
Published as a conference paper at ICLR 2019

REPRESENTING FORMAL LANGUAGES:
A COMPARISON BETWEEN FINITE AUTOMATA
AND RECURRENT NEURAL NETWORKS

Joshua J. Michalenko
Rice University
jjm7@rice.edu

Ameesh Shah
Rice University
ars7@rice.edu

Abhinav Verma
Rice University
averma@rice.edu

Richard G. Baraniuk
Rice University
richb@rice.edu

Swarat Chaudhuri
Rice University
swarat@rice.edu

Ankit B. Patel
Baylor College of Medicine, Rice University
abp4@rice.edu

ABSTRACT

We investigate the internal representations that a recurrent neural network (RNN)
uses while learning to recognize a regular formal language. Specifically, we train a
RNN on positive and negative examples from a regular language, and ask if there
is a simple decoding function that maps states of this RNN to states of the minimal
deterministic finite automaton (MDFA) for the language. Our experiments show
that such a decoding function indeed exists, and that it maps states of the RNN not
to MDFA states, but to states of an abstraction obtained by clustering small sets of
MDFA states into “superstates”. A qualitative analysis reveals that the abstraction
often has a simple interpretation. Overall, the results suggest a strong structural
relationship between internal representations used by RNNs and finite automata,
and explain the well-known ability of RNNs to recognize formal grammatical
structure.

1 INTRODUCTION

Recurrent neural networks (RNNs) seem “unreasonably” effective at modeling patterns in noisy real-
world sequences. In particular, they seem effective at recognizing grammatical structure in sequences,
as evidenced by their ability to generate structured data, such as source code (C++, LaTeX, etc.), with
few syntactic grammatical errors (Karpathy et al., 2015). The ability of RNNs to recognize formal
languages – sets of strings that possess rigorously defined grammatical structure – is less well-studied.
Furthermore, there remains little systematic understanding of how RNNs recognize rigorous structure.
We aim to explain this internal algorithm of RNNs through comparison to fundamental concepts in
formal languages, namely, finite automata and regular languages.

In this paper, we propose a new way of understanding how trained RNNs represent grammatical
structure, by comparing them to finite automata that solve the same language recognition task. We
ask: Can the internal knowledge representations of RNNs trained to recognize formal languages be
easily mapped to the states of automata-theoretic models that are traditionally used to define these
same formal languages? Specifically, we investigate this question for the class of regular languages,
or formal languages accepted by finite automata (FA).

In our experiments, RNNs are trained on a dataset of positive and negative examples of strings
randomly generated from a given formal language. Next, we ask if there exists a decoding function:
an isomorphism that maps the hidden states of the trained RNN to the states of a canonical FA. Since
there exist infinitely many FA that accept the same language, we focus on the minimal deterministic
finite automaton (MDFA) — the deterministic finite automaton (DFA) with the smallest possible
number of states – that perfectly recognizes the language.

Our experiments, spanning 500 regular languages, suggest that such a decoding function exists and
can be understood in terms of a notion of abstraction that is fundamental in classical system theory.
An abstraction A of a machineM (either finite-state, like an FA, or infinite-state, like a RNN) is a
machine obtained by clustering some of the states ofM into “superstates”. Intuitively, an abstraction

1

Published as a conference paper at ICLR 2019

13

2

5

0

4
3

4-6 4-6

4-6

4-6

4-6

4-6
3

(([4-6]{2}[4-6]+)?)3[4-6]+

Figure 1: t-SNE plot (Left) of the hidden states of a RNN trained to recognize a regular language
specified by a 6-state DFA (Right). Color denotes DFA state. The trained RNN has abstracted DFA
states 1(green) and 2(blue) (each independently model the pattern [4-6]*) into a single state.

A loses some of the discerning power of the original machineM, and as such recognizes a superset
of the language thatM recognizes. We observe that the states of a RNN R, trained to recognize
a regular language L, commonly exibit this abstraction behavior in practice. These states can be
decoded into states of an abstractionA of the MDFA for the language, such that with high probability,
A accepts any input string that is accepted byR. Figure 1 shows a t-SNE embedding (Maaten and
Hinton, 2008) of RNN states trained to perform language recognition on strings from the regex
[(([4-6]{2}[4-6]+)?)3[4-6]+]. Although the MDFA has 6 states, we observe the RNN
abstracting two states into one. Remarkably, a linear decoding function suffices to achieve maximal
decoding accuracy: allowing nonlinearity in the decoder does not lead to significant gain. Also, we
find the abstraction has low “coarseness", in the sense that only a few of the MDFA states need be
clustered, and a qualitative analysis reveals that the abstractions often have simple interpretations.

2 RELATED WORK

RNNs have long been known to be excellent at recognizing patterns in text (Kombrink et al.,
2011; Karpathy et al., 2015). Extensive work has been done on exploring the expressive power of
RNNs. For example, finite RNNs have been shown to be capable of simulating a universal Turing
machine (Neto et al., 1997). Funahashi and Nakamura (1993) showed that the hidden state of a
RNN can approximately represent dynamical systems of the same or less dimensional complexity.
In particularly similar work, Rabusseau et al. (2018) showed that second order RNNs with linear
activation functions are expressively equivalent to weighted finite automata.

Recent work has also explored the relationship between RNN internals and DFAs through a variety
of methods. Although there have been multiple attempts at having RNNs learn a DFA structure based
on input languages generated from DFAs and push down automata (Firoiu et al., 1998; Gers and
Schmidhuber, 2001; Giles et al., 1992; Miclet and de la Higuera, 1996; Omlin and Giles, 1996a),
most work has focused on extracting a DFA from the hidden states of a learned RNN. Early work in
this field (Giles et al., 1991) demonstrated that grammar rules for regular grammars could indeed be
extracted from a learned RNN. Other studies (Omlin and Giles, 1996b) tried to directly extract a DFA
structure from the internal space of the RNN, often by clustering the hidden state activations from
input stimuli, noting the transitions from one state to another given a particular new input stimuli.
Clustering was done by a series of methods, such as K-Nearest Neighbor (Das and Mozer, 1993),
K-means (Krakovna and Doshi-Velez, 2016), and Density Based Spatial Clustering of Applications
with Noise (DBSCAN) (Das and Mozer, 1993; Lawrence et al., 2000). Another extraction effort
(Ayache et al., 2018) uses spectral algorithm techniques to extract weighted automata from RNNs.
Most recently, Weiss et al. (2018) have achieved state-of-the-art accuracy in DFA extraction by
utilizing the L* query learning algorithm. Our work is different from these efforts in that we directly
relate the RNN to a ground-truth minimal DFA, rather than extracting a machine from the RNN’s
state space.

The closest piece of related work is by Tin̂o et al. (1998). Like our work, this seeks to relate a RNN
state with the state of a DFA. However, the RNN in Tin̂o et al. (1998) exactly mimics the DFA; also,
the study is carried out in the context of a few specific regular languages that are recognized by
automata with 2-3 states. In contrast, our work does not require exact behavioral correspondence
between RNNs and DFAs: DFA states are allowed to be abstracted, leading to loss of information.
Also, in our approach the mapping from RNN states to FA states can be approximate, and the accuracy
of the mapping is evaluated quantitatively. We show that this allows us to establish connections

2

Published as a conference paper at ICLR 2019

Figure 2: An overview of the state comparison experimental setup.

between RNNs and DFAs in the setting of a broad class of regular languages that often demand
significantly larger automata (with up to 14 states) than those studied by Tin̂o et al. (1998).

3 DEFINITIONS

We start by introducing some definitions and notation. A formal language is a set of strings over a finite
alphabet Σ of input symbols. A Deterministic Finite Automaton (DFA) is a tupleA = (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is a finite alphabet, δ : Q× Σ→ Q is a deterministic transition
function, q0 ∈ Q is a starting state and F ⊂ Q is a set of accepting states. A reads strings over Σ
symbol by symbol, starting from the state q0 and making state transitions, defined by δ, at each step.
It accepts the string if it reaches a final accepting state in F after reading it to the end. The set of
strings accepted by a DFA is a special kind of formal language, known as a regular language. A
regular language L can be accepted by multiple DFAs; such a DFA AL is minimal if there exists
no other DFA A′ 6= AL such that A′ exactly recognizes L and has fewer states than AL. It can be
shown that this minimal DFA (MDFA), which we denote by A0

L, is unique (Hopcroft and Ullman,
1979).

Abstractions. A Nondeterministic Finite Automaton (NFA) is similar to a DFA, except that the
deterministic transition function δ is now a non-deterministic transition relation δNFA. This means
that for a state q in the NFA and a ∈ Σ, we have that δNFA(q, a) is now a subset of NFA states.

For a given regular language L we denote by AnL a Nondeterministic Finite Automaton (NFA) with
n states that recognizes a superset of the language L. An abstraction map is a map α : Q → 2Q

that combines two states in NFA AnL, resulting in an NFA An+1
L ; that is, AnL

α7−→ An+1
L . Since

every DFA is also an NFA, we can apply α to the MDFA A0
L to obtain a NFA A1

L. Intuitively,
α creates a new NFA by combining two states of an existing NFA into a new ‘superstate’. An
NFA AnL is an abstraction of A0

L, if AnL can be obtained from A0
L by repeated application of an

abstraction map α. Every state of AnL can be viewed as a set of the states of the MDFA A0
L, i.e

qn ∈ Qn =⇒ qn = {q0i }i∈I with q0i ∈ Q0 for all i.

We define the coarseness of an abstraction AnL, as the number of applications of α on the MDFA
required to arrive at AnL. Intuitively, repeated applications of α create NFAs that accept supersets of
the language L recognized by the MDFA, and can hence be seen as coarse-grained versions of the
original MDFA. The coarsest NFA, given by A(|Q0|−1)

L , is a NFA with only one accepting node and
it accepts all strings on the alphabet Σ.

Given a regular language L, we define RL to be a RNN that is trained to recognize the language
L, with a certain threshold accuracy. Each RNNRL will have a corresponding set of hidden states
denoted by H . More details about the RNN are provided in §4.1. Note that a RNN can also be viewed
as a transition system with 5-tupleR = (H,Σ, δR, h0, F

R), where H is a set of possible ‘hidden’
states (typically H ⊂ RK), δR is the transition function of the trained RNN, h0 is the initial state of
the RNN, and FR is the set of accepting RNN states. The key distinction between a DFA and a RNN
is that the latter has a continuous state space, endowed with a topology and a metric.

Decoding DFA States from RNNs. Inspired by methods in computational neuroscience (Astrand.
et al., 2014), we can define a decoding function or decoder f : H → Q0 as a function from the hidden
states of a RNN RL to the states of the corresponding (for L) MDFA A0

L = (Q0,Σ0, δ0, q00 , F
0).

We are interested in finding decoding functions that provide an insight into the internal knowledge
representation of the RNN, which we quantify via the decoding and transitional accuracy metrics
defined below.

3

Published as a conference paper at ICLR 2019

Decoding Abstraction States. Let AnL be an abstraction of A0
L, obtained by applying α to A0

L
repeatedly n times, and let Qn be the set of states of AnL. We can define an abstraction decoding
function f̂ : H → Qn, by f̂(h) := (α|n| ◦f)(h), that is the composition of f with α|n|. The function
α|n| is the function obtained by taking n compositions of α with itself. Given a dataset of input
strings D ⊂ Σ∗, we can define the decoding accuracy of a map f̂ for an abstraction AnL from RNN
RL by:

ρf̂ (RL,AnL) =
1

|D|
∑
w∈D

|w|−1∑
t=0

1(f̂(ht+1) = α|n|(qt+1))

|w|

where 1(C) is the boolean indicator function that evaluates to 1 if condition C is true and to 0
otherwise, ht+1 = δR(ht, at) and qt+1 = δ0(qt, at). Note in particular, that for decoding abstraction
states the condition is only checking if the (t + 1) RNN state is mapped to the (t + 1) NFA state
by f̂ , which may be true even if the (t + 1) RNN state is not mapped to the (t + 1) MDFA state
by the decoding function f . Therefore a function f̂ can have a high decoding accuracy even if the
underlying f does not preserve transitions.

Decoding Abstract State Transitions. We now define an accuracy measure that takes into account
how well transitions are preserved by the underlying function f .

Intuitively, for a given decoding function f̂ and NFA AnL, we want to check whether the RNN
transition on a is mapped to the abstraction of the MDFA transition on a. We note that in the
definition of the decoding function, we take into account only the states at (t + 1) and not the
underlying transitions in the original MDFA A0

L, unlike we do here. More precisely, the transitional
accuracy of a map f̂ for a given RNN and abstraction, with respect to a data-set D, is defined as:

φf̂ (RL,AnL) =
1

|D|
∑
w∈D

|w|−1∑
t=0

1(f̂(δR(ht, at)) = α|n|(δ0(f(ht), at)))

|w|

Our experiments in the next section demonstrate that decoding functions with high decoding and
transitional accuracies exist for abstractions with relatively low coarseness.

4 EXPERIMENTAL RESULTS

Our goal is to experimentally test the hypothesis that a high accuracy, low coarseness decoder exists
from RL to A0

L. We aim to answer 4 fundamental questions related to the transitional accuracy
of A0

L andRL: (1) How do we choose an appropriate abstraction decoding function f̂? (2) What
necessitates the abstraction function α? (3) Can we verify that a low coarseness α and high accuracy
f̂ exists? and lastly, (4) How can we better understandRL in the context of α and f̂?

4.1 EXPERIMENTAL DESIGN

To answer the above questions and evaluate our claims with statistical significance, we have designed
a flexible framework that facilitates comparisons between states of A0

L andRL, as summarized in
Figure 2.

We first randomly generate a regular expression specifying language L with MDFA A0
L . Using A0

L,
we randomly generate a training dataset D ≡ D+

⋃
D− of positive (x+ ∈ L) and negative (x− /∈ L)

example strings (see Appendix for details). We then trainRL with D on the language recognition
task: given an input string x ∈ Σ∗, is x ∈ L? Thus, we have two language recognition models
corresponding to state transition systems from which state sequences are extracted. Given a length T
input string x = (x1, x2, xt, ..., xT) ∈ D, let the categorical states generated by A0

L be denoted by
q = (q0, q1, qt, ..., qT) and continuous states generated by theRL be h = (h0, h1, ht, ..., hT). The
recorded state trajectories (q and h) for all input strings x ∈ D are used as inputs into our analysis..
For our experiments, we sample a total of ∼ 500 unique L, and thus perform an analysis of ∼ 500
recognizer MDFAs and ∼ 500 trained recognizer RNNs.

4.2 LEARNING AN ACCURATE DECODER

As mentioned in the beginning of §4, we must first determine what is a reasonable form for the
decoders f and f̂ to ensure high accuracy on the decoding task. Figure 3b shows decoding accuracy

4

Published as a conference paper at ICLR 2019

Figure 3: a (Left): Average linear decoding accuracy as a function of M . 3b (Right): Average
decoding accuracy showing no statistically significant difference between linear (green) and nonlinear
(blue) decoders for all MDFAs tested.

ED[ρf (R,A0
L)|f] for several different decoding functions f . We test two linear classifiers (Multino-

mial Logistic Regression and Linear Support Vector Machines (SVM)) and two non-linear classifiers
(SVM with a RBF kernel, Multi-Layer Perceptrons with varying layers and hidden unit sizes). In
order to evaluate whether accuracy varies significantly amongst all decoders, we use a statistically
appropriate F-test. Surprisingly, we find there to be no statistical difference umong our sampled
languages: the nonlinear decoders achieve no greater accuracy than the simpler linear decoders. We
also observe in our experiments that as the size of the MDFA M increases, the decoding accuracy
decreases for all decoders in a similar manner. Figure 3a shows this relationship for the multinomial
logistic regression classifier.

Taken together, these results have several implications. First, we find that a highly expressive non-
linear decoder does not yield any increase in decoding accuracy, even as we scale up in MDFA
complexity. We can conclude from this finding and our extensive hyperparameter search for each
decoder model that the decoder models we chose are expressive enough for the decoding task. Second,
we find that decoding accuracy for MDFA states is in general not very high. These two observations
suggest linear decoders are sufficient for the decoding task, but also suggests the need for a different
interpretation of the internal representation of the trained RNN.

4.3 WHY ABSTRACTIONS ARE NECESSARY

Given the information above, how is the hidden state space of theRL organized? One hypothesis that
is consistent with the observations above is that the trained RNN reflects a coarse-grained abstraction
of the state space Q0 (Figure 1), rather than the MDFA states themselves.1

To test this hypothesis, we propose a simple greedy algorithm to find an abstraction mapping α: (a)
given an NFA AnL with n unique states in Qn, consider all (n − 1)-partitions of Qn−1 (i.e. two
NFA states s, s′ have merged into a single superstate {s, s′}); (b) select the partition with the highest
decoding accuracy; (c) Repeat this iterative merging process until only a 2-partition remains. We note
that this algorithm does not explicitly take into consideration the transitions between states which are
essential to evaluating φf̂ (RL,AnL). Instead, the transitions are taken into account implicitly while
learning the decoder f at each iteration of the abstraction algorithm. Decreasing the number of states
in a classification trivially increases ED[ρf (R,AnL)|f]. We compare to a baseline where the states
abstracted are random to validate our method. We compute the normalized Area Under the Curve
(AUC) of a decoder accuracy vs coarseness plot. Higher normalized AUC indicates a more accurate
abstraction process. We argue through Figure 4a that our method gives a non-trivial increase over the
abstraction performance of a random baseline.

The abstraction algorithm is greedy in the sense that we may not find the globally optimal partition (i.e.
with the highest decoding accuracy and lowest coarseness), but an exhaustive search over all partitions
is computationally intractable. The greedy method we have proposed hasO(M2) complexity instead,
and in practice gives satisfactory results. Despite it being greedy, we note that the resulting sequence
of clusterings are stable with respect to randomly chosen initial conditions and model parameters.
Recognizer RNNs with a different number of hidden units result in clustering sequences that are
consistent with each other in the critical first few abstractions.

1This idea can be motivated by recasting the regular expression for (say) E-Mails into a hierarchical grammar
with production rules.

5

Published as a conference paper at ICLR 2019

Figure 4: 4a (Left) Average normalized Area under the curve (AUC) for all decoding accuracy vs
coarseness plots (similar to Figure 8). 4b (Right): Average ratio of coarseness that must be created
relative to M in the MDFA to achieve 90% testing accuracy.

Figure 5: 5a (Left): Average linear decoder testing accuracy as a function of coarseness (The number
of times α is applied), sorted by the number of nodes in the MDFA. 5b (Right): Average transitional
accuracy vs. coarseness, sorted by the number of nodes in the MDFA while using a linear decoder.

4.4 DECODING ABSTRACTIONS AND TRANSITIONS

Once an abstraction α has been found, we can evaluate whether the learned abstraction decoder f̂ is
of high accuracy, and whether the α found is of low coarseness. Results showing the relationship
between high decoding accuracy ρf̂ (RL,AnL) as a function of coarseness is presented in Figure 5a
conditioned on the number of nodes in the original MDFA. As stated in §4.2, as M increases,
ρf̂ (RL,AnL) decreases on the MDFA (i.e. n = 0). We attribute this to two factors, (1) as M
increases, the decoding problem naturally increases in difficulty, and (2)RL abstracts multiple states
ofAL into a single state in H as can be seen empirically from Figure 1. We validate the second factor
by training a overparameterized non-linear decoder on the decoding task and find no instances where
the decoder obtains 0% training error. Alongside the decoding accuracy, we also present transitional
accuracy φf̂ (RL,AnL) as a function of coarseness Figure 5b. Both of these figures showcase that
for a given DFA, in general we can find a low coarseness NFA that the hidden state space of RL
can be decoded to with high accuracy. Figure 4b shows the average ratio of abstractions relative to
M needed to decode to 90% accuracy, indicating low coarseness relative to a random baseline. For
completeness, we also present decoder and transition accuracy for a nonlinear decoder in Figures 6a
and 6b showing similar results as the linear decoder.

Our fundamental work shows a large scale analysis of how RNNsRL relate to abstracted NFAs AnL
for hundreds of minimal DFAs, most of which are much larger and more complex than DFAs typically
used in the literature. By evaluating the transition accuracy betweenR andAnL we empirically validate
our claim. We show that there does exist high accuracy decoders fromR to an abstracted NFA AnL.

4.5 INTERPRETING THE RNN HIDDEN STATE SPACE WITH RESPECT TO THE MINIMAL DFA
With an established high accuracy f̂ with low coarseness α reveals a unique interpretation of H with
respect to A0

L. Using α and f to relate the two, we uncover an interpretation of howR organizes H
with respect toAnL ∀ n ∈ [M]. We can then determine the appropriate level of abstraction the network
uses to accomplish the logical language recognition task in relation to the underlying MDFA. We
provide two example ’real-world’ DFAs to illustrate this interpretation and show several interesting
patterns.

6

Published as a conference paper at ICLR 2019

Figure 6: 6a (Left): Average nonlinear testing accuracy as a function of coarseness, sorted by the
number of nodes in the MDFA. 6b (Right): Average transitional accuracy vs coarseness, sorted by
the number of nodes in the MDFA while using a non-linear decoder.

1
2 3

4
5

7
6

12 34 56 7 0

[a-d]+@[a-d]+.[v-z]{2,3}

1

10
9

8

6
7

5
4

3
2

11
12

13

2

10
3

8

4

5
6

7
911

12

1

13

0

(0[1-9]|1[0-2])-(((0|1|2)[0-9])|(3[0-1]))-(19|20))[0-9]{2}

Figure 7: 7a (Top): The MDFA of the SIMPLE EMAILS language with a dendrogram representing the
the sequence of abstractions created while using a linear decoder. Showing the initial abstractions are
those of the same pattern [a-d]*. 7b (Bottom) The MDFA of the DATES language with a dendrogram
representing the the sequence of abstractions created while using a linear decoder. Showing the initial
abstractions are those representing states that represent the same moment in time.

We present in Figure 7 the clustering sequences of two regular expressions that have real-world
interpretations, namely the SIMPLE EMAILS and DATES languages that recognize simple emails
and simple dates respectively. To explain, Figure 7b shows the DATES language with its clustering
sequence superimposed on the MDFA in the form of a dendrogram. The dendrogram can be read
in a top-down fashion, which displays the membership of the MDFA states and the sequence of
abstractions up to n = M − 1. A question then arises: How should one pick a correct level of
abstraction n?. The answer can be seen in the corresponding accuracies ρf̂ (RL,AnL) in Figure 8.

As n increases and the number of total NFA states decreases, the linear decoding (LDC) prediction
task obviously gets easier (100% accuracy when the number of NFA states Q|Q|−1 is 1), and hence it
is important to consider how to choose the number of abstractions in the final partition. We typically
set a threshold for ρf̂ (RL,AnL) and select the minimum n required to achieve the threshold accuracy.

7

Published as a conference paper at ICLR 2019

Figure 8: 8a (Left): Linear decoder accuracies as a function of coarseness for the SIMPLE EMAILS
language in Figure 7a. 8b (Right): Linear decoder accuracies as a function of coarseness for the
DATES language corresponding to Figure 7b.

Consider the first two abstractions of the SIMPLE EMAILS DFA. We notice that both states 2 and 5
represent the pattern matching task [a-d]*, because they are agglomerated by the algorithm. Once
two abstractions have been made, the decoder accuracy is at a sufficient point, as seen in Figure
8. This suggests that the collection of hidden states for the two states are not linearly separable.
One possible and very likely reason for this is the network has learned an abstraction of the pattern
[a-d]* and uses the same hidden state space regardless of location in string to recognize this pattern,
which has been indicated in past work (Karpathy et al., 2015). This intuitive example demonstrates
the RNN’s capability to learn and abstract patterns from the DFA. This makes intuitive sense because
RL does not have any direct access to A0

L, only to samples generated from A0
L. The flexibility of

RNNs allows such abstractions to be created easily.

The second major pattern that arises can be seen in the dendrogram in the bottom row of Figure 7.
We notice that, generally, multiple states that represent the same location in the input string get
merged (1 and 4, 3 and 6, 0 and 5). The SIMPLE EMAILS dendrogram shows patterns that are
location-independent, while the fixed length pattern in the DATES regex shows location-dependent
patterns. We also notice that the algorithm tends to agglomerate states that are within close sequential
proximity to each other in the DFA, again indicating location-dependent hierarchical priors. Overall,
our new interpretation of H reveals some new intuitions, empirically backed by our decoding and
transitional accuracy scores, regarding how the RNNRL structures the hidden state space H in the
task of language recognition. We find patterns such as these in almost all of the DFA’s tested. We
provide five additional random DFA’s in the appendix (Figures 9–13) to show the wide variability of
the regular expressions we generate/evaluate on.

5 CONCLUSIONS

We have studied how RNNs trained to recognize regular formal languages represent knowledge in
their hidden state. Specifically, we have asked if this internal representation can be decoded into
canonical, minimal DFA that exactly recognizes the language, and can therefore be seen to be the
"ground truth". We have shown that a linear function does a remarkably good job at performing such
a decoding. Critically, however, this decoder maps states of the RNN not to MDFA states, but to
states of an abstraction obtained by clustering small sets of MDFA states into "abstractions". Overall,
the results suggest a strong structural relationship between internal representations used by RNNs
and finite automata, and explain the well-known ability of RNNs to recognize formal grammatical
structure.

We see our work as a fundamental step in the larger effort to study how neural networks learn formal
logical concepts. We intend to explore more complex and richer classes of formal languages, such as
context-free languages and recursively enumerable languages, and their neural analogs.

8

Published as a conference paper at ICLR 2019

REFERENCES

E. Astrand., P. Enel, G. Ibos, P. F. Dominey, P. Baraduc, and S. B. Hamed. Comparison of classifiers
for decoding sensory and cognitive information from prefrontal neuronal populations. PLOS ONE,
9:1–14, 2014.

S. Ayache, R. Eyraud, and N. Goudian. Explaining black boxes on sequential data using weighted
automata. In 14th International Conference on Grammatical Inference, pages 81–103, 2018.

S. Das and M. Mozer. A unified gradient-descent/clustering architecture for finite state machine
induction. In Advances in Neural Information Processing Systems, pages 19–26, 1993.

L. Firoiu, T. Oates, and P. R. Cohen. Learning deterministic finite automaton with a recurrent neural
network. In 4th International Conference on Grammatical Inference, pages 90–101, 1998.

K. Funahashi and Y. Nakamura. Approximation of dynamical systems by continuous time recurrent
neural networks. Neural Networks, 6(6):801–806, 1993.

F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural Networks, 12(6):pages 1333–1340, 2001.

C. L. Giles, C. B. Miller, D. Chen, G. Sun, H. Chen, and Y. Lee. Extracting and learning an unknown
grammar with recurrent neural networks. In Advances in Neural Information Processing Systems,
pages 317–324, 1991.

C. L. Giles, C. B. Miller, D. Chen, H. Chen, G. Sun, and Y. Lee. Learning and extracting finite state
automata with second-order recurrent neural networks. Neural Computation, 4(3):pages 393–405,
1992.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

A. Karpathy, J. Johnson, and F. Li. Visualizing and understanding recurrent networks. arXiv preprint
arXiv:1506.02078, 2015.

S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget. Recurrent neural network based language
modeling in meeting recognition. In 12th Annual Conference of the International Speech Commu-
nication Association, pages 2877–2880, 2011.

V. Krakovna and F. Doshi-Velez. Increasing the interpretability of recurrent neural networks using
hidden markov models. arXiv preprint arXiv:1611.05934, 2016.

S. Lawrence, C. L. Giles, and S. Fong. Natural language grammatical inference with recurrent neural
networks. IEEE Transactions on Knowledge and Data Engineering, 12(1):pages 126–140, 2000.

L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning research, 9:
2579–2605, 2008.

L. Miclet and C. de la Higuera. Grammatical Inference: Learning Syntax from Sentences. Springer,
1996.

A. Møller. dk.brics.automaton – finite-state automata and regular expressions for Java, 2017.
http://www.brics.dk/automaton/.

J. P. G. Neto, H. T. Siegelmann, J. F. Costa, and C. P. S. Araujo. Turing universality of neural nets
(revisited). In 6th International Workshop on Computer Aided Systems Theory, pages 361–366,
1997.

C. W. Omlin and C. L. Giles. Constructing deterministic finite-state automata in recurrent neural
networks. Journal of the Association of Computing Machinery, JACM, 43(6):pages 937–972,
1996a.

C. W. Omlin and C. L. Giles. Extraction of rules from discrete-time recurrent neural networks. Neural
Networks, 9(1):41–52, 1996b.

9

Published as a conference paper at ICLR 2019

G. Rabusseau, T. Li, and D. Precup. Connecting weighted automata and recurrent neural networks
through spectral learning. arXiv preprint arXiv:1807.01406, 2018.

P. Tin̂o, B. G. Horne, and C. L. Giles. Finite state machines and recurrent neural networks — automata
and dynamical systems approaches. In Neural Networks and Pattern Recognition, pages 171 – 219.
1998.

G. Weiss, Y. Goldberg, and E. Yahav. Extracting automata from recurrent neural networks using
queries and counterexamples. In Proceedings of the 35th International Conference on Machine
Learning, ICML, pages 5244–5253, 2018.

10

Published as a conference paper at ICLR 2019

A DATASET GENERATION

In order to generate a wide variety of strings that are both accepted and rejected by the DFA corre-
sponding to a given regex R, we use the Xeger Java library, built atop the dk.brics.automaton
library Møller (2017). The Xeger library, given a regular expression, generates strings that are
accepted by the regular expression’s corresponding DFA. However, there is no standard method to
generate examples that would be rejected by the DFA. These rejected examples need to be diverse to
properly train an acceptor/rejector model: if the rejected examples are completely different from the
accepted examples, the model will not be able to discern between similar input strings, even if one
is an accepted string and the other is a rejected string. However, if the rejected examples were too
similar to the accepted examples, the model would not be able to make a judgment on a completely
new string that does not resemble any input string seen during training. In other words we want
the rejected strings to be drawn from two distinct distributions, one similar and one independent
compared to the distribution of the accepted strings. In order to achieve this, we generate negative
examples in two ways: First, we randomly swap two characters in an accepted example enough times
until we no longer have an accepted string. And secondly, we take an accepted string and randomly
shuffle the characters, adding it to our dataset if the resulting string is indeed rejected.

In our experiments we generate 1000 training examples with a 50:50 accept/reject ratio. When
applicable we generate strings of varying length capped at some constant, for example with the
SIMPLE EMAILS language we generate strings of at most 20 characters.

A.1 EXAMPLE REGULAR EXPRESSIONS, CORRESPONDING DFAS, AND HIERARCHIES
DECODED FROM OUR FRAMEWORK

([1-5]{3,5})

0 51-5 11-52 31-5 41-5 1-5

1

2

3

4

5

Figure 9: (Top): Typical regular expression and corresponding DFA generated by our framework.
A dendrogram superimposed on the DFA shows the hierarchy of the RNN’s hidden state space.
(Bottom): Linear decoding accuracy as a function of coarseness corresponding to DFA above.

11

Published as a conference paper at ICLR 2019

7[3-5]((((((9{1,5}){4})*){9,})+)?)

0 59 19 39 492 67 3-5

9

6

3
4

5

2
1

Figure 10: (Top): Typical regular expression and corresponding DFA generated by our framework.
A dendrogram superimposed on the DFA shows the hierarchy of the RNN’s hidden state space.
(Bottom): Linear decoding accuracy as a function of coarseness corresponding to the DFA above.

12

Published as a conference paper at ICLR 2019

((((([0-6]{1,7}){3})*)?)+)5

0

0-4
6

1

5

0-4

6

5

2

4

0-6
0-63

0-4

6

5

5 0-6

3
4

2

1

5

Figure 11: (Top): Typical regular expression and corresponding DFA generated by our framework.
A dendrogram superimposed on the DFA shows the hierarchy of the RNN’s hidden state space.
(Bottom): Linear decoding accuracy as a function of coarseness corresponding to the DFA above.

13

Published as a conference paper at ICLR 2019

(5{3})((((7[1-6]{2,7})+)?){8})

0 15 55

2

7

6
1-6

4

1-6

37 101-6

7

7

1-6

7 1-6

7

91-6

1-6

7

8 5

3

2
1

6

4
5

8
7

10

9

Figure 12: (Top): Typical regular expression and corresponding DFA generated by our framework.
A dendrogram superimposed on the DFA shows the hierarchy of the RNN’s hidden state space.
(Bottom): Linear decoding accuracy as a function of coarseness corresponding to the DFA above.

14

Published as a conference paper at ICLR 2019

((((([0-7]+){6,})*){1,7})?)([2-5]*)

0

56-7

0-1
92-5

0-7
0-7

1

2

0-7

8

0-7

0-7

3 0-7

4

6-7

0-1

7

2-5

2-5

6-7

0-1

6

6-7

0-1

2-5

10

6-7

0-1

2-5

1

5

3

2

8

7

9

10

4

6

Figure 13: (Top): Typical regular expression and corresponding DFA generated by our framework.
A dendrogram superimposed on the DFA shows the hierarchy of the RNN’s hidden state space.
(Bottom): Linear decoding accuracy as a function of coarseness corresponding to the DFA above.

15

