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Abstract
We introduce in this paper the mechanism of
graph random features (GRFs). GRFs can be used
to construct unbiased randomized estimators
of several important kernels defined on graphs’
nodes, in particular the regularized Laplacian ker-
nel. As regular RFs for non-graph kernels, they
provide means to scale up kernel methods de-
fined on graphs to larger networks. Importantly,
they give substantial computational gains also for
smaller graphs, while applied in downstream ap-
plications. Consequently, GRFs address the noto-
riously difficult problem of cubic (in the number
of the nodes of the graph) time complexity of
graph kernels algorithms. We provide a detailed
theoretical analysis of GRFs and an extensive
empirical evaluation: from speed tests, through
Frobenius relative error analysis to kmeans graph-
clustering with graph kernels. We show that the
computation of GRFs admits an embarrassingly
simple distributed algorithm that can be applied
if the graph under consideration needs to be split
across several machines. We also introduce a (still
unbiased) quasi Monte Carlo variant of GRFs,
q-GRFs, relying on the so-called reinforced ran-
dom walks that might be used to optimize the
variance of GRFs. As a byproduct, we obtain a
novel approach to solve certain classes of linear
equations with positive and symmetric matrices.

1. Introduction
Consider a positive definite kernel (similarity function)
K : Rd × Rd → R. Kernel methods (Campbell, 2002;
Kontorovich et al., 2008; Smola & Schölkopf, 2002; Canu
& Smola, 2006; Ghojogh et al., 2021; Cumby & Roth, 2003)
provide powerful mechanisms for modeling non-linear rela-
tionships between data points. However, as relying on the
so-called kernel matrices K = [K(xi,xj)]i,j for datasets
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X = {x1, ...,xN} under consideration, they have time com-
plexity at last quadratic in the size of a dataset.

To address this limitation, a mechanism of random features
(RFs) (Liu et al., 2022; Rahimi & Recht, 2007; 2008) to
linearize kernel functions was proposed. Random features
rely on randomized functions: ϕ : Rd → Rm that map data-
points from the original to the new space, where the linear
(dot-product) kernels corresponds to the original kernel. i.e:

K(x,y) = E[ϕ(x)⊤ϕ(y)] (1)

The theory of random features for kernels was born with
the seminal paper (Johnson, 1984a), proposing a simple
randomized linear transformation ϕ (with Gaussian random
matrices) to approximate dot-product kernels via dimension-
ality reduction (m≪ d). That mapping ϕ is often referred
to as the Johnson-Lindenstrauss Transform (JLT).

Interestingly, it turned out that for several nonlinear kernels,
JLT can be modified by adding a nonlinear functions acting
element-wise on the linearly transformed dimensions of the
input vectors (and potentially by replacing Gaussian sam-
pling mechanism and altering the constant multiplicative
renormalization term), to obtain Eq. 1. For the radial basis
function kernels (RBFs) (Kégl et al., 1998) and softmax
kernels, this nonlinear functions are trigonometric transfor-
mations (Rahimi & Recht, 2007). For the Gaussian (an
instantiation of RBFs) and softmax kernels one can also
apply the so-called positive random features leveraging ex-
ponential nonlinearties (Choromanski et al., 2020). For
the angular kernel, the sign function is used (Goemans &
Williamson, 2004; Choromanski et al., 2017). Thus lin-
earization schemes for different kernels are obtained by
applying different element-wise transformations, but the
overall structure of ϕ is the same across different kernels.

RFs provide unbiased low-rank decomposition of the ker-
nel matrix K, effectively enabling the (approximate) com-
putations with K to be conducted in sub-quadratic time,
by-passing explicit materialization of K. Even more impor-
tantly, they help to create nonlinear variants of the simpler
linear methods (e.g kernel-SVM (Boser et al., 1992) as op-
posed to regular SVM (Cortes & Vapnik, 1995) or kernel
regression (Chávez et al., 2020) as opposed to linear regres-
sion (Goldin, 2010)) via the ϕ-transformation.

So far we have considered points embedded in the regular
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Euclidean Rd-space, but what if the space itself is non-
Euclidean ? Upon discretization, such a space can be ap-
proximated by undirected weighted graphs (often equipped
with shortest-path-distance metric) and in that picture the
points correspond to graph nodes. It is thus natural to con-
sider in that context graph kernels K : V ×V→ R defined
on the set of nodes V of the graph. And indeed, several
such kernels were proposed: diffusion, regularized Lapla-
cian, p-step random walk, inverse cosine and more (Smola
& Kondor, 2003; Kondor & Lafferty, 2002; Chung & Yau,
1999). The term graph kernels is also often used for kernels
taking as input graphs, thus computing similarities between
two graphs rather than two nodes in a given graph (Vish-
wanathan et al., 2010). Those are not a subject of this paper.

Unfortunately, for most graph kernels, the computation of
the kernel matrix K is at least cubic in the number of nodes
of the graph. This is a major obstacle on the quest to make
those methods more practical and mainstream kernel tech-
niques. A tempting idea is to try to apply random features
also for graph kernels, yet so far no analogue of the mech-
anism presented above for regular kernels was proposed
(see: Sec. 2 for the additional discussion on some efforts to
apply RF-based techniques in the theory of graph kernels
in the broad sense). This is in striking contrast to kernels
operating in Rd, where not only are RFs widely adopted, but
(as already discussed) the core underlying mechanism is the
same for a large plethora of different kernels, irrespectively
of their taxonomy, e.g. shift-invariant (Gaussian, Laplace,
Cauchy) or not (softmax, dot-product). One of the main
challenges is that no longer is the value of the graph kernel
solely the property of its input-nodes, but also the medium
(the graph itself), where those nodes reside. In fact, it does
not even make sense to talk about the properties of graphs’
nodes by abstracting from the whole graph (in this paper we
do not assume any internal graph-node structure).

This work is one of the first steps to develop rigorous theory
of random features for graph kernels. We introduce here the
mechanism of graph random features (GRFs). GRFs can be
used to construct unbiased randomized estimators of several
important kernels defined on graphs’ nodes, in particular the
regularized Laplacian kernel. As regular RFs for non-graph
kernels, they provide means to scale up kernel methods
defined on graphs to larger networks. Importantly, they
give substantial computational gains also for smaller graphs,
while applied in downstream applications. Consequently,
GRFs address the notoriously difficult problem of cubic (in
the number of the nodes of the graph) time complexity of
graph kernels algorithms. We provide a detailed theoretical
analysis of GRFs and an extensive empirical evaluation:
from speed tests, through Frobenius relative error analysis to
k-means graph-clustering with graph kernels. We show that
the computation of GRFs admits an embarrassingly simple
distributed algorithm that can be applied for particularly

massive graphs. We also introduce a (still unbiased) quasi
Monte Carlo variant of GRFs, q-GRFs, relying on the
so-called reinforced random walks (Figueiredo & Garetto,
2017) that might be used to optimize the variance of GRFs.
As a byproduct, we also obtain a novel approach for solving
linear equations with positive and symmetric matrices.

The q-GRF variants of our algorithm (that, as we show, still
provide unbiased estimation) aim to translate the geometric
techniques of structured random projections, that were re-
cently successfully applied in the theory of RFs (see: Sec. 2
for detailed discussion) to non-Euclidean domains defined
by graphs. To the best of our knowledge, it was never done
before. We propose this idea in the paper, yet leave to future
work comprehensive theoretical and empirical analysis.

2. Related work
Probabilistic techniques are used in different contexts in
the theory of graph kernels. Sampling algorithms can be
applied to make the computations of kernels taking graphs
as inputs (rather than graphs’ nodes) feasible (Yanardag &
Vishwanathan, 2015; Shervashidze et al., 2009; Leskovec &
Faloutsos, 2006; Orbanz, 2017; Bressan, 2020; Wang et al.,
2011). Examples include in particular graphlet kernels,
where counters of various small-size sub-graphs are replaced
by their counterparts obtained via sub-graph sub-sampling
(often via random walks) (Ribeiro et al., 2022; Wu et al.,
2019; Chen et al., 2016). They provide more tractable, yet
biased estimation of the original objective.

Other approaches define new classes of graph kernels start-
ing from the RF-inspired representations. Examples include
structure-aware random Fourier kernels from (Fang et al.,
2021) that apply the so-called L-hop sub-graphs processed
by graph neural networks (GNNs) to obtain their latent em-
beddings and define a kernel by taking their dot products.
Even though here we proceed in a reverse order - starting
from well-known graph kernels defined by deterministic
closed-form expressions and producing their unbiased RF-
based representations, there is an interesting link between
that line of research and our work. GRFs can be cast as
representations of similar core structure, but much more
specific, GNN-free and consequently, providing simplicity,
low computational time and strong theoretical guarantees.

Quasi Monte Carlo (q-MC) methods, where independent
samples are replaced by the correlated ensembles for more
accurate estimation are powerful MC techniques. In the
theory of RFs for regular kernels, new q-MC methods ap-
plying block-orthogonal ensembles of the random Gaussian
vectors (the so-called orthogonal random features or ORFs)
were shown to (sometimes only asymptotically) reduce the
approximation variance of various kernels (Yu et al., 2016;
Lin et al., 2020; Choromanski et al., 2018b; 2017; 2020;
Likhosherstov et al., 2022; Choromanski et al., 2018a).
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3. Graph random features (GRFs)
3.1. Hidden Gram-structure of squared inverse matrices

We start our analysis, that will eventually lead us to the
definition of GRFs, by forgetting (only temporarily) about
graph theory and focusing on positive symmetric matrices.

3.1.1. PRELIMINARIES

Consider a positive symmetric matrix U ∈ RN×N of spec-
tral radius ρ(U)

def
= maxλ∈Λ(U) |λ| satisfying: ρ(U) < 1,

where Λ(U) stands for the set of eigenvalues of U (Λ(U) ⊆
R since U is symmetric). Note that under this condition,
the following series converges:

IN +U+U2 + ... (2)

and is equal to (IN −U)−1. Furthermore, we have:

Lemma 3.1. If U ∈ RN×N is a a positive symmetric matrix
with ρ(U) < 1 then the following holds:

IN + 2U+ 3U2 + ... = (IN −U)−2 (3)

Proof. We have: IN +2U+3U2 + ... = (IN +U+U2 +
...) + (U+ 2U2 + 3U3 + ...). Thus we have:

IN + 2U+ 3U2 + ... = (IN +U+U2 + ...)+

U(IN + 2U+ 3U2 + ...)
(4)

Therefore, from what we have said above, we obtain:

(IN −U)(IN + 2U+ 3U2 + ...) = (IN −U)−1 (5)

and, consequently: IN+2U+3U2+... = (IN−U)−2.

We will derive an algorithm for unbiasedly estimating (IN−
U)−2 with the Gram-matrix M = [ϕ(i)⊤ϕ(j)]i,j=1,...,N

for a randomized mapping: ϕ : N→ RN . We will refer to
ϕ(k) for a given k ∈ {1, ..., N} as a signature vector for k
(see also Fig. 1 for the illustration of signature vectors).

3.1.2. COMPUTING SIGNATURE VECTORS

We are ready to bring back the graphs. We interpret
U = [ui,j ]i,j=1,...,N as a weighted adjacency matrix of
the weighted graph GU with vertex set V = V(GU) of N
vertices, where the weight between node i and j is given as
ui,j . We then calculate signature vectors via random walks
on GU. The algorithm for computing ϕ(i) for a specific
node i is given in Algorithm 1 box. Calculations of ϕ(i)
for different i are done independently (and therefore can be
easily parallelized). The algorithm works as follows.

The signature vector is zeroed out in initialization. In the ini-
tialization, we also zero-out data structure historyH which
maintains some particular function of the list of visited

Algorithm 1 Computing a signature vector for a given i.
Input :graph GU, termination probability pterm, sampling

strategy sample, # of random walks m, node i.
Result: signature vector ϕ(i).
Main:
1. Initialize: ϕ(i)[j] = 0 for j = 1, 2, ..., N .
2. Initialize: H ← ∅.
3. for t = 1, ...,m do

(a) initialize: load = 1
(b) initialize: current vertex← i
(c) update: ϕ(i)[i]← ϕ(i)[i] + 1
(d) while (not terminated) do

1. assign: v = current vertex
2. w, p = sample(v,GU,H)
3. update: current vertex← w
4. update: load← load · uv,w / p(1− pterm)
5. update: ϕ(i)[w]← ϕ(i)[w] + load
6. update: H ← H.add((v, w))

4. renormalize: ϕ(i)← ϕ(i) / m

edges (more details later). A number m of random walks,
all initiated at point i is conducted. In principle, they can
also be parallelized, but here, for the clarity of the analysis,
we assume that they are executed in a given order.

… …

… …

Figure 1. The pictorial representation of signature vectors. The
contibutions to the dot-product between two signature vectors
come from the vertices that were visited by both vectors.

Each random walk carries a load that is being updated every
time the termination state has not been reached. Before each
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transition, the termination is reached independently with a
given probability pterm. The update-rule of the load is given
in point 4 in the Algorithm 1 box. Strategy sample takes
as input: (1) the current vertex v, (2) entire graph, (3) the
function of the history of visits and outputs: (1) a neighbor
w of v according to a particular randomized sampling strat-
egy as well as: (2) its corresponding probability p. Every
time a new vertex is reached, the value of its corresponding
signature vector dimension is increased by the most updated
value of the load, as given in point 5 in the Algorithm 1
box. When all the walks terminate, the signature vector is
renormalized by the multiplicative term 1

m and returned.

Sampler & the history of visits: The simplest sample
strategy is to choose a neighbor w of a current vertex v
uniformly at random from the set of all neighbors Nv of v in
GU. In this setting: p = 1

deg(v) , where deg(v) stands for the
degree of v defined as the size |Nv| of its neighborhood. In
that setting,H is not needed and thus we have: H = ∅. We
show in Sec. 5 that this strategy works very well in practice.
Another option is to take: p = p(v, w) =

uv,w∑
z∈Nv

uv,z
, i.e.

make probabilities proportional to weights. In that setting,
history is also not needed. In Sec. 4, we analyze in more
detail the q-GRF setting, where nontrivialH is useful. This
history can be used to diversify the set of random walks, by
de-prioritizing edges that were already selected in previous
random walks. Thus it might have the same positive effect
on the estimation accuracy as ORFs from (Yu et al., 2016)
that diversify the set of random projection vectors. However
detailed analysis of such strategies is beyond the scope of
this paper. Most importantly, as we show next, regardless
of the particular instantiations of sample, signature vec-
tors computed in Algorithm 1 indeed provide an unbiased
estimation of the matrix (IN −U)−2 (proof in Sec. 4):

Theorem 3.2. Denote by B ∈ RN×N a matrix with rows
given by ϕ(i)⊤ for i = 1, ..., N , computed according to
Algorithm 1 and by B′ its independent copy (obtained in
practice by constructing another indeepentent set of random
walks). Assume that method sample is not degenerate, i.e.
it assigns a positive probability p(v, w) for every neighbor
w of v. Then the following is true:

(IN −U)−2 = E[B(B′)⊤]. (6)

Time complexity & signature vector maps: To com-
pute ϕ(i) for every i, we need to run in every node m
random walks, each of the expected length l = 1

pterm
,

thus the expected time complexity of computing B,B′ is
O(Nmtsam

pterm
+Trep), where: tsam stands for time complexity

of the mechanism sample and Trep for the space complex-
ity of storing the representation of GU. For instance, if
U is sparse, graph adjacency list representation is a right
choice. In principle, even more compact representations are
possible if graph-edges do not need to be stored explicitly.
For the most straightforward uniform sampling strategy, we

have: tsam = O(1) and for many more sophisticated ones
tsam is proportional to the average degree of a vertex. We
assume that in all considered representations there is an
indexing mechanism for the neighbors of any given vertex
and a vertex of a particular index can be retrieved in O(1)
time. Note that for pterm ≫ mtsam

N , B,B′ should be kept
in the implicit manner (this is a pretty conservative lower
bound; in practice different walks will share many vertices),
since most of the entries of each of its rows are equal to
zero in this case. Thus for every i, we can store a dictionary
with keys corresponding to visited vertices w and values to
the values of ϕi[w]. We call such a dictionary a signature
vector map (or svmap). In practice, one can choose large
pterm without accuracy drop (see: Sec. 5).

3.1.3. TRIMMING RFS: ANCHOR POINTS AND JLT

Algorithm 1 provides substantial computational gains in
calculating (IN −U)−2, replacing O(N3) time complexity
with expected O( Nm

pterm
+ Trep). Furthermore, signature vec-

tors ϕ(i) in practice can be often stored efficiently (see: our
discussion on svmaps above). Interestingly, there are also
easy ways to directly control their ”effective dimensionality”
via one of two simple to implement tricks, provided below.

Anchor points: This technique samples randomly K <
N points from the set of all N vertices of GU. We call this
set: anchor points. Signature vectors are updated only in
anchor points (but we still upload load for each transition)
and thus effectively each of them has dimensionality K.
In principle, different sampling strategies are possible and
analyzing all of them in outside the scope of this work. The
simplest approach is to sample uniformly at random a K-
element subset of V with no repetitions. In this setting, if
we replace term 1

m in point 4. of the Algorithm 1 box with
N

Km term, the estimator remains unbiased (see: Sec. 4).

JLTed signature vectors: The more algebraic approach
to trimming the dimensionality of signature vectors is to
apply Johnson-Lindenstrauss Transform (see: Sec. 1). We
simply replace ϕ(i) with: ϕJLT(i) = 1√

K
Gϕ(i) after all

the computations. Here G ∈ RK×N is the Gaussian matrix
with entries taken independently at random from N (0, 1)
and K is the number of RFs used in JLT. Matrix G is sam-
pled independently from all the walks and is the same for all
the nodes. The unbiasedness of the dot-product kernel esti-
mation with JLTs (Johnson, 1984b) combined with Theorem
3.2, provides the unbiasedness of the overall mechanism.

3.2. From squared inverse matrices to graph kernels

3.2.1. PRELIMINARIES

We are ready to show how the results obtained in Sec. 3.1
can be applied for graph kernels. For a given undirected
weighted loopless graph G with a weighted symmetric
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adjacency matrix W ∈ RN×N , we consider the family
of d-regularized Laplacian kernels defined as follows for
degW(i)

def
=

∑
j∈Ni

W(i, j):

[Kd
lap(v, w)]i,j=1,...,N = (IN + σ2L̃G)

−d, (7)

for a symetrically normalized Laplacian L̃G ∈ RN×N :

L̃G(v, w) =

{
1 if v = w

− W(v,w)√
degW(v)degW(w)

if (v, w) is an edge

(8)

For d = 1, we get the popular regularized Laplacian kernel.
As we show in Sec. A.2, as long as the 1-regularized Lapla-
cian kernel is well defined (i.e. matrix IN + σ2L̃G is invert-
ible and the inverse has positive entries), the d-regularized
Laplacian kernel is a valid positive definite kernel.

3.2.2. SIGNATURE VECTORS ARE RFS FOR THE
2-REGULARIZED LAPLACIAN KERNEL

We will start with d = 2 since it turns out that the mecha-
nism of signature vectors can be straightforwardly applied
there to obtain corresponding GRFs. Note that the follow-
ing is true for U ∈ RN×N defined as: U = [ui,j ]i,j=1,...,N ,
where ui,j = σ2

σ2+1
W(i,j)√

degW(i)degW(j)
:

IN + σ2L̃G = (σ2 + 1)(IN −U) (9)

Equation 9, together with Theorem 3.2, immediately provide
the GRF-mechanism for the 2-regularized Laplacian kernel:

Corollary 3.3. Consider a kernel matrix of the 2-
regularized Laplacian kernel for a given graph G with N
nodes {1, 2, ..., N}. Then the following holds:

(IN + σ2L̃G)
−2 = E[C(C′)T ], (10)

where the rows of C ∈ RN×K are of the form: 1
σ2+1ϕ(i)

⊤

for i = 1, ..., N and signature vectors ϕ(i) computed via
Algorithm 1 for the graph GU and a matrix U defined above.
Furthermore, C′ is an independent copy of C.

3.2.3. GRFS & REGULARIZED LAPLACIAN KERNEL

Let us now consider the case d = 1. From Corollary 3.3,
we immediately get the following:

Corollary 3.4. Consider a kernel matrix of the 1-
regularized Laplacian kernel for a given graph G with N
nodes {1, 2, ..., N}. Then the following holds:

(IN + σ2L̃G)
−1 = E[CDT ], (11)

where matrix D ∈ RN×K is defined as: D = (IN +
σ2L̃G)C

′ and C,C′ ∈ RN×K are as in Corollary 3.3.

Corollary 3.4 provides a GRF mechanism for the regularized
Laplacian kernel, since it implies that we can write K1

lap as:

K1
lap(i, j) = E[ϕ(i)⊤ψ(j)], (12)

where ϕ(i) and ψ(i) for i = 1, ..., N are the rows of C and
D respectively. Notice that this is the so-called asymmetric
RF setting (Choromanski et al., 2022b) (where we use a dif-
ferent transformation for i and j). The approximate kernel
matrix is not necessarily symmetric, but its expectation is
always symmetric and the estimation is unbiased. However
it is also easy to obtain here the GRF mechanism provid-
ing symmetric approximate kernel matrix and maintaining
unbiasedness. It suffices to define:

ϕ′(i) =
1√
2
[ϕ(i)⊤, ψ(i)⊤]⊤,

ψ′(j) =
1√
2
[ψ(j)⊤, ϕ(j)⊤]⊤,

(13)

and the corresponding approximate kernel matrix is of the
form: 1

2 (CD⊤ +DC⊤).

3.2.4. GOING BEYOND d = 2

Let us see now what happens when we take d > 2. We will
define GRFs recursively, having the variants for d = 1 and
d = 2 already established in previous sections (they will
serve as a base for our induction analysis). Take some d
and assume that the following GRF mechanism defined by
the unbiased low-rank decomposition of the d-regularized
Laplacian kernel matrix exists for some X,Y ∈ RN×K :

(IN + σ2L̃G)
−d = E[XY⊤] (14)

Then, using Corollary 3.3, we can rewrite:

(IN + σ2L̃G)
−d−2 = E[XY⊤C(C′)⊤], (15)

if we assume that matrices C,C′ ∈ RN×K are constructed
independently from X and Y. We can then compute in time
O(NK2) matrix S = Y⊤C and then conduct its SVD-
decomposition: S = ZΣZ⊤ in time O(K3) for Z,Σ ∈
RK×K and where Σ is diagonal. Then we can rewrite:

(IN + σ2L̃G)
−d−2 = E[(XZΣ

1
2 )(C′ZΣ

1
2 )⊤] (16)

for XZΣ
1
2 ,C′ZΣ

1
2 ∈ RN×K . The random feature vectors

can be then given as the rows of XZΣ
1
2 and C′ZΣ

1
2 .

We see that starting with d = 1, 2 we can then follow the
above procedure to produce GRF-based low-rank decompo-
sition of the kernel matrix for the d-regularized Laplacian
kernel for any d ∈ N+.

3.2.5. GRFS FOR FAST GRAPH KERNEL METHODS

We will assume here that the graphs G under considera-
tion have e edges for e = o(N2) which is a reasonable

5



Taming graph kernels with random features

assumption in machine learning and thus graph adjacency
list representation is a default choice. Using the analysis
from Sec. 3.1.2, we conclude that GRFs can be computed
in time O(Nmtsam

pterm
+Ne) for d = 2. If uniform sampling

is the strategy used by sample then time complexity can be
simplified to O( Nm

pterm
+Ne). If JLT-based dimensionality

is applied, an additional cost O(N2K) is incurred. This can
be further reduced to O(N2 log(K)) if unbiased structured
JLT variants are applied (Choromanski et al., 2017). For
d = 1, an additional time O(Ne) (for computing matrix
D, see: Corollary 3.4) is incurred. Similar analysis can be
applied to larger d. It is easy to see that for d > 2 GRFs
can be computed in time cubic in K and linear in d. Thus
for d > 2 they are useful if K ≪ N . We call this stage
graph pre-processing. If the brute-force approach is ap-
plied, pre-processing involves explicit computation of the
graph kernel matrix and for the graph kernels considered in
this paper (as well as many others) takes time O(N3). In
some applications, pre-processing is a one-time procedure
(per training), but in many others needs to be applied sev-
eral times in training (e.g. in graph Transformers, where
graph kernels can be used to topologically modulate regular
attention mechanism) (Choromanski et al., 2022a).

When the graph pre-processing is completed, graph ker-
nels usually interact with the downstream algorithm via
their matrix-vector multiplication interface, e.g. the al-
gorithm computes Kx for a given graph kernel matrix
K = [K(i, j)]i,j=1,...,N ∈ RN×N and a series of vec-
tors x ∈ RN (see: k-means clustering with graph kernels:
(Dhillon et al., 2004)). We will refer to this phase as infer-
ence. Brute-force inference can be trivially computed in
time O(N2) per matrix-vector multiplication. Using GRFs
strategy, an unbiased estimation of the matrix-vector prod-
uct can be computed via a series of matrix-vector multiplica-
tions obtained from (a chain of) decompositions constructed
to define GRFs. For d ̸= 2 those decompositions involve at
least three matrices and thus the GRFs do not even need to
be explicitly constructed.

For instance, for d = 2, inference can be conducted in time
O(NK) and this is a pretty conservative bound. Even if one
applies K = Ω(N), most of the entries of random feature
vectors can be still equal to zero (if pterm is not too small)
and in such a setting svmaps from Sec. 3.1.2 can be applied
to provide sub-quadratic in N time complexity. For d = 1,
an additional cost O(Ne) of multiplications with matrices
IN + σ2L̃G needs to be incurred. For d > 2, inference can
be directly conducted in time O(NK).

3.2.6. SYSTEMS OF LINEAR EQUATIONS & GRFS

It is easy to see that there is nothing particularly special
about the Laplacian matrix IN + σ2L̃G from Corollary 3.4
and that for any invertible matrix of the form: λ(IN −U)
and symmetric U ∈ RN×N of o(N2) nonzero entries, one

can find a decomposition:

1

λ
(IN −U)−1 = E[CD⊤] (17)

in sub-cubic time, using our methods. That however pro-
vides immediately a sub-cubic randomized algorithm for un-
biasedly solving linear systems of the form: (IN−U)x = b
for any given b ∈ RN as: x = λ(C(D⊤b)), where brack-
ets indicate the order of computations.

3.2.7. FINAL REMARKS

The construction of GRFs presented in this section can be
thought of as a low-rank decomposition of the kernel ma-
trix K. Then one can argue that instead of using presented
algorithm, a standard low-rank decomposition method can
be applied (such as spectral analysis). This however defeats
the main goal of this paper - sub-cubic time complexity
(the matrix to be decomposed would need to be explicitly
constructed) and unbiased estimation (such an approxima-
tion would be biased). The latter remains a problem for
the alternative approaches even if more refined low-rank de-
composition techniques not enforcing materialization of the
kernel matrix K are applied (such methods would however
rely on efficient algorithms for computing Kx which are
non-trivial: for d = 1 would need to solve systems of linear
equations with symmetric matrices as sub-routines).

4. Theoretical results
4.1. GRFs provide unbiased graph kernel estimation

We start by proving Theorem3.2. Concentration results
for GRFs in the base setting, where the sampler chooses
a neighbor uniformly at random, are given in Sec. A.3.
We leave as an exciting open question the analysis of the
concentration results beyond second moment methods.

Proof. For any two nodes a, b ∈ V(GU), denote by Ω(a, b)
the set of walks from a to b in GU. Furthermore, symbol
⊆pre indicates than one walk is a prefix of the other. Then:

ϕ(i)⊤ϕ(j) =
1

m2

∑
x∈V(GU)

m∑
k=1

m∑
l=1

∑
ω1∈Ω(i,x)∑

ω2∈Ω(j,x)

w(ω1) · w(ω2)

l1∏
s=1

(pik,s)
−1

1− pterm

l2∏
t=1

(pjl,t)
−1

1− pterm

1[ω1 ⊆pre Ω̄(k, i)]1[ω2 ⊆pre Ω̄(l, j)],

(18)

where Ω̄(k, i) and Ω̄(l, j) stand for the kth and lth sampled
random walk from i and j respectively, function w outputs
the product of the edge-weights of its given input walk and
pik,s and pjl,t are the probabilities returned by sample for the
sth/tth vertex of the kth/lth sampled random walk starting
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at i/j. Furthermore, l1 and l2 refer to the number of edges
of ω1 and ω2 respectively. Note that those probabilities are
in general random variables (if they are chosen as nontrivial
functions of the history of sampled walks).

Therefore, for len(ω) denoting the number of edges of ω:

E[ϕ(i)⊤ϕ(j)] =
∑

x∈V(GU)

∑
ω1∈Ω(i,x)∑

ω2∈Ω(j,x)

w(ω1)w(ω2) =
∑

ω∈Ω(i,j)

(len(ω) + 1)w(ω)
(19)

The proof is completed by an observation that:

(IN + 2U+ 3U2 + ...)(i, j) =
∑

ω∈Ω(i,j)

(len(ω) + 1)w(ω)

(20)
This in turn follows from the fact that for any k ≥ 0:
Uk(i, j) can be interpreted as the sum of w(ω) over all
walks ω from i to j of k edges.

The extension to the anchor point setting is obtained by
following the same proof, but with x iterating only over
sampled anchor points and results in adding a multiplicative
constant, as explained in Sec. 3.1.3.

4.2. q-GRFs and correlated random walks

As already mentioned, the idea of q-GRFs is to correlate
different random walks initiated in a given node i, to ”more
efficiently” explore the entire graph (in particular, by avoid-
ing reconstructing similar walks) and can be thought of
as an analogue of the ORF or low discrepancy sequences
techniques applied for regular RFs (Yang et al., 2014). A
natural candidate for the q-GRF variant is the one, where
method sample implements the so-called reinforced random
walk strategy (Kozma, 2012). The probability of choosing a
neighbor w of v (see: Sec. 3.1.2) can be defined as:

p(v, w) =
f(N(v, w))∑

z∈Nv
f(N(v, z))

, (21)

where N(x, y) stands for the number of times that an edge
{x, y} has been already used (across all the walks, or pre-
vious walks) and f : N → R is a fixed function. Note
that, since we want to deprioritize edges that were already
frequently visited, f should be a decreasing function.

Implementing such a strategy can be done straightfor-
wardly with an additional multiplicative factor dave in time-
complexity, where dave stands for the average degree of a
graph node. We leave detailed theoretical and empirical
analysis of this class of methods to future work.

5. Experiments
We empirically verify the quality of GRFs via various exper-
iments, including downstream applications of graph kernels.
The real-world graphs were accessed from the repositories
described in (Ivashkin, 2023).

5.1. Speed tests

Here we compared the total number of FLOPS used by
the GRF-variant of of the regularized Laplacian kernel in
pre-processing followed by a single inference call involving
computing the action of the kernel matrix on a given vector
(this is for instance the way in which kernels are applied
in the kernelized k-means algorithm, see: Sec. 5.3) with
the correesponding time for various linear system solvers
as well as a brute-force (BF) algorithm. Note that for d-
regularized Laplacian kernels with d = 1, inference straight-
forwardly reduces to solving linear systems of equations.
We used graphs of different size. The results are presented
in Table 1. GRFs provide substantial reduction of FLOPS,
even for smaller graphs. We took pterm = 0.1 since it
worked well in several other tests (see: Sec. 5.2, Sec. 5.3).

GRF BF Gauss-Seidel Conjugate Gradient Jacobi

960K 512.64M 6400K 512M 6400K

1.4M 1001M 10M 1000M 10M

10.2M 27B 90M 27B 90M

Table 1. The comparison of the number of FLOPS for the setting
from Sec. 5.1 for different linear systems solvers and GRFs. Dif-
ferent rows correspond to: N = 800, N = 1000 and N = 3000.

5.2. Relative Frobenius norm error

We took several undirected graphs of different sizes and
computed for them groundtruth kernel matrices Kd =
[Kd

lap(i, j)]i,j=1,...,N using d-regularized Laplacian kernels
with d = 1, 2. We then computed their counterparts K̂d

obtained via GRFs and the corresponding relative Frobenius
norm error defined as:

ϵ =
∥Kd − K̂d∥F
∥Kd∥F

(22)

We considered different termination probabilities: pterm ∈
{0.1, 0.06, 0.01} leading to average random walk lengths:
10, 503 , 100 respectively as well as different number m
of random walks for the construction of the GRF-vector:
m = 1, 2, 10, 20, 40, 80. We fixed: σ2 = 0.2. The reported
empirical relative Frobenium norm errors were obtained by
averaging over s = 10 independent experiments. We also
reported their corresponding standard deviations.

The results are presented in Fig. 2. We see that different
pterm result in very similar error-curves and thus in practice
it suffices to take pterm = 0.1 (average walk length l = 10),
regardless of the density of the graph, even for graphs with
N > 1000 nodes. Interestingly, error-curves are also very
similar across all the graphs. Furthermore, small number
of random walks m = 80 suffices to obtain ϵ < 2%. The
standard deviations are reported on the plots, but since they
are very small, we also include them in Sec. A.1.
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Figure 2. Relative Frobenius norm error for the setting described in Sec. 5.2. First two rows correspond to d = 1 and last two to d = 2.
We considered the following graphs (from upper-left to lower-right): Erdos-Renyi graph with edge prob. 0.4 (ER-0.4, N = 1000), ER-0.1
(N = 1000), dolphins (N = 62), eurosis (N = 1272), Networking (N = 1249), Databases (N = 1046), Encryption-and-Compression
(N = 864), Hardware-and-Architecture (N = 763).

5.3. K-means algorithm with graph kernels

We applied GRFs in kernelized k-means algorithm (Dhillon
et al., 2004) to cluster graph nodes using graph kernels. As
in the previous section, we applied d-regularized Laplacian
graph kernels with d = 1, 2. Furthermore, we have mea-
sured the impact of the additional dimensionality reduction
techniques (anchor points and JLT-based reduction) on the
clustering quality. For each variant, we reported the so-
called clustering error defined as ϵ = Perror

(N2 )
, where Perror

stands for the number of pairs of nodes {i, j} of the graph
that were classified differently by the groundtruth algorithm
and its GRF-variant (e.g. they belonged to the same cluster
in the groundtruth variant and two different clusters in the
GRF one or vice versa). In all the experiments we used
σ2 = 0.2, p−1

termm ≤ 400 and K ≤ 0.6N . We chose the
no of clusters nb clusters = 3. The results are in Table 2.
GRFs, even with more accurate of the: anchor points and
JLTs methods provide accurate approximation, for some
graphs (e.g. citeseer with N = 2120) with error < 1%.

Kernel, method citeseer Databases polbooks karate

d=1, reg 0.020 0.170 0.28 0.11
d=1, min(jlt, anc) 0.010 0.097 0.323 0.314

d=2, reg 0.008 0.140 0.12 0.032
d=2, min(jlt, anc) 0.010 0.098 0.264 0.198

Table 2. Clustering errors for the experiments from Sec. 5.3 (for
the d-regularized Laplacian kernel). Different tested methods:
(1) regular GRFs (reg, no compression), (2) GRFs with the more
accurate among: JLT (jlt), and anchor points (anc) techniques.

6. Conclusion
We have proposed in this paper a new paradigm of graph
random features (GRFs) for the unbiased and computation-
ally efficient estimation of various kernels defined on the
nodes of the graph. GRFs rely on the families of random
walks initiated in different nodes, depositing loads in the
visited vertices of the graph. The computation of GRFs can
be also easily paralellized. We have provided detailed theo-
retical analysis of our method and exhaustive experiments,
involving in particular kmeans clustering on graphs.
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Kernel, Graph, pterm m=2 m=10 m=20 m=40 m=80

d=1, ER-0.4-1000, 0.1 0.0007259063790268863 0.0001903398359981377 0.00011763026820191872 8.79471573831236e-05 4.29321194947306e-05
d=1, ER-0.4-1000, 0.06 0.0005435175726472963 0.00013151409601958063 9.575658877244471e-05 4.3906087463097626e-05 4.0755077316485244e-05
d=1, ER-0.4-1000, 0.01 0.00022105611802712477 9.098043091730836e-05 7.626805728093205e-05 3.874109025559475e-05 3.7022093881032226e-05

d=1, ER-0.1-1000, 0.1 0.00616767931977833 0.004336727765953796 0.003934111721006881 0.0027504647840658337 0.0013502125948369828
d=1, ER-0.1-1000, 0.06 0.011169983712293842 0.004103948449818662 0.002123051971417801 0.0015286651824786544 0.001809200930986754
d=1, ER-0.1-1000, 0.01 0.008926804414936252 0.003593843664943383 0.002372436626864906 0.002528684013474355 0.0013236120502376739

d=1, dolphins, 0.1 0.00616767931977833 0.004336727765953796 0.003934111721006881 0.0027504647840658337 0.0013502125948369828
d=1, dolphins, 0.06 0.011169983712293842 0.004103948449818662 0.002123051971417801 0.0015286651824786544 0.001809200930986754
d=1, dolphins, 0.01 0.008926804414936252 0.003593843664943383 0.002372436626864906 0.002528684013474355 0.0013236120502376739

d=1, eurosis, 0.1 0.0060276707312881305 0.00092538589272756 0.0006342279681653932 0.0004384555835094276 0.00018536188888052218
d=1, eurosis, 0.06 0.004751929441074538 0.001020005565545354 0.000889042372679839 0.0005086950138860196 0.0002556955468331719
d=1, eurosis, 0.01 0.0037293050211431988 0.0007734429750918471 0.0006679713650390155 0.0004663147033666988 0.00029012600990115697

d=1, Networking, 0.1 0.00354911912464601 0.0008569845357120783 0.0007800162218792217 0.000486001643398867 0.0003402086731748513
d=1, Networking, 0.06 0.004330451321925086 0.0011314015990526772 0.0009955841652321848 0.0005356434310080785 0.0002993746309815702
d=1, Networking, 0.01 0.0035153340017524855 0.0015484554089057877 0.0009127004247725001 0.00024227482240693019 0.0002548717948222871

d=1, Databases, 0.1 0.004920247514564321 0.0010238037860984882 0.0006558270450890158 0.00046304862763166114 0.0003245028197695966
d=1, Databases, 0.06 0.004526013840391158 0.000963926605473951 0.0007692921395363883 0.0005198262247493105 0.0004310588594538151
d=1, Databases, 0.01 0.004943075493204197 0.0008015939178439096 0.000780276410600827 0.0003613319043567048 0.0003127005621608197

d=1, Enc&Comp, 0.1 0.0048278192814453745 0.0010825306683229289 0.0008869476479790293 0.0007716890723512931 0.0003704820179027577
d=1, Enc&Comp, 0.06 0.0020893222009769137 0.0012842314605827185 0.0004723607601931406 0.0006878263190053518 0.0003750554030785581
d=1, Enc&Comp, 0.01 0.00504474860734935 0.0013024704440231251 0.0009294029364896054 0.000660959802814907 0.00020474232102263236

d=1, Hard&Arch, 0.1 0.004611366876905434 0.0009512468516057303 0.0012081728737839681 0.0007626404640344821 0.00040508532045909195
d=1, Hard&Arch, 0.06 0.005063954232425586 0.001065299727136788 0.0012631414043132634 0.0006979985117773265 0.000421532809850973
d=1, Hard&Arch, 0.01 0.00274347868585054 0.0007186205865051595 0.0007365735158683657 0.00045503009550719795 0.00040966993435182316

d=2, ER-0.4-1000, 0.1 0.0005611717968776918 0.00027274809547358435 0.00011320568751584864 6.757544191642404e-05 6.039762637275414e-05
d=2, ER-0.4-1000, 0.06 0.0004256206092542753 0.0001255914552193544 8.877177278468484e-05 4.854379424147713e-05 4.386961653719971e-05
d=2, ER-0.4-1000, 0.01 0.0003048387437939227 8.612938808993734e-05 8.861321498224955e-05 3.118698564760755e-05 2.6440001535795706e-05

d=2, ER-0.1-1000, 0.1 0.0005236255151350093 0.00022767131458694158 0.00013017955748542738 9.70665903350761e-05 4.911946309935634e-05
d=2, ER-0.1-1000, 0.06 0.0005865169497721389 0.00025410090630458796 0.00019059306793781872 0.00011444739288479127 7.032284297507503e-05
d=2, ER-0.1-1000, 0.01 0.00046667795838897455 0.00027540444251076277 0.00010490895428890273 0.00013378373593132866 7.724500570322393e-05

d=2, dolphins, 0.1 0.008072537726967633 0.00571208308059399 0.0051191001841705405 0.0017181464186888107 0.001090082709032633
d=2, dolphins, 0.06 0.009755110708905598 0.00389170462370401 0.0025002668985388667 0.0016741448929614132 0.001371113891426613
d=2, dolphins, 0.01 0.006479716073801618 0.0024690593909838824 0.0016779353904653569 0.0018280376993101016 0.0008140444788820552

d=2, eurosis, 0.1 0.002985106085538542 0.000876946183305746 0.0007680934798181345 0.0005249300647113408 0.0002331259532404271
d=2, eurosis, 0.06 0.0041183672021622205 0.0008723728098050511 0.0007700295259631496 0.0005934744828608486 0.00017965740908675555
d=2, eurosis, 0.01 0.003124420288948241 0.0012421356753991252 0.000522089061052929 0.00036706376215862906 0.00019123151674677616

d=2, Networking, 0.1 0.003894812593269389 0.0012115481023431956 0.000687373457322389 0.0003709238725270653 0.0002917580174452871
d=2, Networking, 0.06 0.004866701669257291 0.0010784522973902714 0.0007199911928308271 0.000574302270555022 0.00040290056035626387
d=2, Networking, 0.01 0.003824906545448091 0.0014371944936820223 0.0003065956016769412 0.0003731510983670436 0.0003803384907960821

d=2, Databases, 0.1 0.004920247514564321 0.0010238037860984882 0.0006558270450890158 0.00046304862763166114 0.0003245028197695966
d=2, Databases, 0.06 0.004526013840391158 0.000963926605473951 0.0007692921395363883 0.0005198262247493105 0.0004310588594538151
d=2, Databases, 0.01 0.004943075493204197 0.0008015939178439096 0.000780276410600827 0.0003613319043567048 0.0003127005621608197

d=2, Enc&Comp, 0.1 0.006724706042286198 0.0014845981818248232 0.0010458737350497948 0.0008081389763835953 0.00035644825231180745
d=2, Enc&Comp, 0.06 0.004100807796697153 0.0011827406795993489 0.0008530016288033847 0.0007814930040936276 0.00024164229327689848
d=2, Enc&Comp, 0.01 0.002887642103947921 0.0009055525946103308 0.0006739056569936388 0.0005584100220945653 0.00042133127128199215

d=2, Hard&Arch, 0.1 0.003095039050038908 0.00126431072738253 0.000531917678481419 0.00047539738617717955 0.0005823370820758574
d=2, Hard&Arch, 0.06 0.0028895869476586425 0.0017287614112698189 0.0012669302897452082 0.0005934700975376661 0.0003548026338104648
d=2, Hard&Arch, 0.01 0.0029574141141546616 0.0014192560156932896 0.0008739945261346017 0.0006409254479486006 0.0005212426748758263

Table 3. Standard deviations for the experiments from Sec. 5.2 (for the d-regularized Laplacian kernel) for m > 1.

A. Appendix
A.1. Additional experimental details

In this section, we report standard deviations for the experiments conducted in Sec. 5.2. The results are presented in Table 3.

A.2. D-regularized Laplacian kernels

We show here that as long as the regularized Laplacian kernel is well-defined, the d-regularized variants for d > 1 are valid
positive definite kernels. The following is true:

Theorem A.1. If a matrix IN + σ2L̃G is invertible and the inverse has positive entries, then the d-regularized Laplacian
kernel is a valid positive definite kernel.

Proof. Denote A = σ2L̃G. Note first that, by Perron-Frobenius Theorem, we have: ρ(A) = λmax(A), where λmax(A)
stands for the largest eigenvalue of A (note that all eigenvalues of A are real since A is symmetric). Then for n sufficiently
large we have: ∥A∥n ≤ (1 − ξ)k for some ξ ∈ (0, 1). Thus the Neumann series:

∑∞
n=0 A

n converges to: (IN −A)−1.
Thus we can rewrite: (IN −A)−d = (

∑∞
n=0 A

n)d. Therefore we have: (IN −A)−d =
∑

n cd,nA
n for some sequence of
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coefficients: (cd,0, cd,1, ...). We conclude that (IN −A)−d is symmetric for any d = 1, 2, ... (since A is). We can rewrite:
(IN −A)−(d+1) = XY, where: X = (IN −A)−d and Y = (IN −A)−1. We will proceed by induction on d. We can then
conclude that matrix (IN −A)−(d+1) = XY is a product of two positive definite matrices. Furthermore, (IN −A)−(d+1)

is symmetric, as we have already observed. But then it is a positive definite matrix.

A.3. Concentration results for GRFs with the base sampler

We inherit the notation from the main body of the paper, in particular from the proof of Theorem 3.2. We also denote:
A(ω) =

∏l1
s=1

deg(vs)
1−pterm

, where: ω = (v1, v2, ..., vl1+1). Furthermore, for two walks: ω1, ω2,we use the following notation:
ω1 ⊂pre ω2 if ω1 is a strict prefix of ω2 and ω1 ⊆pre ω2 if ω1 is a prefix (not necessarily strict) of ω2. We prove the
following concentration result.
Theorem A.2. Consider an unbiased estimation of the matrix K = (IN − U)−2 via M = B(B′)⊤ for matrices
B,B′ ∈ RN×N , as in Theorem 3.2. Then the following is true for any i, j ∈ {1, ..., |V(GU)|}, i ̸= j:

Var(M(i, j)) =
1

m2
(Λ−K2(i, j)) (23)

for Λ defined as follows:

Λ =
∑
x1∈V

∑
x2∈V

∑
ω1∈Ω(i,x1)

∑
ω2∈Ω(j,x1)

∑
ω3∈Ω(i,x2)

∑
ω4∈Ω(j,x2)

w(ω1)w(ω2)w(ω3)w(ω4)Γ(ω1, ω2, ω3, ω4) (24)

and where:

Γ(ω1, ω2, ω3, ω4) =


1

A(ω2)A(ω4)
if ω1 ⊂pre ω2 and ω3 ⊂pre ω4

1
A(ω2)A(ω3)

if ω1 ⊂pre ω2 and ω4 ⊆pre ω3

1
A(ω1)A(ω4)

if ω2 ⊆pre ω1 and ω3 ⊂pre ω4

1
A(ω1)A(ω3)

if ω2 ⊆pre ω1 and ω4 ⊆pre ω3

(25)

Proof. We have the following:

Var(M(i, j)) =
1

m2

m∑
k=1

m∑
l=1

Xk,l, (26)

where:
Xk,l =

∑
x∈V

∑
ω1∈Ω(i,x)

∑
ω2∈Ω(j,x)

w(ω1)w(ω2)1[ω1 ⊆pre Ω̃(k, i)]1[ω2 ⊆pre Ω̃(l, j)] (27)

Note that since different random walks are chosen independently, all random variables Xk,l are independent and therefore:

Var(M(i, j)) =
1

m2
(E[X2

1,1]− (E[X1,1])
2) (28)

Thus, from the unbiasedness of the estimator, we obtain:

Var(M(i, j)) =
1

m2
(E[X2

1,1]−K2(i, j)) (29)

It suffices to prove that: E[X2
1,1] = Λ. Note that we have:

E[X2
1,1] = E[

∑
x1∈V

∑
x2∈V

∑
ω1∈Ω(i,x1)

∑
ω2∈Ω(j,x1)

∑
ω3∈Ω(i,x2)

∑
ω4∈Ω(j,x2)

w(ω1)w(ω2)w(ω3)w(ω4)

1[ω1 ⊆pre Ω̃(1, i)]1[ω2 ⊆pre Ω̃(1, j)]

1[ω3 ⊆pre Ω̃(1, i)]1[ω4 ⊆pre Ω̃(1, j)]]

(30)

Thus we have:

E[X2
1,1] =

∑
x1∈V

∑
x2∈V

∑
ω1∈Ω(i,x1)

∑
ω2∈Ω(j,x1)

∑
ω3∈Ω(i,x2)

∑
ω4∈Ω(j,x2)

w(ω1)w(ω2)w(ω3)w(ω4)

P[1[ω1 ⊆pre Ω̃(1, i)]1[ω2 ⊆pre Ω̃(1, j)]

1[ω3 ⊆pre Ω̃(1, i)]1[ω4 ⊆pre Ω̃(1, j)]]

(31)
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We conclude the proof, observing that:

Γ(ω1, ω2, ω3, ω4) = P
[
1[ω1 ⊆pre Ω̃(1, i)]1[ω2 ⊆pre Ω̃(1, j)]1[ω3 ⊆pre Ω̃(1, i)]1[ω4 ⊆pre Ω̃(1, j)]

]
(32)

Completely analogous analysis can be conducted for i = j, but the formula is more convoluted since certain pairs of walks
sampled from i and j are clearly no longer independent as being exactly the same (namely: the kth sampled walk from i and
the kth sampled walk from j for k = 1, 2, ...,m).

A.4. Additional derivations leading to Equation 18

For Reader’s convenience, we will here explain in more detail the derivations leading to Eq. 18. For the simplicity, we will
assume that m = 1 since for larger m the formula is obtained simply by averaging over all pairs of random walks from node
i and j.

Note first that directly from the definition of GRFs and Algorithm 1, we get:

ϕ(i)⊤ϕ(j) =
∑

x∈V(GU)

 ∑
r∈Kx(Ω̄(1,i))

loadΩ̄(1,i)(x, r)

 ∑
v∈Kx(Ω̄(1,j))

loadΩ̄(1,j)(x, v)

 , (33)

where Kx(ω) for a given walk ω returns the set of these time indices when ω hits x (first vertex of the walk gets time
index zero, next one, time index one, etc.) and furthermore loadω(x, c) returns the increment of the load in x added to the
current load in time c (see: Algorithm 1, while-loop, point 5). Now note that each r can be identified with its corresponding
prefix-subwalk ω1 and each v can be identified with its corresponding prefix-subwalk ω2 Finally, observe that the increment

of the load that ω1 contributes to is precisely: w(ω1)
∏l1

s=1

(pi
1,s)

−1

1−pterm
and the increment of the load that ω2 contributes to is

precisely: w(ω2)
∏l2

t=1

(pj
1,t)

−1

1−pterm
(see: Algorithm 1, while-loop, point 4). That gives us Eq. 18.
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