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Abstract

In the field of continual learning, models are designed to learn tasks one after the
other. While most research has centered on supervised continual learning, recent
studies have highlighted the strengths of self-supervised continual representation
learning. The improved transferability of representations built with self-supervised
methods is often associated with the role played by the multi-layer perceptron
projector. In this work, we depart from this observation and reexamine the role
of supervision in continual representation learning. We reckon that additional
information, such as human annotations, should not deteriorate the quality of
representations. Our findings show that supervised models when enhanced with a
multi-layer perceptron head, can outperform self-supervised models in continual
representation learning.

1 Introduction

Figure 1: In a two-task continual learning scenario,
supervised learning (SL) results in representations
that perform well on the second task but poorly
on the first task. On the other hand, representa-
tions trained with self-supervised learning (SSL)
have higher first-task performance but they under-
perform on the second task. We show that simple
modifications to supervised learning (SL+MLP)
yield representations that are superior on the first
task and on par with SL on the second task. We
report average over 6 different scenarios.

In continual learning (CL), the goal of the model
is to learn new tasks sequentially. A number of
recent works study continual learning from a rep-
resentation learning perspective and show that
unsupervised approaches build more robust rep-
resentations when trained continually: Madaan
et al. (2022) shows that self-supervised learn-
ing (SSL) methods build representations that are
more robust to forgetting than supervised learn-
ing (SL) while Davari et al. (2022) notices that
training SimCLR (Chen et al., 2020) have advan-
tageous properties for continual learning com-
pared to SL. However, it is still counter-intuitive
that access to more information (labels) results
in worse representations in continual learning.

One of the potential reasons is the transferability
gap between supervised and unsupervised learn-
ing. It was believed that the superior transferabil-
ity of unsupervised learning can be attributed to
a special design of contrastive loss (Zhao et al.,
2020) or lack of annotations during training (Ericsson et al., 2020). However, recent works (Wang
et al., 2021; Sariyildiz et al., 2023) identify that a multi-layer perceptron (MLP) projector commonly
used in SSL (Chen & He, 2020; Grill et al., 2020) is a crucial component that improves transferability
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of SSL models. Following that founding Wang et al. (2021); Sariyildiz et al. (2023) use an MLP
projector to improve transferability of SL and achieve state-of-the-art transfer learning performance,
surpassing unsupervised methods.

In this work, encouraged by these advancements in improving the transferability of supervised models,
we revisit supervision for continual representation learning. We argue that additional information
(human annotations) should not hurt the quality of representations in continual learning, as suggested
by Madaan et al. (2022). Motivated by the latest study on transferability of representations in self-
supervised and supervised learning, we aim to improve transferability between tasks in continual
learning. We are the first to show that supervised models can continually learn representations of
higher quality than self-supervised models when trained with a simple MLP head (see Fig. 1).

The main contributions of this paper are as follows. (1) We empirically show that SL equipped with
a simple MLP projector can learn higher-quality representations than SSL methods in continual
finetuning scenarios. (2) We show that the use of the MLP projector can be coupled with several
continual learning methods, further improving their performance. (3) We shed light on the reasons
behind the strong performance of supervised learning with MLP projector: better transferability,
lower forgetting, and increasing diversity of representations.

2 Related Work

Self-supervised learning In this work, we use BarlowTwins (Zbontar et al., 2021) (denoted as SSL)
which considers an objective function measuring the cross-correlation matrix between the features and
SimCLR (Chen et al., 2020) which uses contrastive learning based on noise-contrastive estimation. A
number of studies (Bordes et al., 2023; Chen & He, 2020; Zbontar et al., 2021; Jing et al., 2022) show
that an MLP projector between the encoder and the loss function is a crucial component to prevent the
collapse of the representations and improve their transferability. Transferable representations Wang
et al. (2021) found out that adding a projection network boosts the transferability of the supervised
models’ features as well. This was further explored in Sariyildiz et al. (2023) and it was shown that it
is possible to build representations that are good for both the source and the downstream tasks. In
this work, we revisit those findings in the context of models learned on a sequence of tasks.

Supervised Continual Learning (SCL) aims to create systems that can learn to solve novel tasks
using new annotated data while retaining the ability to solve previously learned tasks (Parisi et al.,
2019). Unsupervised Continual Learning (UCL) aims to improve the quality of learnt represetnta-
tions utilizing an ever-changing stream of unlabeled data. Recent works (Fini et al., 2022; Madaan
et al., 2022; Gomez-Villa et al., 2021) apply SSL in the UCL setting and claim their superior results
for continual representation learning.

3 Experimental Setup

Datasets We utilize four different datasets: CIFAR10 (Krizhevsky, 2009) (C10), CI-
FAR100 (Krizhevsky, 2009) (C100), SVHN (Netzer et al., 2011) and ImageNet100 (Tian et al.,
2019) (IN100). We use D/N to denote that dataset D is split into N tasks with an equal number of
classes in each task without overlapping ones. We use A −→ B to denote task shift meaning that the
model was trained on two tasks, the first one was dataset A and the second one was dataset B.

Methods We use the following supervised methods: (1) SL - backbone with linear head with a
cross-entropy loss function, (2) SL+MLP - SL with MLP projector added between the backbone and
a linear head that is discarded at test-time, (3) t-ReX (Sariyildiz et al., 2023), and (4) SupCon (Khosla
et al., 2020). For CL strategies we use LwF (Li & Hoiem, 2018), CaSSLe (Fini et al., 2022) and
PRF (Gomez-Villa et al., 2021). We use ResNet-18 (He et al., 2016) as a feature extractor.

Evaluation We use k-NN classifier to evaluate the quality of representations following Fini et al.
(2022); Madaan et al. (2022) and Nearest Mean Classifier (NMC) as in Rebuffi et al. (2017); Yu et al.
(2020) to evaluate the stability of representations. We use CKA (Kornblith et al., 2019) to measure
the similarity between representations of two models. Moreover, we use forgetting (F ) and forward
transfer (FT ) commonly used in continual learning (Lopez-Paz & Ranzato, 2017). We also measure
task exclusion difference EXC (Hess et al., 2023) to evaluate the level of retention of task-specific
features. We use subscripts to indicate the evaluation dataset, e.g. AccC10 means "accuracy on C10".
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Figure 2: SL+MLP: (1) achieves
strong performance after the initial
task compared to SL which indicates
that it produces representations that
are transferable to the unseen tasks;
(2) is the only method that is able to
accumulate knowledge learned on a
sequence of tasks. We report task-
agnostic k-NN accuracy on the whole
dataset (including unseen tasks).

Method CL strategy C100/5 C100/20 IN100/5

SUPERVISED CONTINUAL LEARNING

SL Finetune 38.5±0.4 17.2±0.3 35.3±1.3
LWF 57.4±0.2 45.2±1.2 60.5±0.3
PFR 57.7±0.4 44.4±1.3 58.7±0.2

SL+MLP Finetune 61.9±0.5 47.1±0.7 62.4±0.4
LWF 58.7±0.2 51.9±0.1 60.4±0.2
PFR 63.6±0.2 54.5±0.2 65.2±0.1

t-ReX Finetune 59.2±0.6 50.8±0.1 59.2±0.6
LwF 58.3±0.4 50.4±0.1 58.6±1.0
PFR 60.9±0.5 53.4±0.3 63.9±0.6

SupCon Finetune 49.4±0.3 30.0±0.7 57.6±0.6
CaSSLe 61.1±0.2 49.2±1.2 70.4±0.6
PFR 57.0±0.2 51.2±0.8 68.0±0.7

UNSUPERVISED CONTINUAL LEARNING

BarlowTwins Finetune 54.1±0.3 40.0±0.8 57.0±0.4
CaSSLe 58.6±0.6 49.3±0.1 64.9±0.1
PFR 57.2±0.2 46.0±0.7 61.1±0.2

SimCLR Finetune 48.9±0.4 33.4±0.5 54.7±0.4
CaSSLe 55.9±0.5 48.2±0.4 59.3±0.5
PFR 53.8±0.3 49.4±0.1 57.7±0.2

Table 1: k-NN accuracy of the learnt representations. The
best result in bold and second best underlined.

4 Experimental results

Fig. 2 presents our main results showing that supervised models can build stronger representations
than self-supervised models under continual finetuning, contrary to previous beliefs (Madaan et al.,
2022). We recognize that the key component to enhancing the performance of supervised models
is an additional MLP projector during training and discarded afterward. We identify two factors
contributing to superior results of SL+MLP. Firstly, we observe that the performance of supervised
models after the initial task is largely improved by the addition of the MLP projector, resulting
in accuracy close to SSL models. In order to achieve good task-agnostic accuracy on the whole
dataset (seen and unseen classes), the model trained on a single task needs to perform well on
unseen data. Therefore, we attribute the advantage of SL+MLP to the increased transferability of
representations induced by MLP projector. Secondly, we notice that SL+MLP is the only method
able to incrementally accumulate knowledge and consistently improve performance.

Tab. 1 presents extended results including multiple SL and SSL approaches in continual finetuning
and paired with different CL methods. Firstly, we observe that all the supervised methods equipped
with the projector (SL+MLP, t-ReX, and SupCon) significantly outperform simple SL. What is worth
noting is the fact that all these methods were trained with different supervised losses: SL+MLP uses
cross-entropy, t-ReX uses cosine softmax cross-entropy and SupCon uses supervised contrastive loss.
Secondly, we observe that the positive effects of the MLP projector and CL strategy compound. As a
result, the best models are those (1) trained in a supervised way (2) with the use of the MLP projector
and (3) coupled with CL strategy based on temporal learnable projection, namely CaSSLe or PFR.

We investigate the quality of representations built by supervised and self-supervised training in
Fig. 3. SL+MLP outperforms both SSL and SL in most of the experiments. In Tab. 2 we observe high
representation forgetting for SL, significantly lower for SSL, and the lowest for SL equipped with
MLP projector. It also shows the results of task exclusion comparison (EXC). SL achieves small
positive EXC meaning that it forgets most features specific to the initial task. SL+MLP achieves
the highest EXC which shows that it is able to successfully retain a large portion of task-specific
features. Surprisingly, SSL exhibits negative EXC. It means that it is better to train SSL model from
scratch on another task than to finetune the model pretrained on the task of interest. In Tab. 2 we
report CKA similarity between the models trained on C10 and the rest of the models. We observe
that usage of MLP head in SL increases CKA between the C10 model and other models. Moreover,
the models pretrained on C10 and finetuned on another task have higher similarity to C10 models
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Training SL SSL SL+MLP

sequence AccC10 ↑ FC10 ↓ EXCC10 ↑ CKAC10 ↑ AccC10 ↑ FC10 ↓ EXCC10 ↑ CKAC10 ↑ AccC10 ↑ FC10 ↓ EXCC10 ↑ CKAC10 ↑
C10 92.6±0.1 - - - 88.8±0.1 - - - 93.3±0.1 - - -

C100 74.9±0.2 - - 0.46±0.00 80.8±0.1 - - 0.56±0.01 84.5±0.4 - - 0.49±0.01
C10−→C100 76.1±0.1 16.6±0.2 1.2±0.3 0.50±0.00 79.1±0.2 9.7±0.3 -1.8±0.2 0.52±0.01 88.8±0.2 4.5±0.3 4.3±0.6 0.57±0.00
SVHN 21.8±0.3 - - 0.05±0.00 58.6±1.2 - - 0.27±0.01 56.3±0.2 - - 0.20±0.01
C10−→SVHN 22.6±0.5 70.1±0.5 0.8±0.4 0.05±0.01 54.9±0.7 33.8±0.7 -3.7±1.9 0.25±0.01 62.7±0.8 30.6±0.8 6.4±1.0 0.25±0.01

Table 2: We observe high representation forgetting for SL, significantly lower for SSL, and the lowest
for SL+MLP. SL is able to preserve a small fraction of task-specific features while SL+MLP can
retain much more, based on their EXC scores. Surprisingly, SSL achieves negative EXC

Figure 3: SL+MLP (blue) achieves better repre-
sentations than SL (red) and SSL (green) in most
sequences of tasks.

Method C10 C100−→C10 SVHN−→C10

AccC10 ↑ AccC10 ↑ FTC10 ↑ AccC10 ↑ FTC10 ↑
SL 92.6±0.1 94.0±0.2 1.3±0.3 91.5±0.2 -1.1±0.3
SSL 88.8±0.1 89.2±0.1 0.5±0.2 88.5±0.1 -0.3±0.2
SL+MLP 93.3±0.1 94.3±0.1 1.0±0.0 93.2±0.2 -0.1±0.1

Table 3: All methods benefit prom pretraining
on C100 which is semantically close to C10.
However, pretraining on semantically distant
SVHN hinders the performance of SL.

Figure 4: Representations learned with SL+MLP (right)
exhibit desirable properties from the continual learning
point of view: (1) they consist of a more diverse set of
features (contrary to SL, left); (2) they improve feature
diversity when learning new tasks consistently across all
the presented settings. Vertical dashed lines denote 95% of
the variance explained.

Figure 5: Task aware NMC accuracy
on C10. After training on C10 (T1),
both SL and SSL models achieve high
NMC performance (yellow). After
training the second task (T2), the near-
est mean classification using old pro-
totypes results in performance degra-
dation (green). We calculate an upper-
bound accuracy after training on the
second task by recalculating the proto-
types using old data and a new back-
bone (purple). Note that it is not possi-
ble in SCL as old data is inaccessible.
Gray dotted line marks random guess
performance.

than the models trained on another dataset from scratch, which is not necessarily the case for SL
models. SSL models have the highest CKA scores, however, they usually underperform compared
to SL+MLP suggesting that SSL produces similar but less discriminative features. We present the
results of the forward transfer evaluation in Tab. 3. All the methods benefit from pretraining on
CIFAR100 which is semantically close to CIFAR10. However, pretraining on semantically distant
SVHN hinders the performance of SL but it hardly influences the performance of SSL and SL+MLP.

To gain further insight into the properties of continually trained representations, we analyze the
spectra of representations following the procedure from Jing et al. (2022). We perform singular value
decomposition of the covariance matrix of the representations C = USV T , where S = diag(σk)
and σk is k-th singular value of C. Fig. 4 presents how singular value spectra change after each task
for different training methods and different sequences of tasks. Firstly, we observe that SL exhibits
signs of neural collapse (Papyan et al., 2020) - a large fraction of variance is described by a few
dimensions roughly equal to the number of classes in the training set. This is an undesirable property
in continual representation learning as the representations should be more versatile and useful not
only for current but also for past and future tasks. Adding MLP to SL prevents neural collapse and
results in features’ properties more similar to SSL. Secondly, we observe that for SL, the diversity of
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the features decreases in subsequent tasks. SSL and SL+MLP are able to consistently improve the
diversity of the representations suggesting its superiority in continual representation learning.

We define representations as stable when they do not drift in the representation space when the
network is trained on a new task. The stability provides a different perspective when evaluating
continually trained representations. It is irrelevant when the only objective is to continually learn
representations, however, it is a desired property when we also want to solve downstream tasks
continually (Yu et al., 2020). The results are presented in Fig. 5. Representations of all the methods
are not stable in high distribution shift scenario C10−→SVHN. However, in a low distribution shift
scenario, C10−→C100, SL exhibits high stability while SL+MLP underperforms in that regard. Note
that performance degradation can be only partially attributed to forgetting of representations as the
upper-bound performance is still high after training on the second task for most of the methods. These
results suggest that there exists a trade-off between the stability and expressiveness of representations
trained continually as methods that build stronger representations tend to have lower stability.
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