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ABSTRACT

Many important classification performance metrics, e.g. the F -measure, are non-
differentiable and non-decomposable, and are thus unfriendly to the gradient de-
scent algorithm. Consequently, despite their popularity as evaluation metrics,
these metrics are rarely optimized as training objectives in neural network com-
munity. In this paper, we propose an empirical utility maximization scheme
with provable learning guarantees to address the non-differentiability of these
metrics. We then derive a strongly consistent gradient estimator to handle non-
decomposability. These innovations enable end-to-end optimization of these per-
formance metrics with the same computational complexity as optimizing a de-
composable and differentiable metric, e.g. the cross-entropy loss.

1 INTRODUCTION

Different classification performance metrics are capable of revealing different aspects of a classi-
fier’s behavior. For example, the F -measure (Van Rijsbergen (1974)), compared to performance
metrics such as accuracy, is better at evaluating a classifier’s performance when it encounters a sam-
ple belonging to a class that occurs with low frequency. Ideally, we can acquire a classifier with
very tailored behavior by optimizing the classifier with respect to a carefully chosen performance
metric. Unfortunately, many performance metrics, e.g. the F -measure, are non-differentiable and
non-decomposable, which renders it very difficult to optimize neural network classifiers with these
metrics as training objective.

In this paper, we propose a method that enables gradient-based learning for these performance met-
rics. Our contributions are the following:

• We propose a learning algorithm based on empirical utility maximization for a class of
performance metrics and prove its generalization and consistency.

• We propose a strongly consistent gradient estimator that enables efficient gradient-based
maximization of empirical utility.

• We demonstrate experimentally that the binary F1 score of neural network classifiers can
be efficiently optimized on datasets of decent scale and complexity.

We organize this paper as the following. In Section 2, we will sketch our method for the binary
F1 score to provide an overview. In Section 3, we will present our method in its general form. We
review related work in Section 4 and provide experiment results in Section 5.

2 GRADIENT-BASED LEARNING FOR THE BINARY F1 SCORE

2.1 PROBABILISTIC CLASSIFIER

Given a feature vector x ∈ X ⊂ RN , a probabilistic classifier h first infers a posterior p(·|x) over
a discrete output space Y and then samples its output from the posterior, i.e. h(x) ∼ p(·|x). In
practice, p(·|x) is typically the output of a neural network with softmax layer on its top.When the
posterior is parameterized, e.g. being implemented as a neural network, we denote it as pθ(·|x) and
the corresponding probabilistic classifier as hθ.
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Given a posterior p(·|x), a deterministic classifier can result from the inference rule h(x) =
argmaxy∈Yp(y|x).The difference between probabilistic and deterministic inference rules is negli-
gible when the posterior is very concentrated. Although deterministic classifiers are more popular
in the literature, in this paper we only consider probabilistic classifiers and leave it as future work to
investigate the case where a probabilistic classifier is replaced by a deterministic one.

2.2 F -MEASURE

Consider the case of binary classification, where Y = {0, 1}with 1 and 0 respectively corresponding
to the positive and negative class. Given a dataset D = {(x1, y1), ..., (xn, yn)} consisting of n i.i.d.
pairs of feature vector and ground truth, let ŷi denote the label predicted by a classifier h given
xi (not necessarily deterministically). Let ŷ = (ŷ1, ..., ŷn) and y = (y1, ..., yn). Then the true-
positive, false-positive, false-negative and true-negative rate corresponding to ŷ and y are defined
as

tp(ŷ,y) :=
1

n

n∑
i=1

I (ŷi = 1 ∧ yi = 1) fp(ŷ,y) :=
1

n

n∑
i=1

I (ŷi = 1 ∧ yi = 0)

fn(ŷ,y) :=
1

n

n∑
i=1

I (ŷi = 0 ∧ yi = 1) tn(ŷ,y) :=
1

n

n∑
i=1

I (ŷi = 0 ∧ yi = 0)

where I denotes indicator function. The precision and recall are defined as

precision(ŷ,y) =
tp(ŷ,y)

tp(ŷ,y) + fp(ŷ,y)
recall(ŷ,y) =

tp(ŷ,y)

p+D
(1)

where p+D := 1
n

∑n
i=1I(yi = 1) denotes the proportion of samples inD that belong to positive class.

The binary F -measure is defined as (Van Rijsbergen (1974)):

Fβ(ŷ,y) = (1 + β2) · precision(ŷ,y) · recall(ŷ,y)

β · precision(ŷ,y) + recall(ŷ,y)
β > 0 (2)

or equivalently,

Fβ(ŷ,y) = (1 + β2) ·
p+D − fn(ŷ,y)

(1 + β2)p+D − fn(ŷ,y) + fp(ŷ,y)
β > 0 (3)

which is more convenient for our purpose.

We will refer to Fβ(ŷ,y) as the data-dependent binary Fβ-measure because it is evaluated on a
specific set of data with pairs of ground truth and prediction vectors. Fβ is non-differentiable because
it is a composition of indicator functions. Nor does it decompose over samples inD. More precisely,
we are not aware of any function fβ that only depends on per sample ground-truth and prediction
such that

Fβ(ŷ,y) =
1

n

n∑
i=1

fβ(ŷi, yi)

In the following we propose an empirical utility maximization scheme for optimizing the Fβ-
measure of probabilistic classifiers. For ease of exposition, in this section we focus on the binary
F1-measure, a.k.a. the binary F1 score. In Section 3, we will extend the method presented in this
section to a family of non-decomposable and non-differentiable performance metrics, including Fβ-
measure for multi-class classification.

2.3 GRADIENT-BASED LEARNING FOR THE BINARY F1 SCORE

We consider a parameterized binary probabilistic classifier hθ. By linearity of expectation and the
i.i.d. assumption,

Eŷ,y[fp(ŷ,y)] = P(ŷ = 1 ∧ y = 0)

where the expectation is taken over all datasets with a fixed size n and all possible predictions of
hθ. Similarly, Eŷ,y[fn(ŷ,y)] = P(ŷ = 0 ∧ y = 1). Let fn(hθ) := Eŷ,y[fn(ŷ,y)] and fp(hθ) :=
Eŷ,y[fp(ŷ,y)]. It follows from the law of large number that

lim
|D|→∞

fn(ŷ,y) = fn(hθ) lim
|D|→∞

fp(ŷ,y) = fp(hθ)
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with probability 1, where |D| denotes the size of dataset D. Thus on sufficiently large datasets,

fn(ŷ,y) ≈ fn(hθ) fp(ŷ,y) ≈ fp(hθ)

With these approximate identities, we have the following approximation of F1(ŷ,y):

F1(ŷ,y) = 2 ·
p+D − fn(ŷ,y)

2p+D − fn(ŷ,y) + fp(ŷ,y)
≈ 2 ·

p+D − fn(hθ)

2p+D − fn(hθ) + fp(hθ)
:= F̄1(hθ) (4)

which implies that the F1 score of any predictions of hθ on any sufficiently large dataset is close to
F̄1(hθ). We call F̄1(hθ) the expected utility of the F1 score and will state the precise meaning of
F1(ŷ,y) ≈ F̄1(hθ) in Section 3. The key point is that we can optimize F̄1(hθ) instead of F1(ŷ,y) if
we are interested in the F1 score of hθ on sufficiently large datasets. However, fn(hθ) and fp(hθ) are
unknown because they are expectations taken over data distribution (and the classifier’s posterior).
Consequently, we have to estimate fn(hθ) and fp(hθ) by sampling from data distribution in order to
estimate F̄1(hθ), as the following.

Let p+ := P(y = 1) denote the probability that a positive sample occurs, which can be estimated
by the frequency of positive samples in a training set D. Let n+ :=

∑
(x,y)∈D I(y = 1) denote the

number of positive samples in the training set. Assume that the data distribution admits a density
function (i.e. the data distribution is absolutely continuous w.r.t. the Lebesgue measure), and denote
its density function by p. We have the following unbiased estimator of fn(hθ):

fn(hθ) = P (ŷ = 0 ∧ y = 1)

=

∫
X
P(hθ(x) = 0)p(x, 1) dx

=

∫
X
pθ(0|x)p(x|1)p+ dx

= p+
∫
X
pθ(0|x)p(x|1) dx

= p+Ex∼p(·|1)[pθ(0|x)]

≈ p+

n+

n+∑
i=1

pθ(0|x+
i ) := f̂nD(hθ) (5)

where x+
1 , ..., x+

n+ are the feature vectors of samples belonging to the positive class in trainingset
D. Similarly,

fp(hθ) = P (ŷ = 1 ∧ y = 0) ≈ p−

n−

n−∑
i=1

pθ(1|x−i ) := f̂pD(hθ)

where p− := P(y = 0), n− :=
∑

(x,y)∈D I(y = 0), and x−1 , ..., x−n are the feature vectors of
samples in D belonging to the negative class. Thus F̄1(hθ) can be estimated as the following:

F̄1(hθ) = 2 · p+ − fn(hθ)

2p+ − fn(hθ) + fp(hθ)
≈ 2 · p+ − f̂nD(hθ)

2p+ − f̂nD(hθ) + f̂pD(hθ)
:= F̂D(hθ) (6)

We will state the precise meaning of F̄1(hθ) ≈ F̂D(hθ) in Section 3. Interestingly, although fn(ŷ,y)

and fp(ŷ,y) are not differentiable, the estimators of their expectations, f̂nD(hθ) and f̂pD(hθ), are
differentiable w.r.t. θ if pθ is differentiable. Because F̂D(hθ) is differentiable w.r.t. f̂n(hθ) and
f̂p(hθ), ∇θF̂D(hθ) can be computed by chain rule. Consequently, gradient descent can be applied
to optimize F̂D(θ).

We call F̂D(θ) the empirical utility of the expected utility F̄1(hθ). They correspond to empirical
and expected risk in the classical empirical risk minimization principle of statistical learning the-
ory (Vapnik (1992)). We use the term “empirical utility maximization” because we would like to
maximize, instead of minimize these performance metrics. There are two fundamental questions for
every empirical risk minimization style learning algorithm, as the number of samples increases:
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• Generalization. Given hθ, does F̂D(hθ)→ F̄1(hθ) as |D| → ∞?

• Consistency. Does argmaxθF̂D(hθ)→ argmaxθF̄1(hθ) as |D| → ∞?

We will address these two questions at the end of Section 3. For the moment let us consider a
practical issue: how to maximize empirical utility F̄D(hθ) efficiently with gradient descent?

2.4 GRADIENT ESTIMATOR

In order for the approximation in Eq. 6 to be accurate, |D| has to be sufficiently large. In or-
der to optimize F̂D(hθ) efficiently via minibatch gradient descent, ∇θF̂D(hθ) has to be estimated
by ∇θF̂B(hθ), where B ⊂ D is a mini-batch, such that EB [∇θF̂B(hθ)] = ∇θF̂D(hθ). Sup-
pose F̂D(hθ) is decomposable, i.e. there is a per-sample loss function f̂ such that F̂D(hθ) =
1
|D|
∑

(x,y)∈D f̂(pθ(x), y), then it simply follows from linearity of differentiation and expectation

that the requirement is satisfied. However, as F̂D(hθ) is non-decomposable, it becomes unlikely
that ∇θF̂B(hθ) is an unbiased estimator of ∇θF̂D(hθ). Fortunately, as a consequence of Theorem
1, ∇θF̂B(hθ) is a strongly consistent estimator of ∇θF̂D(hθ) when |D| is sufficiently large. More
precisely,

P

(
lim
|B|→∞

∇θF̂B(hθ) = lim
|D|→∞

∇θF̂D(hθ)

)
= 1 (7)

Thus ∇θF̂B(hθ) is almost as good as an unbiased estimator. More interestingly, the error incurred
by estimating∇θF̂D(hθ) with∇θF̂B(hθ) can be further controlled. In the following we omit the de-
pendence on hθ for brevity. LetφD := (f̂nD(hθ), f̂pD(hθ)) ∈ R2 andφB := (f̂nB(hθ), f̂pB(hθ)) ∈
R2. Let ĴD and ĴB denotes the Jacobian of φ̂D and φ̂B w.r.t. θ. Let | · | denote a vector norm and
|| · || denote the matrix norm induced by it. By chain rule,

∇θF̂B = ∇φB
F̂BĴB

=
(
∇φD

F̂D + ε
)(
ĴD + E

)
= ∇φD

F̂DĴD +∇φD
F̂DE + εĴD + εE (8)

where ∇φD
F̂D · ĴD is the true gradient and ε · E is negligible. The error E = ĴB(hθ) − ĴD(hθ)

is intrinsic in the sense that it results immediately from estimating ∇θ f̂nD(hθ) and ∇θ f̂pD(hθ)

with ∇θ f̂nB(hθ) and ∇θ f̂pB(hθ) and it is always present in mini-batch gradient descent because
E[∇θ f̂nB(hθ)] = ∇θ f̂nD(hθ) and E[∇θ f̂pB(hθ)] = ∇θ f̂pD(hθ). However, we can control the
error ε · ĴD because |ε · Ĵ | ≤ ||Ĵ || · |ε| and we can control ||Ĵ || by limiting |θ| and the norm of
intermediate activations when pθ is a neural network (He et al. (2015)). Despite these technicalities,
the trick is very easy to implement: batch normalization (Ioffe & Szegedy (2015)) and weight decay
will suffice. These are summarized in Algorithm 1.

Algorithm 1 Gradient-based learning for the binary F1 score
Require: classifier hθ, batch size b, dataset D, learning rate α, weight decay strength λ
p+ ← 1

|D|
∑

(x,y)∈D I(y = 1)

p− ← 1
|D|
∑

(x,y)∈D I(y = 0)

while terminating criterion not satisfied do
Sample B+ = {(x+

1 , 1), ..., (x+
b , 1)} from D

Sample B− = {(x−1 , 0), ..., (x−b , 0)} from D

fn← p+

b

∑b
i=1 pθ(0|x

+
1 )

fp← p−

b

∑b
i=1 pθ(1|x

−
1 )

δ ← ∇θ
(
F1(fn, fp)− λ · |θ|

)
θ ← θ + α · δ

end while
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3 GRADIENT-BASED LEARNING FOR A CLASS OF PERFORMANCE METRICS

The binary F -measure in fact belongs to a class of performance metrics that are well behaved func-
tions of the confusion matrix. In this section, we propose a gradient-based learning algorithm that
extends the approach illustrated in previous section to this class of performance metrics. We state
theorems concerning the generalization and consistency of the proposed algorithm as well. We defer
all proofs to appendix. We begin with a specification of this class of performance metrics, which
relies on the definition of confusion matrix:
Definition 1. Given a datasetD = {(x1, y1), ..., (xn, yn)}, let y = (y1, ..., yn) denote the vector of
ground truth and ŷ = (ŷ1, ..., ŷn) denote a vector of classifier predictions. Then the corresponding
data-dependent confusion matrix C(ŷ,y) is defined as(

C(ŷ,y)
)
ij

:=
1

n

n∑
k=1

I (ŷk = i ∧ yk = j) 0 ≤ i, j ≤ |Y| − 1

In the case of binary classification,

C(ŷ,y) =

[
tn(ŷ,y) fn(ŷ,y)
fp(ŷ,y) tp(ŷ,y)

]
Let P be a probability measure induced by data distribution and a probabilistic classifier hθ over
X × Y × Y , i.e. triples of feature vector, ground truth and classifier prediction. Let C̄(hθ) be the
entry-wise expectation of C(ŷ,y) over P, referred to as the expected confusion matrix. Formally,(

C̄(hθ)
)
ij

:= E
[
I(hθ(x) = i ∧ y = j)

]
= P(hθ(x) = i ∧ y = j) 0 ≤ i, j ≤ |Y| − 1

As in Section 2, given a training set D, we have the following unbiased estimator of C̄(hθ), referred
to as the empirical confusion matrix:(

ĈD(hθ)
)
ij

=
pj
nj

nj∑
k=1

pθ(i|xjk) 0 ≤ i, j ≤ |Y| − 1

where nj :=
∑

(x,y)∈D I(y = j), pj :=
nj

|D| , and xj1, ...,x
j
nj

are the feature vectors of samples that
belong to the j-th class. Almost sure convergence follows from the law of large number:

P

(
lim
|D|→∞

(
C(ŷ,y)

)
ij

=
(
C̄(hθ)

)
ij

)
= 1 P

(
lim
|D|→∞

(
ĈD(hθ)

)
ij

=
(
C̄(hθ)

)
ij

)
= 1 (9)

The confusion matrix is well-defined for both single-label and multi-label classification (although
these two settings impose different constraints on its entries). Many performance metrics are func-
tions of the confusion matrix. For example, the accuracy of hθ is

∑|Y|
i=1 C̄ii(hθ). The Fβ measure for

multi-class classification can be defined in term of entries of the confusion matrix as the following.
We first define for every class the data-dependent false positive and false negative rate as

fpi =
∑
j 6=i

Cij fni =
∑
j 6=i

Cji i = 1, ..., |Y|

where we omit the dependence on ŷ and y for brevity. The data-dependent macro and micro F -
measure (Parambath et al. (2014)) are defined in term of fpi and fni as

Fmacro
β =

1 + β2

|Y|

|Y|∑
i=1

pi − fni
(1 + β2)pi − fni + fpi

β > 0

Fmicro
β = (1 + β2) ·

∑|Y|
i=1 pi −

∑|Y|
i=1 fni

(1 + β2)
∑|Y|
i=1 pi −

∑|Y|
i=1 fni +

∑|Y|
i=1 fpi

β > 0

Replacing C(ŷ,y) by C̄(hθ) and Ĉ(hθ) in these definitions will respectively result in the expected
and empirical F -measure.

We now specify the class of performance metrics that we are interested in, namely the class of
well-behaved performance metrics. In the following, we will consider C(ŷ,y), C̄(hθ) and ĈD(hθ)
as vectors of dimension |Y| × |Y| and identify a performance metric with a function that maps
|Y| × |Y|-dimensional vectors to real values.
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Definition 2. We say that a performance metric F : K 7→ R, where K is a compact subset of
R|Y|×|Y|, is well-behaved if F is continuously differentiable on K.

Please refer to appendix for a non-exhaustive list of well-behaved performance metrics. Importantly,
the binary F1 score and the macro and micro F -measure are well-behaved performance metrics
(proof deferred to appendix).

Given a well behaved performance metric F , its corresponding data-dependent, expected and em-
pirical utility are respectively defined as F (C(ŷ,y)), F (C̄(hθ)) and F (Ĉ(hθ)). The following
theorem establishes asymptotic equivalence between these three kinds of utilities.
Theorem 1. If F is a well-behaved performance metric and CD is a strongly consistent estimator
of C, i.e.

P

(
lim
|D|→∞

(CD)ij = Cij

)
= 1 0 ≤ i, j ≤ |Y| − 1

then F (CD) is a strongly consistent estimator of F (C), i.e.

P

(
lim
|D|→∞

F (CD) = F (C)

)
= 1

As a consequence of this theorem, it follows from Eq. 9 that

P

(
lim
|D|→∞

F
(
C(ŷ,y)

)
= F

(
C̄(hθ)

))
= 1 P

(
lim
|D|→∞

F
(
ĈD(hθ)

)
= F

(
C̄(hθ)

))
= 1

i.e. both F (C(ŷ,y)) and F (Ĉ(hθ)) are strongly consistent estimators of (converge w.p. 1 to)
F (C̄(hθ)). As a special case,

P

(
lim
|D|→∞

F1(ŷ,y) = F̄1(hθ)

)
= 1 P

(
lim
|D|→∞

F̂1(hθ) = F̄1(hθ)

)
= 1

which justifies Eq. 4 and Eq. 6 when the dataset of interest is sufficiently large. Next we consider
the issue of gradient estimation in this general setting.

Theorem 2. If F is a well behaved performance metric, then∇θF (ĈB(hθ)) is a strongly consistent
estimator of∇θF (C̄(hθ)), where B ⊂ D is a mini-batch. More precisely,

P

(
lim
|B|→∞

∇θF
(
ĈB(hθ)

)
= ∇θF

(
C̄(hθ)

))
= 1

As proved in Chen & Luss (2018), many convergence guarantees for stochastic gradient descent with
unbiased gradient estimators holds for stochastic gradient descent with strongly consistent gradient
estimators with probability 1. As illustrated in Eq. 8, batch normalization and weight decay can
help control the noise of estimator. Please refer to Algorithm 2 for the resultant algorithm.

Finally, we state two theorems concerning the generalization and consistency of Algorithm 2. Rates
of convergence are omitted for brevity.
Theorem 3 (Generalization). For a well behaved performance metric F , for all ε > 0,

lim
|D|→∞

P
(∣∣∣F (ĈD(hθ))− F (C̄(hθ))

∣∣∣ < ε

)
= 1

Theorem 4 (Consistency). For a well behaved performance metric F , with appropriate constraints
on the capacity of parametric model pθ (see the proof for details), we have that for all ε > 0,

lim
|D|→∞

P

(∣∣∣∣arg max
θ
F
(
ĈD(hθ)

)
− arg max

θ
F
(
C̄(hθ)

)∣∣∣∣ < ε

)
= 1

i.e. Algorithm 2 is consistent.
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Algorithm 2 Gradient-based learning for well behaved performance metrics
Require: batch size b, classifier hθ, dataset D, learning rate α, weight-decay strength λ, and well-

behaved metric F
for i = 1, ..., |Y| do

pi ← 1
|D|
∑

(x,y)∈D I(y = i)

end for
while terminating criterion not satisfied do

for i = 1, ..., |Y| do
Sample Bi = {(xi1, i), ..., (xib, i)} from D
Compute pθ(·|xi1), ..., pθ(·|xib)

end for
for i = 1, ..., |Y| do

for j = 1, ..., |Y| do
Cij ← pj

b

∑b
k=1 pθ(i|x

j
k)

end for
end for
δ ← ∇θ

(
F (C)− λ|θ|

)
θ ← θ + α · δ

end while

4 RELATED WORK

The optimization of non-decomposable and non-differentiable performance metrics, especially F -
measure, has been extensively studied. The heuristic algorithm considered in Jansche (2005) and
Pastor-Pellicer et al. (2013) is essentially Algorithm 1 without techniques that stabilize gradient
estimation. However, Jansche (2005) and Pastor-Pellicer et al. (2013) are not very well motivated
theoretically and provide little mathematical insight into the heuristic. Also, as shown in Section 5,
applying this heuristic algorithm without stabilization techniques can easily result in non-convergent
models, even for a three-layer fully-connected network.

Another series of papers (Joachims (2005), Kar et al. (2014) and Narasimhan et al. (2015)) study
optimizing differentiable lower bounds of various non-decomposable and non-differentiable binary
classification metrics for linear classifiers. Despite proved learning guarantees for linear classifier,
these lower bound methods are not very promising when applied to neural networks, as reported in
Sanyal et al. (2018).

Thresholding is a computationally economical method if we only consider binary classification.
Koyejo et al. (2014) proves that the optimal classifier with respect to a family of binary classifi-
cation metrics, including the F -measure, is appropriately thresholded Bayes classifier. Given an
approximation of Bayes classifier, we can approach the optimal threshold via grid search. However,
it remains unknown how to generalize thresholding to multi-class classification. More importantly,
for binary classification, when training set is extremely imbalanced, it can be very difficult to train a
classifier that approximates Bayes classifier very well.

The computational cost of aforementioned methods roughly equals that of training classifiers with
standard classification losses such as cross-entropy. As proved in Parambath et al. (2014) and Koyejo
et al. (2014), optimization of many performance metrics, including F -measure, can be reduced to
weighted classification. Unfortunately, the optimal weight is in general unknown and has to be
approximated by an expensive grid search (see Section 5). Despite its computational cost, unlike
thresholding, this method can perform reasonably well even when a training set is extremely bal-
anced. Eban et al. (2016) proposes a similar method that performs well for neural networks coupled
with the AUCPR metric.

Regarding theory, the equivalence between the data-dependent and expected utility of the F -measure
was first proved in Nan et al. (2012) and later generalized in Dembczyński et al. (2017) to p-Lipschitz
binary classification performance metrics.
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Table 1: Dataset statistics and results
DATASET # FEATS # SAMPS % POS F1 GS F1 EUM

Adult 108 48,842 23.93 0.701 0.689
CIFAR10 3072 60,000 10.00 0.630 0.635
Letter 16 20,000 3.92 0.990 0.975
Covtype 54 581,012 1.63 0.691 0.725
CIFAR100 3072 60,000 1.00 0.350 0.392
KDDCup08 117 102,294 0.61 0.543 0.556

5 EXPERIMENTS

We evaluate Algorithm 1 on the following datasets: Letter1, Adult2, Covertype3, KDDCup084, CI-
FAR10 and CIFAR100 (Krizhevsky (2009)). The performance metric to optimize is the binary F1

score. The purpose of this experiment is to demonstrate that Algorithm 1 can match the performance
of a provably optimal, yet considerably more expensive algorithm that optimizes the F1 score. We
use a three-layer fully-connected network in our experiments, with batch normalization enabled.
The statistics of these datasets are summarized in Table 1 (number of features, number of sam-
ples, percentage of positive samples). For multi-class datasets (Letter, Covertype, CIFAR10 and
CIFAR100), we designate one class as the positive class and leave the rest as the negative class. We
compare Algorithm 1 with the following baseline (Parambath et al. (2014) and Koyejo et al. (2014)):

θ∗ ← arg max
θ,λ∈(0,1)

1

|D|
∑

(x,y)∈D

l(pθ(x), y)
(
λI(y = 0) + (1− λ)I(y = 1)

)
where l denotes the cross-entropy loss. We let λ = 0.1, 0.2, 0.3, ..., 0.9, and apply gradient descent
to optimize θ for a fixed λ. As proved in Parambath et al. (2014) and Koyejo et al. (2014), this
baseline method should yield an approximately optimal F1 score (although at a cost considerably
higher than Algorithm 1 because we have to optimize θ for every λ). In our case, the baseline
method is 8 times slower than Algorithm 1. To our knowledge, the baseline method is the state-of-
the-art method in term of resultant F1 score (not in term of efficiency). We apply weight decay to
both methods and find that in general weight decay improves the performance of Algorithm 1 while
hurts the performance of baseline method. For the Covertype dataset, Algorithm 1 cannot converge
without weight decay, which is an evidence that weight decay may improve gradient estimation. We
report results in Table 1, where “F1 GS” refers to the F1 score attained by the grid-search method
and “F1 EUM” refers to the F1 score attained by Algorithm 1.

6 CONCLUSION

We propose an empirical utility maximization scheme that enables efficient gradient-based learning
for a class of non-decomposable and non-differentiable classification performance metrics. We in-
quire into the proposed scheme mathematically and present preliminary experiments that validate
our approach. We leave it as future work to experiment on deeper neural networks, larger datasets,
and more complex performance metrics.

1https://archive.ics.uci.edu/ml/datasets/letter+recognition
2https://archive.ics.uci.edu/ml/datasets/adult
3https://archive.ics.uci.edu/ml/datasets/covertype
4http://www.kdd.org/kdd-cup/view/kdd-cup-2008/
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PROOFS

Theorem 1. If F is a well-behaved performance metric and CD is a strongly consistent estimator
of C, i.e.

P

(
lim
|D|→∞

(CD)ij = Cij

)
= 1 0 ≤ i, j ≤ |Y| − 1

then F (CD) is a strongly consistent estimator of F (C), i.e.

P

(
lim
|D|→∞

F (CD) = F (C)

)
= 1

Proof. Let N = |Y| × |Y|. Instead of treating CD and C as |Y| × |Y| matrices, we treat them as
N -dimensional vectors (CD1 , ..., C

D
N ) and (C1, ..., CN ). For i = 1, ..., N , let Ei be the event that

lim
|D|→∞

CDi = Ci

Let E be the event that
lim
|D|→∞

F (CD) = F (C)

By the continuity of F ,(
∀i = 1, ..., N, lim

|D|→∞
CDi = Ci

)
⇒

(
lim
|D|→∞

F (CD) = F (C)

)
which implies that

N⋂
i=1

Ei ⊂ E

Taking complement on both sides, we have

Ec ⊂

 N⋂
i=1

Ei

c

=

N⋃
i=1

Eci

By the monotonicity of probability measure and the union bound,

P(Ec) ≤ P

 N⋃
i=1

Eci

 ≤ N∑
i=1

P(Eci ) =
N∑
i=1

1− P(Ei) =
N∑
i=1

1− 1 = 0

Consequently,

P

(
lim
|D|→∞

F (CD) = F (C)

)
= P(E) = 1− P(Ec) = 1− 0 = 1

Theorem 2. If F is a well behaved performance metric, then∇θF (ĈB(hθ)) is a strongly consistent
estimator of∇θF (C̄(hθ)), where B ⊂ D is a mini-batch. More precisely,

P

(
lim
|B|→∞

∇θF
(
ĈB(hθ)

)
= ∇θF

(
C̄(hθ)

))
= 1

Proof. Let N = |Y| × |Y|. As in the proof of Theorem 1, instead of treating ĈB(hθ) and C̄(hθ)

as |Y| × |Y| matrices, we treat them as N -dimensional vectors ĈB = (ĈB1 , ..., Ĉ
B
N ) and C̄ =

11
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(C̄1, ..., C̄N ), where we omit the dependence on hθ for brevity. For i = 1, ..., N , let Ei be the event
that

lim
|B|→∞

∇θĈBi = ∇θC̄i

and E denote the event that
lim
|B|→∞

∇θF
(
ĈB

)
= ∇θF

(
C̄
)

Because ∇θF (ĈBi ) is an unbiased estimator of∇θF (C̄i), i.e. E[∇θF (ĈBi )] = ∇θF (C̄i),

P (Ei) = P

(
lim
|B|→∞

∇θF
(
ĈBi

)
= ∇θF

(
C̄i
))

= 1

by the law of large number. Consequently, suppose

N⋂
i=1

Ei ⊂ E

which is equivalent to the proposition that(
∀i = 1, ..., N, lim

|B|→∞
∇θĈBi = ∇θC̄i

)
⇒

(
lim
|B|→∞

∇θF
(
ĈB

)
= ∇θF

(
C̄
))

then this theorem will follow from a union bound argument similar to that in the proof of theorem
1. We now prove this proposition. Let ĴB and J̄ be the Jacobian of ĈB and C̄ w.r.t. θ, i.e.

ĴB =

∇θĈB1...

∇θĈBN

 J̄ =

∇θC̄1

...
∇θC̄N


By the chain rule,

∇θF
(
ĈB

)
= ∇F

(
ĈB

)
ĴB

where ∇F
(
ĈB

)
is the gradient of F at ĈB . Because F is continuously differentiable, i.e. ∇F

exists and is continuous,(
∀i = 1, ..., N, lim

|B|→∞
ĈBi = C̄i

)
⇒

(
lim
|B|→∞

∇F
(
ĈB

)
= ∇F

(
C̄
))

Thus for all δ > 0, there exists NF,δ such that when |B| > NF ,

|ε| :=
∣∣∣∣∇F (ĈB)−∇F (C̄)∣∣∣∣ < δ

2||J̄ ||

where ||J̄ || is the matrix norm of J̄ , defined as

||J̄ || = sup
|x|≤1

|J̄x|

Thus (
∀i = 1, ..., N, lim

|D|→∞
∇θĈBi = ∇θC̄

)
⇒

(
lim
|B|→∞

ĴB = J̄

)
where the convergence is in the Frobenius norm. Because convergence in the Frobenius norm is
equivalent to convergence in matrix norm, for all δ > 0, there exists NĴ such that when |D| > NĴ ,

||E|| :=
∣∣∣∣∣JD(θ)− J(θ)

∣∣∣∣∣ < δ

2M

where
M := sup

x∈K
∇F (x) <∞

12
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because K is compact and∇F is continuous on K by definition.

Thus for all B such that |B| > max
{
NF , NĴ

}
,∣∣∣∣∇θF (ĈB)−∇θF (C̄)∣∣∣∣ =

∣∣∣∣∇F (ĈB) ĴB −∇F (C̄) J̄ ∣∣∣∣
=

∣∣∣∣(∇F (C̄)+ ε
) (
J̄ + E

)
−∇F

(
C̄
)
J̄

∣∣∣∣
=
∣∣∣∇F (C̄) J̄ +∇F

(
C̄
)
E + εJ̄ + εE −∇F

(
C̄
)
J̄
∣∣∣

=
∣∣∣∇F (C̄) E + εJ̄ + εE −∇F

(
C̄
)
J̄
∣∣∣

≤
∣∣∣∇F (C̄) E∣∣∣+

∣∣εJ̄ ∣∣+ |εE|

≈
∣∣∣∇F (C̄) E∣∣∣+

∣∣εJ̄ ∣∣
≤
∣∣∣∇F (C̄)∣∣∣ ∣∣|E|∣∣+ |ε|

∣∣∣∣∣J̄ ∣∣∣∣∣
≤ δ

2
+
δ

2
= δ

where we ignore the high-order term |εE|. Consequently,

lim
|D|→∞

∇θF
(
ĈB

)
= ∇θF

(
C̄
)

Theorem 3 (Generalization). For a well behaved performance metric F , for all ε > 0,

lim
|D|→∞

P
(∣∣∣F (ĈD(hθ))− F (C̄(hθ))

∣∣∣ < ε

)
= 1

Proof. By Theorem 1,

P

(
lim
|D|→∞

∣∣∣F (ĈD(hθ))− F (C̄(hθ))
∣∣∣ < ε

)
= 1

which implies that

lim
|D|→∞

P
(∣∣∣F (ĈD(hθ))− F (C̄(hθ))

∣∣∣ < ε

)
= 1

Theorem 4 (Consistency). For a well behaved performance metric F , with appropriate constraints
on the capacity of parametric model pθ (see the proof for details), we have that for all ε > 0,

lim
|D|→∞

P

(∣∣∣∣arg max
θ
F
(
ĈD(hθ)

)
− arg max

θ
F
(
C̄(hθ)

)∣∣∣∣ < ε

)
= 1

i.e. Algorithm 2 is consistent.

Proof. To prove consistency, it suffices to prove that (Vapnik (1992)):

lim
|D|→∞

P

(
sup
θ

∣∣∣∣F (ĈD(hθ)
)
− F

(
C̄(hθ)

)∣∣∣∣ < ε

)
= 1

Because F is well behaved, by the union bound argument in previous proofs, it suffices to show that

lim
|D|→∞

P

(
sup
θ

∣∣∣∣(ĈD (hθ)
)
ij
− C̄ij (hθ)

∣∣∣∣ < ε

)
= 1 1 ≤ i, j ≤ |Y|

13
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Because (ĈD(hθ))ij =
pj
nj

∑nj

k=1 pθ(i|x
j
k), it suffices to show that

lim
|D|→∞

P

sup
θ

∣∣∣∣∣∣ pjnj
nj∑
k=1

pθ(i|xjk)− C̄ij (hθ)

∣∣∣∣∣∣ < ε

 = 1 1 ≤ i, j ≤ |Y|

which holds for pθ with finite VC-dimension by Lemma 29.1 in Devroye (2010) because

ED

 pj
nj

nj∑
k=1

pθ(i|xjk)

 = C̄ij (hθ)

14
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WELL BEHAVED PERFORMANCE METRICS

The following is a non-exhaustive list of non-decomposable and non-differentiable, yet well-
behaved performance metrics in the setting of binary classification. They can be extended to the
setting of multi-class classification in the same way that the F -measure is extended to multi-class
classification in Section 3.

• AUC = fp·fn
(tp+fn)(fp+tn)

• Fβ = (1 + β2) · p+−fn
(1+β2)p+−fn+fp

• G-Mean =
√

tp · tn
• Jaccard = tp

tp+fp+fn

• Q-Mean = 1−
√

(1−tp)2+(1−tn)2
2

We refer interested readers to Choi et al. (2010) for a more exahustive list of these performance
metrics.
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