
Published as a conference paper at ICLR 2018

HYPERPARAMETER OPTIMIZATION:
A SPECTRAL APPROACH

Elad Hazan
Princeton University and Google Brain
ehazan@cs.princeton.edu

Adam Klivans
Department of Computer Science
University of Texas at Austin
klivans@cs.utexas.edu

Yang Yuan
Department of Computer Science
Cornell University
yangyuan@cs.cornell.edu

ABSTRACT

We give a simple, fast algorithm for hyperparameter optimization inspired by tech-
niques from the analysis of Boolean functions. We focus on the high-dimensional
regime where the canonical example is training a neural network with a large num-
ber of hyperparameters. The algorithm — an iterative application of compressed
sensing techniques for orthogonal polynomials — requires only uniform sampling
of the hyperparameters and is thus easily parallelizable.
Experiments for training deep neural networks on Cifar-10 show that compared to
state-of-the-art tools (e.g., Hyperband and Spearmint), our algorithm finds signif-
icantly improved solutions, in some cases better than what is attainable by hand-
tuning. In terms of overall running time (i.e., time required to sample various
settings of hyperparameters plus additional computation time), we are at least an
order of magnitude faster than Hyperband and Bayesian Optimization. We also
outperform Random Search 8×.
Our method is inspired by provably-efficient algorithms for learning decision
trees using the discrete Fourier transform. We obtain improved sample-complexty
bounds for learning decision trees while matching state-of-the-art bounds on run-
ning time (polynomial and quasipolynomial, respectively).

1 INTRODUCTION

Large scale machine learning and optimization systems usually involve a large number of free pa-
rameters for the user to fix according to their application. A timely example is the training of deep
neural networks for a signal processing application: the ML specialist needs to decide on an ar-
chitecture, depth of the network, choice of connectivity per layer (convolutional, fully-connected,
etc.), choice of optimization algorithm and recursively choice of parameters inside the optimization
library itself (learning rate, momentum, etc.).

Given a set of hyperparameters and their potential assignments, the naive practice is to search
through the entire grid of parameter assignments and pick the one that performed the best, a.k.a.
“grid search”. As the number of hyperparameters increases, the number of possible assignments
increases exponentially and a grid search becomes quickly infeasible. It is thus crucial to find a
method for automatic tuning of these parameters.

This auto-tuning, or finding a good setting of these parameters, is now referred to as hyperparameter
optimization (HPO), or simply automatic machine learning (auto-ML). For continuous hyperparam-
eters, gradient descent is usually the method of choice (Maclaurin et al., 2015; Luketina et al., 2015;
Fu et al., 2016). Discrete parameters, however, such as choice of architecture, number of layers,
connectivity and so forth are significantly more challenging. More formally, let

f : {−1, 1}n 7→ [0, 1]

1

Published as a conference paper at ICLR 2018

be a function mapping hyperparameter choices to test error of our model. That is, each dimension
corresponds to a certain hyperparameter (number of layers, connectivity, etc.), and for simplicity of
illustration we encode the choices for each parameter as binary numbers {−1, 1}. The goal of HPO
is to approximate the minimizer x∗ = arg minx∈{0,1}n f(x) in the following setting:

1. Oracle model: evaluation of f for a given choice of hyperparameters is assumed to be very
expensive. Such is the case of training a given architecture of a huge dataset.

2. Parallelism is crucial: testing several model hyperparameters in parallel is entirely possible
in cloud architecture, and dramatically reduces overall optimization time.

3. f is structured.

The third point is very important since clearly HPO is information-theoretically hard and 2n evalu-
ations of the function are necessary in the worst case. Different works have considered exploiting
one or more of the properties above. The approach of Bayesian optimization (Snoek et al., 2012)
addresses the structure of f , and assumes that a useful prior distribution over the structure of f is
known in advance. Multi-armed bandit algorithms (Li et al., 2016), and Random Search (Bergstra
& Bengio, 2012), exploit computational parallelism very well, but do not exploit any particular
structure of f 1. These approaches are surveyed in more detail later.

1.1 OUR CONTRIBUTION

In this paper we introduce a new spectral approach to hyperparameter optimization. Our main idea
is to make assumptions on the structure of f in the Fourier domain. Specifically we assume that
f can be approximated by a sparse and low degree polynomial in the Fourier basis. This means
intuitively that it can be approximated well by a decision tree.

The implication of this assumption is that we can obtain a rigorous theoretical guarantee: approx-
imate minimization of f over the boolean hypercube with function evaluations only linear in
sparsity that can be carried out in parallel. We further give improved heuristics on this basic
construction and show experiments showing our assumptions are validated in practice for HPO as
applied to deep learning over image datasets.

Thus our contributions can be listed as:

• A new spectral method called Harmonica that has provable guarantees: sample-efficient
recovery if the underlying objective is a sparse (noisy) polynomial and easy to implement
on parallel architectures.

• We demonstrate significant improvements in accuracy, sample complexity, and running
time for deep neural net training experiments. We compare ourselves to state-of-the-art
solvers from Bayesian optimization, Multi-armed bandit techniques, and Random Search.
Projecting to even higher numbers of hyperparameters, we perform simulations that show
several orders-of-magnitude of speedup versus Bayesian optimization techniques.

• Improved bounds on the sample complexity of learning noisy, size s decision trees over n
variables under the uniform distribution. We observe that the classical sample complexity
bound of nO(log(s/ε)) due to Linial et al. (1993) can be improved to quadratic in the size of
the tree Õ(s2/ε · log n) while matching the best known quasipolynomial bound in running
time.

1.2 PREVIOUS WORK

The literature on discrete-domain HPO can be roughly divided into two: probabilistic approaches
and decision-theoretic methods. In critical applications, researchers usually use a grid search over
all parameter space, but that becomes quickly prohibitive as the number of hyperparameter grows.
Gradient-based methods such as (Maclaurin et al., 2015; Luketina et al., 2015; Fu et al., 2016;
Bengio, 2000) are applicable only to continuous hyperparameters which we do not consider. Neural
network structural search based on reinforcement learning is an active direction (Baker et al., 2016;
Zoph & Le, 2016; Zhong et al., 2017), which usually needs many samples of network architectures.

1 except that they could implicitly utilize smoothness or other local properties of the space.

2

Published as a conference paper at ICLR 2018

Probabilistic methods and Bayesian optimization. Bayesian optimization (BO) algorithms
(Bergstra et al., 2011; Snoek et al., 2012; Swersky et al., 2013; Snoek et al., 2014; Gardner et al.,
2014; Wang et al., 2013; Ilievski et al., 2017) tune hyperparameters by assuming a prior distribution
of the loss function, and then keep updating this prior distribution based on the new observations.
Each new observation is selected according to an acquisition function, which balances exploration
and exploitation such that the new observation gives us a better result, or helps gain more informa-
tion. The BO approach is inherently serial and difficult to parallelize, and its theoretical guarantees
have thus far been limited to statistical consistency (convergence in the limit).

Decision-theoretic methods. Perhaps the simplest approach to HPO is random sampling of differ-
ent choices of parameters and picking the best amongst the chosen evaluations (Bergstra & Bengio,
2012). It is naturally very easy to implement and parallelize. Upon this simple technique, researchers
have tried to allocate different budgets to the different evaluations, depending on their early perfor-
mance. Using adaptive resource allocation techniques found in the multi-armed bandit literature,
Successive Halving (SH) algorithm was introduced (Jamieson & Talwalkar, 2016). Hyperband fur-
ther improves SH by automatically tuning the hyperparameters in SH (Li et al., 2016).

Learning decision trees. Prior work for learning decision trees (more generally Boolean functions
that are approximated by low-degree polynomials) used the celebrated “low-degree” algorithm of
Linial et al. (1993). Their algorithm uses random sampling to estimate each low-degree Fourier
coefficient to high accuracy.

We make use of the approach of Stobbe & Krause (2012), who showed how to learn low-degree,
sparse Boolean functions using tools from compressed sensing (similar approaches were taken by
Kocaoglu et al. (2014) and Negahban & Shah (2012)). We observe that their approach can be
extended to learn functions that are both “approximately sparse” (in the sense that the L1 norm of
the coefficients is bounded) and “approximately low-degree” (in the sense that most of the L2 mass
of the Fourier spectrum resides on monomials of low-degree). This implies the first decision tree
learning algorithm with polynomial sample complexity that handles adversarial noise. In addition,
we obtain the optimal dependence on the error parameter ε.

For the problem of learning exactly k-sparse Boolean functions over n variables, Haviv & Regev
(2015) have recently shown that O(nk log n) uniformly random samples suffice. Their result is not
algorithmic but does provide an upper bound on the information-theoretic problem of how many
samples are required to learn. The best algorithm in terms of running time for learning k-sparse
Boolean functions is due to Feldman et al. (2009), and requires time 2Ω(n/ logn). It is based on the
Blum et al. (2003) algorithm for learning parities with noise.

Techniques. Our methods are heavily based on known results from the analysis of boolean func-
tions as well as compressed sensing.

2 SETUP AND DEFINITIONS

The problem of hyperparameter optimization is that of minimizing a discrete, real-valued function,
which we denote by f : {−1, 1}n 7→ [−1, 1] (we can handle arbitrary inputs, binary is chosen for
simplicity of presentation).

In the context of hyperparameter optimization, function evaluation is very expensive, although par-
allelizable, as it corresponds to training a deep neural net. In contrast, any computation that does
not involve function evaluation is considered less expensive, such as computations that require time
Ω(nd) for “somewhat large” d or are subexponential (we still consider runtimes that are exponential
in n to be costly).

2.1 BASICS OF FOURIER ANALYSIS

The reader is referred to O’Donnell (2014) for an in depth treatment of Fourier analysis of Boolean
functions. Let f : X 7→ [−1, 1] be a function over domain X ⊆ Rn. LetD a probability distribution
on X . We write g ≡ε f and say that f, g are ε-close if Ex∼D[(f(x)− g(x))2] ≤ ε.

3

Published as a conference paper at ICLR 2018

Definition 1. (Rauhut, 2010) We say a family of functions ψ1, . . . , ψN (ψi maps X to R) is a
Random Orthonormal Family with respect to D if

ED[ψi(X) · ψj(X)] = δij =

{
1 if i = j

0 otherwise
.

The expectation is taken with respect to probability distribution D. We say that the family is K-
bounded if supx∈X |ψi(x)| ≤ K for every i. Henceforth we assume K = 1.

An important example of a random orthonormal family is the class of parity functions with respect
to the uniform distribution on {−1, 1}n:
Definition 2. A parity function on some subset of variables S ⊆ [n] is the function χS : {−1, 1}n 7→
{−1, 1} where χS(x) =

∏
i∈S xi.

It is easy to see that the set of all 2n parity functions {χS}, one for each S ⊆ [n], form a random
orthonormal family with respect to the uniform distribution on {−1, 1}n.

This random orthonormal family is often referred to as the Fourier basis, as it is a complete or-
thonormal basis for the class of Boolean functions with respect to the uniform distribution on
{−1, 1}n. More generally, for any f : {−1, 1}n 7→ R, f can be uniquely represented in this
basis as f(x) =

∑
S⊆[n] f̂SχS(x) where f̂S = 〈f, χS〉 = Ex∈{−1,1}n [f(x)χS(x)] is the Fourier

coefficient corresponding to S where x is drawn uniformly from {−1, 1}n. We also have Parseval’s
identity: E[f2] =

∑
S f̂

2
S .

In this paper, we will work exclusively with the above parity basis. Our results apply more generally,
however, to any orthogonal family of polynomials (and corresponding product measure on Rn). For
example, if we wished to work with continuous hyperparameters, we could work with families of
Hermite orthogonal polynomials with respect to multivariate spherical Gaussian distributions.

We conclude with a definition of low-degree, approximately sparse (bounded L1 norm) functions:
Definition 3 (Approximately sparse function). Let {χS} be the parity basis, and let C be a class of
functions mapping {−1, 1}n to R. Thus for f ∈ C, f =

∑
S f̂(S)χS . We say a function f ∈ C

is s-sparse if L0(f) ≤ s, ie., f has at most s nonzero entries in its polynomial expansion. f is
(ε, d)-concentrated if E[(f −

∑
S,|S| ≤ d f̂(S)χS)2] ≥ 1− ε. C is (ε, d, s)-bounded if for every

f ∈ C, f is (ε, d)-concentrated and in addition C has L1 norm bounded by s, that is, for every f ∈ C
we have

∑
S |f̂(S)| ≤ s.

It is easy to see that the class of functions with bounded L1 norm is more general than sparse
functions. For example, the Boolean AND function has L1 norm bounded by 1 but is not sparse.

We also have the following simple fact:
Fact 4. (Mansour, 1994) Let f be such that L1(f) ≤ s. Then there exists g such that g is s2/ε
sparse and E[(f − g)2] ≤ ε. The function g is constructed by taking all coefficients of magnitude
ε/s or larger in f ’s expansion as a polynomial.

2.2 COMPRESSED SENSING AND SPARSE RECOVERY

In the problem of sparse recovery, a learner attempts to recover a sparse vector x ∈ Rn which
is s sparse, i.e. ‖x‖0 ≤ s, from an observation vector y ∈ Rm that is assumed to equal y =
Ax+ e, where e is assumed to be zero-mean, usually Gaussian, noise. The seminal work of Candes
et al. (2006); Donoho (2006) shows how x can be recovered exactly under various conditions on
the observation matrix A ∈ Rm×n and the noise. The usual method for recovering the signal
proceeds by solving a convex optimization problem consisting of `1 minimization as follows (for
some parameter λ > 0):

min
x∈Rn

{
‖x‖1 + λ‖Ax− y‖22

}
. (1)

The above formulation comes in many equivalent forms (e.g., Lasso), where one of the objective
parts may appear as a hard constraint.

4

Published as a conference paper at ICLR 2018

× α
α has entry αS
for all |S| ≤ d

rows corresponds to
xi ∈ {−1, 1}n

columns S ⊆ [n] for
all |S| ≤ d

=f

entry (i) corresponds to
f(xi) =

∑
S αSψS(xi), the

i-th measurement
entry (i,S)
= ψS(xi)

Figure 1: Compressed sensing over the Fourier domain: Harmonica recovers the Fourier coefficients of
a sparse low degree polynomial

∑
S αSΨS(xi) from observations f(xi) of randomly chosen points xi ∈

{−1, 1}n.

For our work, the most relevant extension of traditional sparse recovery is due to Rauhut (2010),
who considers the problem of sparse recovery when the measurements are evaluated according to
a random orthonormal family. More concretely, fix x ∈ Rn with s non-zero entries. For K-
bounded random orthonormal family F = {ψ1, . . . , ψN}, and m independent draws z1, . . . , zm

from corresponding distribution D define the m × N matrix A such that Aij = ψj(z
i). Rauhut

gives the following result for recovering sparse vectors x:
Theorem 5 (Sparse Recovery for Random Orthonormal Families, (Rauhut, 2010) Theorem 4.4).
Given as input matrix A ∈ Rm×N and vector y with yi = Ax + ei for some vector e with
‖e‖2 ≤ η

√
m, mathematical program (1) finds a vector x∗ such that for constants c1 and c2,

‖x − x∗‖2 ≤ c1
σs(x)1√

s
+ c2η with probability 1 − δ as long as for sufficiently large constant C,

m ≥ CK2 logK · s log3 s · log2N · log(1/δ).

The term σs(x)1 is equal to min{‖x − z‖1, z is s sparse}. Recent work (Bourgain, 2014; Haviv &
Regev, 2016) has improved the dependence on the polylog factors in the lower bound for m.

3 BASIC ALGORITHM AND MAIN THEORETICAL RESULTS

The main component of our spectral algorithm for hyperparameter optimization is given in Algo-
rithm 12. It is essentially an extension of sparse recovery (basis pursuit or Lasso) to the orthogonal
basis of polynomials in addition to an optimization step. See Figure 1 for an illustration. We prove
Harmonica’s theoretical guarantee, and show how it gives rise to new theoretical results in learning
from the uniform distribution.

In the next section we describe extensions of this basic algorithm to a more practical algorithm with
various heuristics to improve its performance.

Algorithm 1 Harmonica-1

1: Input: oracle for f , number of samples T , sparsity s, degree d, parameter λ.
2: Invoke PSR(f, T, s, d, λ) (Procedure 2) to obtain (g, J), where g is a function defined on vari-

ables specified by index set J ⊆ [n].
3: Set the variables in [n] \ J to arbitrary values, compute a minimizer x? ∈ arg min g(x).
4: return x?

Theorem 6 (Noiseless recovery). Let {ψS} be a 1-bounded orthonormal polynomial basis for dis-
tribution D. Let f : Rn 7→ R be a (0, d, s)-bounded function as per definition 3 with respect to the
basis ψS . Then Algorithm 1, in time nO(d) and sample complexity T = Õ(s · d log n), returns x?
such that x? ∈ arg min f(x).

This theorem, and indeed most of the results in this paper, follows from the main recovery properties
of Procedure 2. This recovery procedure satisfies the following main lemma. See its proof in Section
A.1.
Lemma 7 (Noisy recovery). Let {ψS} be a 1-bounded orthonormal polynomial basis for distri-
bution D. Let f : Rn 7→ R be a (ε/4, d, s)-bounded as per definition 3 with respect to the

2On line 3 of Algorithm 1, the minimizer can be found by enumerating all the possibilities, which is man-
ageable if g is a sparse low degree polynomial.

5

Published as a conference paper at ICLR 2018

Procedure 2 Polynomial Sparse Recovery (PSR)

1: Input: oracle for f , number of samples T , sparsity s, degree d, regularization parameter λ
2: Query T random samples: {f(x1),, f(xT)}.
3: Solve sparse d-polynomial regression over all polynomials up to degree d

arg min

α∈R(n
d)


T∑
i=1

 ∑
|S| ≤ d

αSψS(xi)− f(xi)

2

+ λ‖α‖1

 (2)

4: Let S1, ..., Ss be the indices of the largest coefficients of ~α.
5: return g ,

∑
i∈[s] αSiψSi(x) and J = ∪si=1Si

basis ψS . Then Procedure 2 finds a function g ≡ε f in time O(nd) and sample complexity
T = Õ(s2/ε · d log n).

Remark: Note that the above Lemma also holds in the adversarial or agnostic noise setting. That
is, an adversary could add a noise vector v to the labels received by the learner. In this case, the
learner will see label vector y = Ax+ e+ v. If ‖v‖2 ≤

√
γm, then we will recover a polynomial

with squared-error at most ε + O(γ) via re-scaling ε by a constant factor and applying the triangle
inequality to ‖e+ v‖2.

While this noisy recovery lemma is the basis for our enhanced algorithm in the next section as well
as the learning-theoretic result on learning of decision trees detailed in the next subsection, it does
not imply recovery of the global optimum. The reason is that noisy recovery guarantees that we
output a hypothesis close to the underlying function, but even a single noisy point can completely
change the optimum.

Nevertheless, we can use our techniques to prove recovery of optimality for functions that are com-
puted exactly by a sparse, low-degree polynomial (Theorem 6). See the proof in Section A.2.

3.1 APPLICATION: LEARNING DECISION TREES IN QUASI-POLYNOMIAL TIME AND
POLYNOMIAL SAMPLE COMPLEXITY

Lemma 7 has important applications for learning (in the PAC model (Valiant, 1984)) well-studied
function classes with respect to the uniform distribution on {−1, 1}n3. For example, we obtain
the first quasi-polynomial time algorithm for learning decision trees with respect to the uniform
distribution on {−1, 1}n with polynomial sample complexity:

Corollary 8. Let X = {−1, 1}n and let C be the class of all decision trees of size s on n variables.
Then C is learnable with respect to the uniform distribution in time nO(log(s/ε)) and sample com-
plexity m = Õ(s2/ε · log n). Further, if the labels are corrupted by arbitrary noise vector v such
that ‖v‖2 ≤

√
γm, then the output classifier will have squared-error at most ε+O(γ).

See the proof of Corollary 8 in Section A.3.

Comparison with the “Low-Degree” Algorithm. Prior work for learning decision trees (more
generally Boolean functions that are approximated by low-degree polynomials) used the celebrated
“low-degree” algorithm of Linial et al. (1993). Their algorithm uses random sampling to estimate
each low-degree Fourier coefficient to high accuracy. In contrast, our approach is to use algorithms
for compressed sensing to estimate the coefficients. Tools for compressed sensing take advantage
of the incoherence of the design matrix and give improved results that seem unattainable from the
“low-degree” algorithm.

For learning noiseless, Boolean decision trees, the low-degree algorithm uses quasipolynomial time
and sample complexity Õ(s2/ε2 · log n) to learn to accuracy ε. It is not clear, however, how to obtain
any noise tolerance from their approach.

3All of our results also hold with respect to {0, 1}n.

6

Published as a conference paper at ICLR 2018

For general real-valued decision trees where B is an upper bound on the maximum value at any
leaf of a size s tree, our algorithm will succeed with sample complexity Õ(B2s2/ε · log n) and be
tolerant to noise while the low-degree algorithm will use Õ(B4s2/ε2 · log n) (and will have no noise
tolerance properties). Note our improvement in the dependence on ε (even in the noiseless setting),
which is a consequence of the RIP property of the random orthonormal family.

4 HARMONICA: THE FULL ALGORITHM

Rather than applying Algorithm 1 directly, we found that performance is greatly enhanced by itera-
tively using Procedure 2 to estimate the most influential hyperparameters and their optimal values.

In the rest of this section we describe this iterative heuristic, which essentially runs Algorithm 1 for
multiple stages. More concretely, we continue to invoke the PSR subroutine until the search space
becomes small enough for us to use a “base” hyperparameter optimizer (in our case either SH or
Random Search).

The space of minimizing assignments to a multivariate polynomial is a highly non-convex set that
may contain many distinct points. As such, we take an average of several of the best minimizers (of
subsets of hyperparameters) during each stage.

In order to describe this formally we need the following definition of a restriction of function:
Definition 9 (restriction (O’Donnell, 2014)). Let f ∈ {−1, 1}n 7→ R, J ⊆ [n], and z ∈ {−1, 1}J
be given. We call (J, z) a restriction pair of function f . We denote fJ,z the function over n − |J |
variables given by setting the variables of J to z.

We can now describe our main algorithm (Algorithm 3). Here q is the number of stages for which
we apply the PSR subroutine, and the restriction size t serves as a tie-breaking rule for the best
minimizers (which can be set to 1).

Algorithm 3 Harmonica-q

1: Input: oracle for f , number of samples T , sparsity s, degree d, regularization parameter λ,
number of stages q, restriction size t, base hyperparameter optimizer ALG.

2: for stage i = 1 to q do
3: Invoke PSR(f, T, s, d, λ) (Procedure 2) to obtain (gi, Ji), where gi is a function defined on

variables specified by index set Ji ⊆ [n].
4: Let Mi = {x?1, ..., x?t } = arg min gi(x) be the best t minimizers of gi.
5: Let fi = Ek∈[t][fJi,x?

k
] be the expected restriction of f according to minimizers Mi.4

6: Set f = fi.
7: end for
8: return Search for the global minimizer of fq using base optimizer ALG

We defer the comparison of Harmonica and other algorithms in Section B.

5 EXPERIMENTS WITH TRAINING DEEP NETWORKS

We compare Harmonica5 with Spearmint6 (Snoek et al., 2012), Hyperband, SH7 and Random
Search. Both Spearmint and Hyperband are state-of-the-art algorithms, and it is observed that Ran-
dom Search 2x (Random Search with doubled function evaluation resources) is a very competitive
benchmark that beats many algorithms8.

Our first experiment is over training residual network on Cifar-10 dataset9. We included 39 binary
hyperparameters, including initialization, optimization method, learning rate schedule, momentum

5A python implementation of Harmonica can be found at https://github.com/callowbird/
Harmonica

6https://github.com/HIPS/Spearmint.git
7We implemented a parallel version of Hyperband and SH in Lua.
8E.g., see (Recht, 2016a;b).
9https://github.com/facebook/fb.resnet.torch

7

 https://github.com/callowbird/Harmonica
 https://github.com/callowbird/Harmonica
https://github.com/HIPS/Spearmint.git
https://github.com/facebook/fb.resnet.torch

Published as a conference paper at ICLR 2018

7 8 9 10 11
Final Test Error (%)

Hyperband

Spearmint (39 Vars)

Random Search

Successive halving

Harmonica-1

Harmonica-2

Best Human Rate

Harmonica-3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Total Running Time (GPU Day)

6.1

4
2.4

17
20

13
17.3

Figure 2: Distribution of the best results and running time of different algorithms

7 8 9 10 11
Final Test Error (%)

Harmonica-2-Random-Search

Successive halving

Harmonica-1

Harmonica-1-Random-Search

Harmonica-2

Harmonica-2-Long

Harmonica-3-Long

Harmonica-3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Total Running Time (GPU Day)

6.1
11.8

10.1
4

10.7
2.4

17
8.3

Figure 3: Comparing different variants of Harmonica with SH on test error and running time

rate, etc. Table 1 (Section C.1) details the hyperparameters considered. We also include 21 dummy
variables to make the task more challenging. Notice that Hyperband, SH, and Random Search
are agnostic to the dummy variables in the sense that they just set the value of dummy variables
randomly, therefore select essentially the same set of configurations with or without the dummy
variables. Only Harmonica and Spearmint are sensitive to the dummy variables as they try to learn
the high dimensional function space. To make a fair comparison, we run Spearmint without any
dummy variables.

As most hyperparameters have a consistent effect as the network becomes deeper, a common hand-
tuning strategy is “tune on small network, then apply the knowledge to big network” (See discussion
in Section C.3). Harmonica can also exploit this strategy as it selects important features stage-
by-stage. More specifically, during the feature selection stages, we run Harmonica for tuning an
8 layer neural network with 30 training epochs. At each stage, we take 300 samples to extract
5 important features, and set restriction size t = 4 (see Procedure 2). After that, we fix all the
important features, and run the SH or Random Search as our base algorithm on the big 56 layer
neural network for training the whole 160 epochs10. To clarify, “stage” means the stages of the
hyperparameter algorithms, while “epoch” means the epochs for training the neural network.

5.1 PERFORMANCE

We tried three versions of Harmonica for this experiment, Harmonica with 1 stage (Harmonica-1),
2 stages (Harmonica-2) and 3 stages (Harmonica-3). All of them use SH as the base algorithm. The
top 10 test error results and running times of the different algorithms are depicted in Figure 2. SH
based algorithms may return fewer than 10 results. For more runs of variants of Harmonica and its
resulting test error, see Figure 3 (the results are similar to Figure 2).

Test error and scalability: Harmonica-1 uses less than 1/5 time of Spearmint, 1/7 time of Hy-
perband and 1/8 time compared with Random Search, but gets better results than the competing
algorithms. It beats the Random Search 8x benchmark (stronger than Random Search 2x bench-
mark of Li et al. (2016)). Harmonica-2 uses slightly more time, but is able to find better results.

10Other algorithms like Spearmint, Hyperband, etc. can be used as the base algorithms as well.

8

Published as a conference paper at ICLR 2018

Improving upon human-tuned parameters: Harmonica-3 obtains a better test error (6.58%) as
compared to the best hand-tuning rate 6.97% reported in (He et al., 2016)11. Harmonica-3 uses
only 6.1 GPU days, which is less than half day in our environment, as we have 20 GPUs running in
parallel. Notice that we did not cherry pick the results for Harmonica-3. In Section 5.3 we show by
running Harmonica-3 for longer time, one can obtain a few other solutions better than hand tuning.

Performance of provable methods: Harmonica-1 has noiseless and noisy recovery guarantees
(Lemma 7), which are validated experimentally.

5.2 AVERAGE TEST ERROR FOR EACH STAGE

We computed the average test error among 300 random samples for an 8 layer network with 30
epochs after each stage. See Figure 4 in Appendix. After selecting 5 features in stage 1, the average
test error drops from 60.16 to 33.3, which indicates the top 5 features are very important. As we
proceed to stage 3, the improvement on test error becomes less significant as the selected features at
stage 3 have mild contributions.

5.3 HYPERPARAMETERS FOR HARMONICA

To be clear, Harmonica itself has six hyperparameters that one needs to set including the number
of stages, `1 regularizer for Lasso, the number of features selected per stage, base algorithm, small
network configuration, and the number of samples per stage. Note, however, that we have reduced
the search space of general hyperparameter optimization down to a set of only six hyperparameters.
Empirically, our algorithm is robust to different settings of these parameters, and we did not even
attempt to tune some of them (e.g., small network configuration).

Base algorithm and #stages. We tried different versions of Harmonica, including Harmonica
with 1 stage, 2 stages and 3 stages using SH as the base algorithm (Harmonica-1, Harmonica-2,
Harmonica-3), with 1 stage and 2 stages using Random Search as the base algorithm (Harmonica-1-
Random-Search, Harmonica-2-Random-Search), and with 2 stages and 3 stages running SH as the
base for longer time (Harmonica-2-Long, Harmonica-3-Long). As can be seen in Figure 3, most
variants produce better results than SH and use less running time. Moreover, if we run SH for longer
time, we will obtain more stable solutions with less variance in test error.

Lasso parameters are stable. See Table 3 in Appendix for stable range for regularization term λ
and the number of samples. Here stable range means as long as the parameters are set in this range,
the top 5 features and the signs of their weights (which are what we need for computing g(x) in
Procedure 2) do not change. In other words, the feature selection outcome is not affected. When
parameters are outside the stable ranges, usually the top features are still unchanged, and we miss
only one or two out of the five features.

On the degree of features. We set degree to be three because it does not find any important
features with degree larger than this. Since Lasso can be solved efficiently (less than 5 minutes in
our experiments), the choice of degree can be decided automatically.

5.4 EXPERIMENTS WITH SYNTHETIC FUNCTIONS

Our second experiment considers a synthetic hierarchically bounded function h(x). In this experi-
ment, we showed that the optimization time of Harmonica is significantly faster than Spearmint, and
the estimation error of Harmonica is linear in the noise level of the function. See Section C.4 for
details.

6 ACKNOWLEDGEMENTS

We thank Sanjeev Arora for helpful discussions and encouragement. We thank anonymous review-
ers for their helpful comments. Elad Hazan is supported by NSF grant 1523815. This project is
supported by a Microsoft Azure research award and Amazon AWS research award.

11 6.97% is the rate obtained by residual network, and there are new network structures like wide residual
network (Zagoruyko & Komodakis, 2016) or densenet (Huang et al., 2016) that achieve better rates for Cifar-10.

9

Published as a conference paper at ICLR 2018

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. CoRR, abs/1611.02167, 2016.

Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):
1889–1900, 2000.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305, February 2012. ISSN 1532-4435.

James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-
parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger (eds.), Advances in Neural Information Processing Systems 24, pp. 2546–2554. Cur-
ran Associates, Inc., 2011.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. J. ACM, 50(4):506–519, July 2003. ISSN 0004-5411.

Jean Bourgain. An Improved Estimate in the Restricted Isometry Problem, pp. 65–70. Springer
International Publishing, Cham, 2014.

E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Trans. Inf. Theor., 52(2):489–509, February
2006. ISSN 0018-9448.

D. L. Donoho. Compressed sensing. IEEE Trans. Inf. Theor., 52(4):1289–1306, April 2006. ISSN
0018-9448.

V. Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On agnostic learn-
ing parities, monomials,and halfspaces. SIAM Journal on Computing, 39(2):606–645, 2009.
ISSN 0097-5397.

Jie Fu, Hongyin Luo, Jiashi Feng, Kian Hsiang Low, and Tat-Seng Chua. Drmad: Distilling reverse-
mode automatic differentiation for optimizing hyperparameters of deep neural networks. CoRR,
abs/1601.00917, 2016.

Jacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger, and John P. Cunning-
ham. Bayesian optimization with inequality constraints. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pp. 937–945,
2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pp. 249–
256, 2010.

Ishay Haviv and Oded Regev. The list-decoding size of fourier-sparse boolean functions. In
David Zuckerman (ed.), 30th Conference on Computational Complexity, CCC 2015, June 17-
19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pp. 58–71. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015. ISBN 978-3-939897-81-1. URL http://www.dagstuhl.
de/dagpub/978-3-939897-81-1.

Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier matrices.
In Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’16, pp. 288–297, Philadelphia, PA, USA, 2016. Society for Industrial and Applied Math-
ematics. ISBN 978-1-611974-33-1. URL http://dl.acm.org/citation.cfm?id=
2884435.2884457.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1026–1034, 2015.

10

http://www.dagstuhl.de/dagpub/978-3-939897-81-1
http://www.dagstuhl.de/dagpub/978-3-939897-81-1
http://dl.acm.org/citation.cfm?id=2884435.2884457
http://dl.acm.org/citation.cfm?id=2884435.2884457

Published as a conference paper at ICLR 2018

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pp. 770–778, 2016.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016.

Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Annette Shoemaker. Efficient hyperpa-
rameter optimization for deep learning algorithms using deterministic RBF surrogates. In Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA., pp. 822–829, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 448–456, 2015.

Kevin G. Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pp. 240–248, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Murat Kocaoglu, Karthikeyan Shanmugam, Alexandros G. Dimakis, and Adam R. Klivans. Sparse
polynomial learning and graph sketching. In Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger (eds.), Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pp. 3122–3130, 2014. URL http://papers.nips.cc/
book/advances-in-neural-information-processing-systems-27-2014.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A Novel Bandit-
Based Approach to Hyperparameter Optimization. ArXiv e-prints, March 2016.

Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier transform, and
learnability. J. ACM, 40(3):607–620, July 1993. ISSN 0004-5411.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning
of continuous regularization hyperparameters. CoRR, abs/1511.06727, 2015.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Proceedings of the 32Nd International Conference on Inter-
national Conference on Machine Learning - Volume 37, ICML’15, pp. 2113–2122. JMLR.org,
2015. URL http://dl.acm.org/citation.cfm?id=3045118.3045343.

Yishay Mansour. Learning Boolean Functions via the Fourier Transform, pp. 391–424. Springer
US, Boston, MA, 1994. doi: 10.1007/978-1-4615-2696-4 11.

Sahand Negahban and Devavrat Shah. Learning sparse boolean polynomials. In Allerton, pp. 2032–
2036. IEEE, 2012. ISBN 978-1-4673-4537-8. URL http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=6475439.

Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York, NY,
USA, 2014. ISBN 1107038324, 9781107038325.

Holger Rauhut. Compressive sensing and structured random matrices. Theoretical foundations and
numerical methods for sparse recovery, 9:1–92, 2010.

Benjamin Recht. Embracing the random. http://www.argmin.net/2016/06/23/
hyperband/, 2016a.

Benjamin Recht. The news on auto-tuning. http://www.argmin.net/2016/06/20/
hypertuning/, 2016b.

11

http://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-27-2014
http://dl.acm.org/citation.cfm?id=3045118.3045343
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6475439
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6475439
http://www.argmin.net/2016/06/23/hyperband/
http://www.argmin.net/2016/06/23/hyperband/
http://www.argmin.net/2016/06/20/hypertuning/
http://www.argmin.net/2016/06/20/hypertuning/

Published as a conference paper at ICLR 2018

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems 25: 26th Annual
Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held De-
cember 3-6, 2012, Lake Tahoe, Nevada, United States., pp. 2960–2968, 2012.

Jasper Snoek, Kevin Swersky, Richard S. Zemel, and Ryan P. Adams. Input warping for bayesian
optimization of non-stationary functions. In Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pp. 1674–1682, 2014.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

Peter Stobbe and Andreas Krause. Learning fourier sparse set functions. In Neil D. Lawrence
and Mark A. Girolami (eds.), Proceedings of the Fifteenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2012, La Palma, Canary Islands, April 21-23, 2012, vol-
ume 22 of JMLR Proceedings, pp. 1125–1133. JMLR.org, 2012. URL http://jmlr.org/
proceedings/papers/v22/.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of ini-
tialization and momentum in deep learning. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 1139–1147, 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Multi-task bayesian optimization. In
Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pp. 2004–2012, 2013.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society (Series B), 58:267–288, 1996.

Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando de Freitas. Bayesian opti-
mization in high dimensions via random embeddings. In IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013, pp.
1778–1784, 2013.

Jian Wu and Peter I. Frazier. The parallel knowledge gradient method for batch bayesian optimiza-
tion. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3126–3134,
2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.

Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with q-learning.
CoRR, abs/1708.05552, 2017.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. CoRR,
abs/1611.01578, 2016.

12

http://jmlr.org/proceedings/papers/v22/
http://jmlr.org/proceedings/papers/v22/

Published as a conference paper at ICLR 2018

A MISSING PROOFS

A.1 PROOF OF LEMMA 7

Recall the Chebyshev inequality:

Fact 10 (Multidimensional Chebyshev inequality). LetX be anm dimensional random vector, with
expected value µ = E[X], and covariance matrix V = E[(X − µ)(X − µ)T].

If V is a positive definite matrix, for any real number δ > 0:

P(
√

(X − µ)TV −1(X − µ) > δ) ≤ m

δ2

For ease of notation we assume K = 1. Let f be an (ε/4, s, d)-bounded function written in the
orthonormal basis as

∑
S f̂(S)ψS . We can equivalently write f as f = h + g, where h is a degree

d polynomial that only includes coefficients of magnitude at least ε/4s and the constant term of the
polynomial expansion of f .

Since L1(f) =
∑
S |f̂S | ≤ s, by Fact 4 we have that h is 4s2/ε+ 1 sparse. The function g is thus

the sum of the remaining f̂(S)ψS terms not included in h.

Draw m (to be chosen later) random labeled examples {(z1, y1), . . . , (zm, ym)} and enumerate all
N = nd basis functions ψS for |S| ≤ d as {ψ1, . . . , ψN}. Form matrix A such that Aij = ψj(z

i)
and consider the problem of recovering 4s2/ε+ 1 sparse x given Ax+ e = y where x is the vector
of coefficients of h, the ith entry of y equals yi, and ei = g(zi).

We will prove that with constant probability over the choice m random examples, ‖e‖2 ≤
√
εm.

Applying Theorem 5 by setting η =
√
ε and observing that σ4s2/ε+1(x)1 = 0, we will recover x′

such that ‖x− x′‖22 ≤ c22ε for some constant c2. As such, for the function f̃ =
∑N
i=1 x

′
iψi we will

have E[‖h − f̃‖2] ≤ c22ε by Parseval’s identity. Note, however, that we may rescale ε by constant
factor 1/(2c22) to obtain error ε/2 and only incur an additional constant (multiplicative) factor in the
sample complexity bound.

By the definition of g, we have

‖g‖2 =

 ∑
S,|S|>d

f̂(S)2 +
∑
R

f̂(R)2

 (3)

where each f̂(R) is of magnitude at most ε/4s. By Fact 4 and Parseval’s identity we have∑
R f̂(R)2 ≤ ε/4. Since f is (ε/4, d)-concentrated we have

∑
S,|S|>d f̂(S)2 ≤ ε/4. Thus,

‖g‖2 is at most ε/2. Therefore, by triangle inequality E[‖f − f̃‖2] ≤ E[‖h− f̃‖2] +E[‖g‖2] ≤ ε.

It remains to bound ‖e‖2. Note that since the examples are chosen independently, the entries ei =
g(zi) are independent random variables. Since g is a linear combination of orthonormal monomials
(not including the constant term), we have Ez∼D[g(z)] = 0. Here we can apply linearity of variance
(the covariance of ψi and ψj is zero for all i 6= j) and calculate the variance

Var(g(zi)) = (
∑

S,|S|>d

f̂(S)2 +
∑
R

f̂(R)2)

With the same calculation as (3), we know Var(g(zi)) is at most ε/2.

Now consider the covariance matrix V of the vector e which equals E[ee>] (recall every entry of e
has mean 0). Then V is a diagonal matrix (covariance between two independent samples is zero),
and every diagonal entry is at most ε/2. Applying Fact 10 we have

P(‖e‖2 >
√
ε

2
δ) ≤ m

δ2
.

13

Published as a conference paper at ICLR 2018

Setting δ =
√

2m, we conclude that P(‖e‖2 >
√
εm) ≤ 1

2 . Hence with probability at least 1/2, we
have that ‖e‖2 ≤

√
εm. From Theorem 5, we may choose m = Õ(s2/ε · log nd). This completes

the proof. Note that the probability 1/2 above can be boosted to any constant probability with a
constant factor loss in sample complexity.

A.2 PROOF OF THEOREM 6

There are at mostN = nd polynomials ψS with |S| ≤ d. Let the enumeration of these polynomials
be ψ1, . . . , ψN . Draw m labeled examples {(z1, y1), . . . , (zm, ym)} independently from D and
construct an m × N matrix A with Aij = ψj(z

i). Since f can be written as an s sparse linear
combination of ψ1, . . . , ψN , there exists an s-sparse vector x such that Ax = y where the ith entry
of y is yi. Hence we can apply Theorem 5 to recover x exactly. These are the s non-zero coefficients
of f ’s expansion in terms of {ψS}. Since f is recovered exactly, its minimizer is found in the
optimization step.

A.3 PROOF OF COROLLARY 8

As mentioned earlier, the orthonormal polynomial basis for the class of Boolean functions with re-
spect to the uniform distribution on {−1, 1}n is the class of parity functions {χS} for S ⊆ {−1, 1}n.
Further, it is easy to show that for Boolean function f , if E[(h − f)2] ≤ ε then P[sign(h(x)) 6=
f(x)] ≤ ε. The corollary now follows by applying Lemma 7 and two known structural facts about
decision trees: 1) a tree of size s is (ε, log(s/ε))-concentrated and has L1 norm bounded by s (see
e.g., Mansour Mansour (1994)) and 2) by Fact 4, for any function f with L1 norm bounded by s
(i.e., a decision tree of size s), there exists an s2/ε sparse function g such that E[(f − g)2] ≤ ε.
The noise tolerance property follows immediately from the remark after the proof of Lemma 7.

B ALGORITHM ATTRIBUTES AND HEURISTICS

Scalability. If the hidden function if s-sparse, Harmonica can find such a sparse function using
Õ(s log s) samples. If at every stage of Harmonica, the target function can be approximated by an s
sparse function, we only need Õ(qs log s) samples where q is the number of stages. For real world
applications such as deep neural network hyperparameter tuning, it seems (empirically) reasonable
to assume that the hidden function is indeed sparse at every stage (see Section 5).

For Hyperband (Li et al., 2016), SH (Jamieson & Talwalkar, 2016) or Random Search, even if the
function is s-sparse, in order to cover the optimal configuration by random sampling, we need Ω(2s)
samples.

Optimization time. Harmonica runs the Lasso (Tibshirani, 1996) algorithm after each stage to
solve (2), which is a well studied convex optimization problem and has very fast implementations.
Hyperband and SH are also efficient in terms of running time as a function of the number of func-
tion evaluations, and require sorting or other simple computations. The running time of Bayesian
optimization is cubic in number of function evaluations, which limits applicability for large number
of evaluations / high dimensionality, as we shall see in Section C.4.

Parallelizability. Harmonica, similar to Hyperband, SH, and Random Search, has straightforward
parallel implementations. In every stage of those algorithms, we could simply evaluate the objective
functions over randomly chosen points in parallel.

It is hard to run Bayesian optimization algorithm in parallel due to its inherent serial nature. Previous
works explored variants in which multiple points are evaluated at the same time in parallel (Wu &
Frazier, 2016), though speed ups do not grow linearly in the number of machines, and the batch size
is usually limited to a small number.

Feature Extraction. Harmonica is able to extract important features with weights in each stages,
which automatically sorts all the features according to their importance. See Section C.2.

11In order to evaluate fi, we first sample k ∈ [t] to obtain fJi,x
∗
k

, and then evaluate fJi,x
∗
k

.

14

Published as a conference paper at ICLR 2018

C EXPERIMENTAL DETAILS

C.1 OPTIONS

Table 1: 60 options used in Section 5

Option Name Description
01. Weight initialization Use standard initializations or other initializations?
02. Weight initialization (Detail 1) Xavier Glorot (Glorot & Bengio, 2010), Kaiming (He et al., 2015), 1/n,

or 1/n2?
03. Optimization method SGD or ADAM? (Kingma & Ba, 2014)
04. Initial learning rate ≥ 0.01 or < 0.01?
05. Initial learning rate (Detail 1) ≥ 0.1, < 0.1, ≥ 0.001, or < 0.001?
06. Initial learning rate (Detail 2) 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, or 0.0001?
07. Learning rate drop Do we need to decrease learning rate as we train? Yes or No?
08. Learning rate first drop time If drop learning rate, when is the first time to drop by 1/10? Epoch 40

or Epoch 60?
09. Learning rate second drop time If drop learning rate, when is the second time to drop by 1/100? Epoch

80 or Epoch 100?
10. Use momentum (Sutskever et al.,
2013)

Yes or No?

11. Momentum rate If use momentum, rate is 0.9 or 0.99?
12. Initial residual link weight What is the initial residual link weight? All constant 1 or a random

number in [0, 1]?
13. Tune residual link weight Do we want to use back propagation to tune the weight of residual links?

Yes or No?
14. Tune time of residual link weight When do we start to tune residual link weight? At the first epoch or

epoch 10?
15. Resblock first activation Do we want to add activation layer after the first convolution? Yes or

No?
16. Resblock second activation Do we want to add activation layer after the second convolution? Yes

or No?
17. Resblock third activation Do we want to add activation layer after adding the residual link? Yes

or No?
18. Convolution bias Do we want to have bias term in convolutional layers? Yes or No?
19. Activation What kind of activations do we use? ReLU or others?
20. Activation (Detail 1) ReLU, ReLU, Sigmoid, or Tanh?
21. Use dropout (Srivastava et al., 2014) Yes or No?
22. Dropout rate If use dropout, rate is high or low?
23. Dropout rate (Detail 1) If use dropout, the rate is 0.3, 0.2, 0.1, or 0.05?
24. Batch norm (Ioffe & Szegedy, 2015) Do we use batch norm? Yes or No?
25. Batch norm tuning If we use batch norm, do we tune the parameters in the batch norm

layers? Yes or No?
26. Resnet shortcut type What kind of resnet shortcut type do we use? Identity or others?
27. Resnet shortcut type (Detail 1) Identity, Identity, Type B or Type C?
28. Weight decay Do we use weight decay during the training? Yes or No?
29. Weight decay parameter If use weight decay, what is the parameter? 1e− 3 or 1e− 4?
30. Batch Size What is the batch size we should use? Big or Small?
31. Batch Size (Detail 1) 256, 128, 64, or 32?
32. Optnet An option specific to the code12. Yes or No?
33. Share gradInput An option specific to the code. Yes or No?
34. Backend What kind of backend shall we use? cudnn or cunn?
35. cudnn running state If use cudnn, shall we use fastest of other states?
36. cudnn running state (Detail 1) Fastest, Fastest, default, deterministic
37. nthreads How many threads shall we use? Many or few?

12https://github.com/facebook/fb.resnet.torch

15

Published as a conference paper at ICLR 2018

38. nthreads (Detail 1) 8, 4, 2, or 1?
39-60. Dummy variables Just dummy variables, no effect at all.

See Table 1 for the specific hyperparameter options that we use in Section 5. For those variables
with k options (k > 2), we use log k binary variables under the same name to represent them. For
example, we have two variables (01, 02) and their binary representation to denote four kinds of
possible initializations: Xavier Glorot (Glorot & Bengio, 2010), Kaiming (He et al., 2015), 1/n, or
1/n2.

C.2 IMPORTANCE FEATURES

We show the selected important features and their weights during the first 3 stages in Table 2, where
each feature is a monomial of variables with degree at most 3. We do not include the 4th stage
because in that stage there are no features with nonzero weights.

Smart choices on important options. Based on Table 2, Harmonica will fix the following variables
(sorted according to their importance): Batch Norm (Yes), Activation (ReLU), Initial learning rate
([0.001, 0.1]), Optimization method (Adam), Use momentum (Yes), Resblock first activation (Yes),
Resblcok third activation (No), Weight decay (No if initial learning rate is comparatively small and
Yes otherwise), Batch norm tuning (Yes). Most of these choices match what people are doing in
practice.

A metric for the importance of variables. The features that Harmonica finds can serve as a metric
for measuring the importance of different variables. For example, Batch Norm turns out to be the
most significant variable, and ReLU is second important. By contrast, Dropout, when Batch Norm
is presented, does not have significant contributions. This actually matches with the observations in
(Ioffe & Szegedy, 2015).

No dummy/irrelevant variables selected. Although there are 21/60 dummy variables, we never
select any of them. Moreover, the irrelevant variables like cudnn, backend, nthreads, which do not
affect the test error, were not selected.

Table 2: Important features

Stage Feature Name Weights
1-1 24. Batch norm 8.05
1-2 19. Activation 3.47
1-3 04. Initial learning rate * 05. Initial learning rate (Detail 1) 3.12
1-4 19. Activation * 24. Batch norm -2.55
1-5 04. Initial learning rate -2.34
1-6 28. Weight decay -1.90
1-7 24. Batch norm * 28. Weight decay 1.79
1-8 34. Optnet * 35. Share gradInput * 52. Dummy 13 1.54
2-1 03. Optimization method -4.22
2-2 03. Optimization method * 10. Use momentum -3.02
2-3 15. Resblock first activation 2.80
2-4 10. Use momentum 2.19
2-5 15. Resblock first activation * 17. Resblock third activation 1.68
2-6 01. Good initialization -1.26
2-7 01. Good initialization * 10. Use momentum -1.12
2-8 01. Good initialization * 03. Optimization method 0.67
3-1 29. Weight decay parameter -0.49
3-2 28. Weight decay -0.26
3-3 06. Initial learning rate (Detail 3) * 28. Weight decay 0.23
3-4 25. Batch norm tuning 0.21
3-5 28. Weight decay * 29. Weight decay parameter 0.20

16

Published as a conference paper at ICLR 2018

Uniform Random After Stage 1 After Stage 2 After Stage 3
0

10

20

30

40

50

60

Av
er

ag
e

Te
st

 E
rro

r (
\%

)

60.16

33.3
24.33 21.3

Figure 4: Average test error drops.

0 100 200 300 400 500
Number of Queries

10 1

100

101

102

103

104

105

To
ta

l O
pt

im
iza

tio
n

Ti
m

e
(s

)

Spearmint, n=60
Harmonica, n=30
Harmonica, n=60

Harmonica, n=100
Harmonica, n=200

Figure 5: Optimization time comparison

Table 3: Stable ranges for parameters in Lasso

Parameter Stage 1 Stage 2 Stage 3
λ [0.01, 4.5] [0.1, 2.5] [0.5, 1.1]

#Samples ≥ 250 ≥ 180 ≥ 150

C.3 GENERALIZING FROM SMALL NETWORKS TO BIG NETWORKS

In our experiments, Harmonica first runs on a small network to extract important features and then
uses these features to do fine tuning on a big network. Since Harmonica finds significantly better
solutions, it is natural to ask whether other algorithms can also exploit this strategy to improve
performance.

Unfortunately, it seems that all the other algorithms do not naturally support feature extraction from
a small network. For Bayesian Optimization techniques, small networks and large networks have
different optimization spaces. Therefore without some modification, Spearmint cannot use informa-
tion from the small network to update the prior distribution for the large network.

Random-search-based techniques are able to find configurations with low test error on the small
network, which might be good candidates for the large network. However, based on our simulation,
good configurations of hyperparameters from random search do not generalize from small networks
to large networks. This is in contrast to important features in our (Fourier) space, which do seem to
generalize.

To test the latter observation using Cifar-10 dataset, we first spent 7 GPU days on 8 layer network
to find top 10 configurations among 300 random selected configurations. Then we apply these 10
configurations, as well as 90 locally perturbed configurations (each of them is obtained by switching
one random option from one top-10 configuration), so in total 100 “promising” configurations, to
the large 56 layer network. This simulation takes 27 GPU days, but the best test error we obtained
is only 11.1%, even worse than purely random search. Since Hyperband is essentially a fast version
of Random Search, it also does not support feature extraction.

Hence, being able to extract important features from small networks seems empirically to be a
unique feature of Harmonica.

C.4 EXPERIMENTS WITH SYNTHETIC FUNCTIONS

Our second experiment considers a synthetic hierarchically bounded function h(x). We run Har-
monica with 100 samples, 5 features selected per stage, for 3 stages, using degree 3 features. See
Figure 5 for optimization time comparison. We only plot the optimization time for Spearmint when
n = 60, which takes more than one day for 500 samples. Harmonica is several magnitudes faster
than Spearmint. In Figure 6, we show that Harmonica is able to estimate the hidden function with
error proportional to the noise level.

13This is an interesting feature. In the code repository that we use, optnet, shared gradInput are two special
options of the code and cannot be set true at the same time, otherwise the training becomes unpredictable.

17

Published as a conference paper at ICLR 2018

The synthetic function h(x) ∈ {−1,+1}n → R is defined as follows. h(x) has three stages, and
in i-th stage (i = 0, 1, 2), it has 32i sparse vectors si,j for j = 0, · · · , 32i − 1. Each si,j contains
5 pairs of weight wki,j and feature fki,j for k = 1, · · · 5, where wki,j ∈ [10 + 10−i, 10 + 102−i].
and fki,j is a monomial on x with degree at most 3. Therefore, for input x ∈ Rn, the sparse vector
si,j(x) =

∑5
k=1 w

k
i,jf

k
i,j(x). Since x ∈ {−1,+1}n, fki,j(x) is binary. Therefore, {fki,j(x)}5k=1

contains 5 binaries and represents a integer in [0, 31], denoted as ci,j(x). Let h(x) = s1,1(x) +
s2,c1,1(x)(x)+s3,c1,1(x)∗32+c2,c1,1(x)(x)(x)+ξ, where ξ is the noise uniformly sampled from [−A,A]

(A is the noise level). In other words, in every stage i we will get a sparse vector si,j . Based on
si,j(x), we pick a the next sparse function and proceed to the next stage.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Noise/ Optimal Value

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Es
tim

at
io

n
Er

r /
 O

pt
im

al
 V

al
ue

Figure 6: The estimation error of Harmonica is linear in noise level.

18

	Introduction
	Our contribution
	Previous work

	Setup and definitions
	Basics of Fourier analysis
	Compressed sensing and sparse recovery

	Basic Algorithm and Main Theoretical Results
	Application: Learning Decision Trees in Quasi-polynomial Time and Polynomial Sample Complexity

	Harmonica: The Full Algorithm
	Experiments with training deep networks
	Performance
	Average Test Error For Each Stage
	Hyperparameters for Harmonica
	Experiments with Synthetic functions

	Acknowledgements
	Missing Proofs
	Proof of Lemma 7
	Proof of Theorem 6
	Proof of Corollary 8

	Algorithm attributes and heuristics
	Experimental details
	Options
	Importance features
	Generalizing from small networks to big networks
	Experiments with synthetic functions

