters. Figure 3a shows the influence of r and N to
the testing accuracy. When we fix the radius r, the testing accuracy increases as the number of
augmented points grows up. Adjusting the radius, however, has little impact on the testing accuracy.
Figure 3b presents the relationship between the number of augmented points and CW robustness
under different ball radius. When r is fixed, the robustness improves as data augmentation ratio
N increases. The effectiveness of further increasing N becomes less significant as N gets larger.
Under the same data amount, increasing the radius r can also enhance the robustness, while the
effectiveness of increasing r saturates as r gets larger. According to these observations, in the
following experiments, we manually tuned r and N in each experiment setting for the best tradeoff
between the robustness and the training cost.

1Distributional: https://github.com/ricvolpi/certified-distributional-robustness
2Mixup: https://github.com/tensorpack/tensorpack/tree/master/examples/

ResNet
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(a) Testing accuracy under different parameters (b) CW robustness under different parameters

Figure 3: Performance result on MNIST dataset

(a) Top 20 smallest distance on MNIST testing
data point No.3254

(b) Average of the top 20 smallest distance over
all MNIST testing data points

Figure 4: Decision boundary comparison on MNIST dataset

4.3 BOUNDARY VISUALIZATION

Figure 4 and Figure 5 shows the top 20 smallest decision boundary on random orthogonal directions
for MNIST and CIFAR-10 testing points respectively. These results provides a visualization of the
effect of different training methods on the decision boundary. From Figure 4a and 5a we can see
that adversarial training methods like FGSM (Goodfellow et al. (2014)) and Madry (Madry et al.
(2018)) can improve the decision boundary distance on original vulnerable directions, while may
cause other directions to be more vulnerable after training. Comparing to these previous adversarial
training methods, optimization based methods and data augmentation methods, our Bamboo data
augmentation can provide largest gain on robustness for the most vulnerable directions, without
introducing new vulnerable directions. The average results over the whole testing set shown in
Figure 4b and 5b also proof that Bamboo can further improve the overall robustness of the trained
model comparing to previous methods.

4.4 PERFORMANCE COMPARISON

Table 1 summarizes the performance of the DNN model trained with Bamboo comparing to other
methods. These results are consisted to our prior observations on the advantages and shortcom-
ings of previous works. The adversarial training methods can improve the robustness against the
attacking methods they are trained on, especially the one with the same strength as used in training.
However, it cannot guarantee the robustness against other kinds of attacks. Distributional robust op-
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(a) Top 20 smallest distance on CIFAR-10 testing
data point No.6176

(b) Average of the top 20 smallest distance over
all CIFAR-10 testing data points

Figure 5: Decision boundary comparison on CIFAR-10 dataset

Table 1: Performance comparison: bold type marks the best performance, and italics type marks
the second from the best performance

MNIST Original FGSM DIST PGD Mixup Ours

ε = 0.5 c = 0.01
ε = 0.3,

50 iterations
α = 0.12,
10×data

r = 8,
10×data

CW rob 2.442 2.390 2.5010 2.343 2.803 3.554
Test acc 0.9818 0.9817 0.9873 0.9869 0.9904 0.9904

FGSM1 acc 0.5382 0.6375 0.8542 0.7511 0.8323 0.9292
FGSM3 acc 0.2606 0.8963 0.1169 0.5840 0.2623 0.5558
FGSM5 acc 0.1423 0.9390 0.0244 0.1340 0.1344 0.2878
PGD 3 acc 0.0126 0.0258 0.0065 0.2534 0.0180 0.1281
GAU 5 acc 0.6358 0.6316 0.5735 0.5886 0.5813 0.9556
CIFAR-10 Original FGSM DIST PGD Mixup Ours

ε = 0.5 c = 0.01
ε = 0.3,

50 iterations
α = 0.12,
16×data

r = 10,
16×data

CW rob 38.010 38.210 38.503 38.108 37.648 38.746
Test acc 0.8395 0.7995 0.7935 0.7791 0.8521 0.8249

FGSM1 acc 0.4922 0.4927 0.3825 0.4588 0.7483 0.6853
FGSM3 acc 0.4463 0.6517 0.2241 0.3848 0.7287 0.6806
FGSM5 acc 0.4093 0.7572 0.1998 0.3405 0.7192 0.6721
PGD 3 acc 0.2987 0.2233 0.1871 0.5291 0.5018 0.4111
GAU 5 acc 0.3701 0.6356 0.6169 0.5390 0.3371 0.6961

timization Sinha et al. (2017) can improve the CW robustness of the DNN model and demonstrate
a big improvement against adversarial attacks with small strength (e.g. against FGSM1 on MNIST
in the table), but its performance drops dramatically when facing an attack with a larger strength.

Table 2: Performance comparison on ImageNet: Tested on ResNet-18 (He et al. (2016)) model
after 90 epochs training. Comparison only done between Bamboo and Mixup (Zhang et al. (2017))
against FGSM, due to the lack of support of the effectiveness and the lack of open-sourced imple-
mentations of other defending and attacking methods on ImageNet

Original Mixup Ours
Top-1 acc 57.336 58.213 60.520
Top-5 acc 80.647 81.452 83.216

Top-1 FGSM 11.342 12.947 14.062
Top-5 FGSM 22.860 26.400 26.562
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We also note that the overall performance of this method on CIFAR-10 dataset is not as good as
that on MNIST, possibly due to the scalability issue of the min-max optimization as elaborated in
Equation (6). A large-scale CNN and larger input space for the CIFAR-10 experiment may be too
complicated to efficiently find an optimal solution. Although not specially designed against adver-
sarial attack, the performance of Mixup Zhang et al. (2017) is promising on robustness gain and the
accuracy against adversarial attack with small strength. However, the overall robustness achieved
by Mixup, indicated by the CW robustness, is not as good as what is achieved by Bamboo. The
ImageNet experiment results showed in Table 2 show the same trend as well.

Comparing to previous methods, Bamboo achieves the highest robustness under CW attack on both
MNIST and CIFAR-10 experiments, and the lowest accuracy drop when facing Gaussian noise.
Comparing to adversarial training methods with FGSM and PGD that only work best against the at-
tacks they are trained on, Bamboo demonstrates a higher robustness against a wide range of attacking
methods. Comparing to Distributional robust optimization whose robustness drops quickly as the
strength of adversarial attacks goes up, the performance of our method is less sensitive to the change
of the attacking strength. Therefore Bamboo can also be effectively applied against large-strength
attacks. Also, the overall performance of Bamboo is better than Mixup with the same amount of
data augmented, implying that Bamboo is more data efficient in improving DNN robustness against
adversarial attack. All these observations lead to the conclusion that our proposed Bamboo method
can effectively improve the overall robustness of DNN models, no matter which kind of attack is
applied or which direction of noise is added.

5 CONCLUSION AND FUTURE WORK

In this work we propose Bamboo, the first data augmentation method that is specially designed for
improving the overall robustness of DNNs. Without making any assumption on the distribution
of adversarial examples, Bamboo is able to improve the DNN robustness against attacks from all
directions. Previous analysis and experiment results have proven that by augmenting the training set
with data points uniformly sampled on a r-radius ball around original training data, Bamboo is able
to effectively improve the robustness of DNN models against different kinds of attacks comparing
to previous adversarial training or robust optimization methods, and can achieve stable performance
on large DNN models or facing strong adversarial attacks. With the same amount of augmented
data, Bamboo is able to achieve better performance against adversarial attacks comparing to other
data augmentation methods.

We have shown that the resulted network robustness improves as we increase the radius of the ball
or the number of augmented data points. In future work we will discuss the theoretical relationship
between the resulted DNN robustness and the parameters in our method, and how will the change
in the scale of the classification problem affect such relationship. We will also propose new training
tricks better suited for training with augmented dataset. As we explore these theoretical relationships
and training tricks in the future, we will be able to apply our method more effectively on any new
DNN models to improve their robustness against any kinds of adversarial attacks.
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