
On Reasoning Strength Planning
in Large Reasoning Models

Leheng Sheng1 An Zhang2∗ Zijian Wu 1 Weixiang Zhao3 Changshuo Shen2 Yi Zhang2
Xiang Wang2 Tat-Seng Chua1

1National University of Singapore
2University of Science and Technology of China

3Harbin Institute of Technology
leheng.sheng@u.nus.edu, anzhang@u.nus.edu, zijianwu0522@gmail.com,

wxzhao@ir.hit.edu.cn, stephen_shen@mail.ustc.edu.cn,
zy1230@mail.ustc.edu.cn, xiangwang1223@gmail.com, dcscts@nus.edu.sg

Abstract

Recent studies empirically reveal that large reasoning models (LRMs) can auto-
matically allocate more reasoning strengths (i.e., the number of reasoning tokens)
for harder problems, exhibiting difficulty-awareness for better task performance.
While this automatic reasoning strength allocation phenomenon has been widely
observed, its underlying mechanism remains largely unexplored. To this end, we
provide explanations for this phenomenon from the perspective of model activa-
tions. We find evidence that LRMs pre-plan the reasoning strengths in their
activations even before generation, with this reasoning strength causally con-
trolled by the magnitude of a pre-allocated directional vector. Specifically,
we show that the number of reasoning tokens is predictable solely based on the
question activations using linear probes, indicating that LRMs estimate the re-
quired reasoning strength in advance. We then uncover that LRMs encode this
reasoning strength through a pre-allocated directional vector embedded in the
activations of the model, where the vector’s magnitude modulates the reasoning
strength. Subtracting this vector can lead to reduced reasoning token number
and performance, while adding this vector can lead to increased reasoning token
number and even improved performance. We further reveal that this direction
vector consistently yields positive reasoning length prediction, and it modifies the
logits of end-of-reasoning token </think> to affect the reasoning length. Finally,
we demonstrate two potential applications of our findings: overthinking behavior
detection and enabling efficient reasoning on simple problems. Our work pro-
vides new insights into the internal mechanisms of reasoning in LRMs and offers
practical tools for controlling their reasoning behaviors. Our code is available at
https://github.com/AlphaLab-USTC/LRM-plans-CoT.

1 Introduction

Large reasoning models (LRMs) [1–3] have demonstrated exceptional performance across a variety
of complex reasoning tasks, such as mathematical problem solving [4–6], code generation [7, 8],
and scientific question answering [9]. Here we take a closer look at LRMs’ ability to allocate
reasoning strength commonly quantified by the number of reasoning tokens generated during infer-
ence. Increasing reasoning strength has been shown to substantially improve model performance on

∗An Zhang is the corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/AlphaLab-USTC/LRM-plans-CoT

(a) Reasoning length prediction (b) Activation shift direction (c) Reasoning length manipulation

Figure 1: (1a) The reasoning length is predictable before the generation of the first reasoning token.
(1b) The activations of questions shift towards a pre-allocated direction as difficulty increases. Orange
stars denote mean activations of different difficulty levels. (1c) Steering activations of LRMs with this
direction vector can causally affect the reasoning token numbers, thereby affecting the performance.

complex reasoning tasks [2, 10]. As a result, it has emerged as a critical factor for both performance
optimization and controllable model behavior [11–13].

Recent findings have revealed two key properties of reasoning strength in LRMs: it can be auto-
matically allocated based on problem difficulty [1, 14, 2, 15] and it can be manually controlled
through intervention [16–20]. On the one hand, LRMs tend to allocate more reasoning tokens to
harder questions, reflecting an implicit adaptation to task complexity [12, 21–24]. On the other hand,
reasoning strength can also be explicitly manipulated by prompting a desired length, typically enabled
through supervised fine-tuning (SFT) [17] or reinforcement learning (RL) [16] with strength-aware
objectives. These empirical observations suggest that LRMs may have automatic and controllable
mechanisms for reasoning strength modulation. However, the underlying nature and internal structure
of these mechanisms remain largely unexplored.

To fill this research gap, we investigate the underlying mechanism of reasoning strength in LRMs
by asking two key questions: (1) Do LRMs pre-plan their reasoning strength before generation?
(2) If so, in what form is this control encoded in advance? We approach these questions from the
perspective of model activations — that is, how the activations (i.e., latent representations of the
question prompt) vary in response to different levels of reasoning strength. For the first, we examine
whether the number of reasoning tokens can be predicted solely from the activations corresponding
to the input question. For the second, we explore how LRMs encode pre-allocation signals within
activations that modulate reasoning strength. Specifically, we employ a linear probe to predict the
reasoning token count from question activations, and further extract a pre-allocated direction vector
(i.e., pre-allocation vector), such that manipulating this vector within the activation space enables
control over the reasoning strength. Positive findings would indicate that LRMs plan reasoning
strength ahead of generation through specific pre-allocated activations.

Here we conduct preliminary experiments using DeepSeek-R1-distilled-Qwen on the MATH [5]
dataset, which contains math questions across five difficulty levels. As visualized in Figure 1, we
summarize three key empirical findings from the activation distribution of the LRM:

• Figure 1a shows that a well-trained linear predictor can estimate the number of reasoning tokens
from input activations, achieving a correlation of 0.84 between predicted and actual values. This
result indicates that the number of reasoning tokens is predictable prior to generation, suggesting
that LRMs pre-plan their reasoning strength in advance.

• As the question difficulty increases, activations consistently shift in a shared direction, as Figure
1b depicts. The activations of math problems exhibit a consistent trend shifting towards the
same direction. Specifically, mean difference vectors between high- and low-difficulty questions
consistently point in a similar direction, with magnitudes that correlate with question difficulty.

• As shown in Figure 1c, manipulating activations along this direction vector — with varying
magnitudes — causally modulates reasoning strength, leading to corresponding changes in LRM
performance on reasoning tasks.

2

These findings suggest that LRMs pre-plan their reasoning strength through pre-allocating a direction
vector, whose magnitude encodes the intended strength. To further investigate, we show that this
direction vector consistently produces positive predictions of reasoning token numbers, closely
aligning with actual values. Moreover, we observe that manipulating activations along this direction
influences the logit of the end-of-reasoning token </think>, indicating a causal role in terminating
the reasoning process. Based on these findings, we further discover two possible potentials of such
underlying mechanism of reasoning strength: overthink detection with the predictor and efficient
reasoning with activation steering [25].

2 Related Works

2.1 Large Reasoning Models

Large reasoning models (LRMs) [2, 1] have recently emerged as a new paradigm of large language
models for complex task solving through step-by-step reasoning [26, 27, 22]. These models conduct
explicit reasoning processes between special tokens of <think> and </think> before producing
final answers [10]. Recent studies have shown that LRMs can adaptively allocate reasoning strength
(i.e., the number of reasoning tokens) based on problem difficulty—they tend to allocate more
reasoning strength to harder questions to improve accuracy [12, 21–23]. Moreover, it is even possible
to specify the reasoning strength via prompting a desired number of reasoning tokens, which can be
realized through post-training with length-aware objectives [16, 17]. These phenomena suggest that
LRMs may possess some underlying mechanisms to plan and control the strength of their reasoning.

2.2 Planning in Language Models

Recent works show that, despite being trained solely on next-token prediction [28], large language
models (LLMs) exhibit certain planning capabilities [29–32]. For example, there is evidence that
LLMs can anticipate future tokens—such as planning rhyme schemes several lines ahead when
composing poems [31]. Moreover, studies have found that models may even pre-plan answer
confidence levels or the choices in multiple-choice questions [32]. Despite these findings, the
underlying mechanisms behind such planning capabilities remain largely unexplored, and it is still
unclear whether similar planning capabilities occur in LRMs. Inspired by these observations, this
work presents the first investigation into the reasoning planning capabilities of LRMs, and uncovers
the underlying mechanisms that control such planning.

2.3 Activation Steering with Linear Direction

Recent advances in mechanism explainability reveal that there exist linear directions inside the
activation space of language models that control specific semantical behaviors [33–35]. These
directions are typically derived from activation differences between contrasting semantics, such
as refusal versus compliance in responses [35]. Manipulating directions via activation addition
or subtraction enables behavior modification of language models during inference. It has been
evidenced that response style [25, 36], refusal behaviors [35, 37], and memory extraction capabilities
[38] have been encoded in linear directions. Recent studies find evidence that by concatenating
question prompts with their corresponding chain-of-thought (CoT) answers and computing activation
differences between responses of varying reasoning token numbers, it is possible to identify linear
directions that control the length of reasoning [19, 39, 40]. In this work, we take an important step
further, by demonstrating that such directions have been pre-allocated by LRMs upon observing the
question for reasoning strength control, even before generating the answer.

3 Reasoning Strength in LRMs is Pre-Planned

In this section, we explore the hypothesis that LRM plans the reasoning strength (e.g., the length of
the reasoning process) even before the beginning of the reasoning process [34, 32]. We use linear
probing to test this hypothesis [41, 34, 42, 32], predicting the length of reasoning with the activations
of the question solely. A good probing result will support our hypothesis [41].

3

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B
Figure 2: Layer-wise linear regression results

3.1 Experimental Setup

Linear probing. For each question, we extract the d-dimentional residual stream activation h(l) ∈ Rd

at the position of the start-of-reasoning <think> token, and aim to predict the subsequent reasoning
token number y ∈ R using a linear regression model based on h(l) at each layer l. We calculate y as
the number of tokens between the start-of-reasoning token <think> and the end-of-reasoning token
</think>. Formally, given a dataset of n samples, we construct an activation matrix H(l) ∈ Rn×d

where each row corresponds to the activation of one question, and corresponding scalar reasoning
token number Y ∈ Rn. We then learn a linear regression function Ŷ = H(l)W(l) + b(l) by
minimizing the following regularized loss:

Ŵ(l), b̂(l) = arg min
W(l),b(l)

∥∥∥Y − (H(l)W(l) + b(l))
∥∥∥2
2
+ α

∥∥∥W(l)
∥∥∥
1
. (1)

Equation (3) denotes the Lasso regression [43], where W(l) ∈ Rd and b(l) ∈ R are the learnable
parameters of this linear regression. A regularization term λ

∥∥W(l)
∥∥
1

is introduced for avoiding
overfitting, where α is a hyperparameter controlling the regularization strength. To implement this
Lasso regression, we use the Python package of scikit-learn [44]. The illustration and details of
this probing process can be found in Appendix B.

Datasets. We conduct the linear regression experiments on the MATH [5] dataset, where math
questions are divided into five groups according to their difficulty. We randomly split the dataset with
a ratio of 9:1 for training and testing.

Models. We conduct experiments on a wide range of open-source LRMs, including the distilled R1
model series [2] and the QwQ model [3]. The models we evaluate span a variety of scales, ranging
from 1.5B to 32B parameter sizes.

3.2 Results

Based on the linear regression experiments, we have the following observations:

LRMs plan their reasoning strength even before the generation of the first reasoning token,
and this planning capability becomes more evident as the layer depth increases. We visualize
the layer-wise prediction results in Figure 2. As shown in this figure, our linear probe can yield high
prediction results with correlation coefficients over 0.8 across a range of model sizes and different
model kinds, suggesting that the reasoning strength planning is possibly encoded in the model’s
internal activations before the generation of the first reasoning token. Moreover, as the layer becomes
deeper, the prediction results become better. This indicates that the reasoning planning capabilities
may be developed in the later layers of these models. The above observations suggest that LRMs
may have the capability of planning the reasoning strength in advance. We provide more similar
experimental results in the Appendix B.

4 LRMs Encode Reasoning Strength via Pre-allocated Direction Vectors

We investigate the underlying mechanism behind this planning capability, given the observation that
LRMs may plan their reasoning strength in advance as revealed above. Specifically, inspired by the
emerging phenomenon that linear representations can control specific behaviors in language models
[33, 35], we hypothesize that LRMs may modulate their reasoning planning through pre-allocated
direction vectors embedded within their activation space. We organize this section as follows: We

4

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B
Figure 3: Cosine similarity between pre-allocated vectors across different difficulties. These vectors
exhibit extremely high cosine similarities, indicating LRMs pre-allocate single direction vector for
distinguishing different question difficulties.

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B

Figure 4: Layer-wise cosine similarities between four pre-allocated vectors

first describe how to find the existence of such pre-allocated direction vectors using the difference-
in-means approach [45] in Section 4.1. After that, in Section 4.2, we reveal that such pre-allocated
direction vectors are indeed used for planning reasoning strengths, through their causal effects with
activation steering. Then, in Section 4.3, we point out that such pre-allocated direction vectors can be
used for predicting the reasoning strengths with the linear predictors we obtained above. Finally, in
Section 4.4, we uncover that the mechanism of length planning is ultimately achieved by adjusting
the logits of the end-of-think token </think> with such pre-allocated direction vectors.

4.1 Pre-allocated Direction Vectors Exist for Reasoning Strength Planning

In this section, we test the existence of pre-allocated direction vectors (i.e., pre-allocation vectors) for
reasoning strength control. Motivated by the observation that LRMs automatically allocate longer
reasoning strength for more difficult questions, we suspect that LRMs use linear activation directions
for this control. Therefore, we find such vectors using the difference-in-means approach between
questions of varying difficulties.

Difference in Means [45]. The difference-in-means method [45] effectively extracts activation
direction vectors associated with specific model behaviors—such as refusal to answer [35]—by
computing the difference between the mean activations associated by two contrasting behaviors of
input data pairs (e.g., refusal and compliance). In our case, we construct contrasting data pairs with
questions of different difficulties, since LRMs behave in automatically allocating more reasoning
strengths on harder tasks. In this way, we may isolate direction vectors related specifically to
reasoning strength control, by applying the difference-in-means method. Specifically, we compute
the difference-in-means vector r(l)i←1 between difficulty the hardest level i and easiest level 1 on the
MATH dataset [5] as:

r
(l)
i←1 =

1

|Di|
∑

h(l)∈Di

h(l) − 1

|D1|
∑

h(l)∈D1

h(l), (2)

where the first and second terms denote the mean activations at layer l computed over the activation
sets Di and D0, which correspond to math questions of difficulty level i and 0, respectively. Here,
these activations are also extracted at the start-of-reasoning token <think> position before generation.
By varying the target difficulty i from 1 to 5, we can get four such vectors at each layer, namely r

(l)
5←1,

r
(l)
4←1, r(l)3←1, and r

(l)
2←1. These vectors capture the activation shift from a baseline level of difficulty

5

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B

Figure 5: L2 norms of four pre-allocated vectors. The norm becomes bigger as the difficulty increases.

1 to increasingly harder questions. These vectors are pre-allocated since we extract them before
generation. If the LRM plans the reasoning strength via a shared directional vector, then the four
vectors are expected to show a high degree of similarity.

By analyzing these vectors, we have the following findings:

• Pre-allocated direction vectors exist for distinguishing questions across different difficulties,
since all constructed vectors exhibit consistently high cosine similarities across layers. We
visualize the pairwise cosine similarities among the four extracted vectors in Figure 3, which are
taken from the layer with the highest averaged similarity. As shown in these figures, the vectors
exhibit extremely high directional consistency, with cosine similarities around 0.99. This suggests
that LRMs may utilize a single, shared directional vector to distinguish between questions of
different difficulty levels. In addition, we present the trend of average cosine similarity across
layers in Figure 4. The results show consistently high similarity scores (i.e., above 0.9), which
further increase with layer depth and approach near 1.0 in the final layers.

• The magnitudes of these pre-allocated vectors highly correlate with the required reasoning
token number, showing implicit connections. Given that the extracted four vectors exhibit nearly
identical directions, their magnitudes (i.e., the L2 norm) become the key factor in distinguishing
questions of varying difficulty. We plot the magnitudes of these four vectors across different
layers in Figure 5. As shown, the vector magnitude increases with question difficulty, and is
approximately proportional to the average additional reasoning token number required to solve the
question (See more details in Appendix C). This suggests a strong positive correlation between the
pre-allocated vector magnitudes and the reasoning strengths allocated by the model.

4.2 Pre-allocation Vectors Causally Affect the Reasoning Strengths

To further examine whether these direction vectors are used for reasoning strength planning, we
test their causal effect on reasoning strengths via intervention of activation steering [25]. The key
idea of activation steering is to inject direction vectors on the activation of language models, to
test whether such direction vectors can causally affect the model behaviors [25, 35]. We conduct
such activation steering experiments with the average vector r(l) of our extracted four vectors (i.e.,
r(l) = 1

4

∑5
i=2 r

(l)
i←1) as:

h(l)′ ← h(l) + λr(l), (3)

where h(l) and h(l)′ are the original and post-steered activations at layer l, and λ is a hyperparameter
controlling the strength of steering. More implementation details can be found in Appendix A. By
varying the steering strength λ, we have following observations (See more results in Appendix C.2):

• Such pre-allocated vectors are indeed responsible for the reasoning strength planning, since
steering with extracted vectors will causally affect the reasoning token number. We visualize
in Figure 6 the change in model response length under different steering strengths from -0.2 to 0.2,
with an interval of 0.05. As shown, increasing the negative steering strength progressively decreases
the model’s reasoning token numbers, while the length of the final answer (i.e., the number of
tokens after the </think> token) remains unaffected. This indicates that the pre-allocated vector
causally controls the planning of the reasoning token number, rather than the answer token number.

• Controlling reasoning strengths with this pre-allocation vector causally affects the perfor-
mance [27, 10, 16]. As shown in Figure 6, reducing the model’s reasoning token number generally
leads to a drop in performance. This demonstrates that steering with the pre-allocated vector en-
ables a simple yet effective test-time scaling mechanism. Furthermore, applying a positive steering

6

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B

Figure 6: The causal effect on the reasoning token number and corresponding performance under
different steering strength λ. Decreasing the steering strength λ consistently reduces the reasoning
token number and corresponding performance.

Table 1: Accuracy % comparison before and after steering across datasets. The performance is bold
if improved after steering, and the absolute improvement is shown as superscripts.

MATH500 AIME2024 OlympiadBench Average
R1-Distill-Qwen-1.5B 82.77 28.33 44.41 51.84
+ Steering 83.00+0.23 29.58+1.25 44.67+0.26 52.42+0.58

R1-Distill-Qwen-7B 92.17 50.42 58.13 66.91
+ Steering 92.65+0.48 55.00+4.58 58.80+0.67 68.82+1.91

R1-Distill-Qwen-14B 93.67 61.25 62.19 72.37
+ Steering 94.05+0.38 67.08+5.83 63.02+0.83 74.72+2.35

R1-Distill-Qwen-32B 94.05 63.75 63.46 73.75
+ Steering 94.67+0.62 67.50+3.75 64.11+0.65 75.43+1.68

QwQ-32B 95.90 65.42 31.25 64.19
+ Steering 96.03+0.13 66.67+1.25 31.25+0.00 64.65+0.46

strength can even improve model performance. As shown in Table 1, moderate positive steering
shows potential in enhancing performance across multiple math datasets, including MATH500 [5],
AIME [46], and OlympiadBench [47]. However, increasing the steering strength beyond a certain
point does not lead to further gains, and may even degrade performance. We attribute this to the
possible intelligence upper bound of such LRMs. More results are in the Appendix C.2.

4.3 Pre-allocation Vectors Yield Positive Reasoning Token Number Prediction

In this section, we discuss the connection between the reasoning token number predictor and these
pre-allocated vectors we obtained. We reveal that these vectors tend to generate positive reasoning
token number predictions, further proving their role in the reasoning strength control. Specifically, we
can estimate the effect of these vectors with the linear predictor we obtained in Section 3 as follows:

ŷ(l) = r(l)Ŵ(l) + b̂(l). (4)

The pre-allocation vectors yield positive reasoning token number predictions in most cases. We
visualize the predicted reasoning token number across layers when applying the steering vector with
a multiplier of 0.2 in Figure 7. The average prediction (i.e., ŷ(l)) shows a consistent positive trend,
indicating that the steering vector reliably adjusts the reasoning length. Moreover, ŷ(l) aligns well
with the actual causal changes shown in Figure 6, highlighting a strong link between regression
predictions and the steering-induced effects, thus reinforcing the vector’s role in reasoning strength
planning. More similar results are in Appendix C.3.

4.4 Pre-allocation Vectors Control Reasoning Strengths by Modifying Logits of </think>

To study how such pre-allocated vectors affect the reasoning strength, we take one possible perspective:
the impact on the logits of the end-of-reasoning token </think>. We have the following findings:

These pre-allocation vectors control the reasoning strength by modifying the logits of the end-
of-reasoning token </think>. We visualize the distribution of logits for the </think> token under
different steering strengths in Figure 8. As shown, applying a negative steering strength results in an
overall increase in the logits of the </think> token, indicating a higher likelihood of its occurrence,
which leads to fewer reasoning tokens. Conversely, positive steering strength decreases the logits of
the </think> token, reducing the likelihood of generating this token, which leads to more reasoning

7

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B

Figure 7: The predicted reasoning number ŷ(l) yielded by the pre-allocation vector r(l). Pre-allocation
vector yields positive predictions in most cases.

(a) Logit distribution shift of </think> (b) Impact on the logit across different tokens

Figure 8: The effect on the end thinking token </think> when steering with different strengths
on R1-Distill-Qwen-1.5B. (8a) The pre-allocated vectors control the reasoning strength by causally
affecting the logits of end-of-reasoning token </think>. (8a) The impact of logits on </think> is
significantly higher than other tokens.

token numbers. We also compare the impact on the logits with the eos token <|endoftext|> and
randomly selected tokens. As shown in Figure 8b, the impact on the end-of-reasoning token is
significantly higher than random tokens and the eos token |endoftext|. These observations suggest
that the pre-allocated vectors primarily modulate reasoning strength by adjusting the logits of the
end-of-reasoning token. More similar results are in Appendix C.4. We also reveal that the steering
mechanism also affects reasoning-related token logits within the reasoning process in Appendix C.5

5 Potentials of Our Findings

We aim to investigate whether our findings have potential in more diverse domains, despite our
current analysis mainly focusing on mathematical problems. Specifically, we discuss two possible
generalized potentials of our findings: overthink detection and efficient inference. It is important to
highlight that we merely outline the potential application directions, and more efforts are required to
make such potential applicable in real-world practice.

5.1 Overthink Detection before Model Generation

In this section, we demonstrate how to detect potential overthink behavior before the generation
of LRMs. LRMs exhibit risks in overthink unexpectedly, generating unnecessarily long reasoning
traces. Such overthink phenomena can cause significant real-world deployment consequences, not
only significantly increasing the computational cost for model providers, but also unnecessarily
prolonging the waiting time for users [48, 49, 13]. If we can detect overthink in advance (i.e.,
before generation), we may reduce both computation and latency by, for example, switching to a
lighter model for serving [49]. We argue that we can effectively identify the occurrence of possible
overthink, by using our trained predictors to estimate the reasoning strength in advance. We test
the predictions differences on data pairs of non-overthink questions and overthink questions. These
overthink questions are constructed by forcing LRMs to overthink on vanilla questions by adopting
overthink attacks [48], where these vanilla questions are sampled from the AlpacaEval dataset. More
details can be found in Appendix D.1. We visualize our prediction results in Figure 9. We can find that
our predictor yields significantly longer reasoning lengths on overthink questions than on the vanilla

8

Figure 9: Overthink detection on AlpacaEval [50] dataset. Our predictor can successfully detect the
overthink phenomenon by yielding higher predicted reasoning lengths on overthink questions.

Figure 10: Reasoning token numbers (bar chart) and model performance (line chart on MATH500 [5]
and MMLU [51]). The number of reasoning tokens can be significantly reduced without harming the
performance of LRMs on easy tasks.

non-overthink questions. This indicates that we can detect possible overthink phenomena before
the generation, which is based on our findings that LRMs plan their reasoning strengths.

5.2 Efficient Inference

In this section, we present how to leverage our findings to achieve more efficient inference, avoiding
overthinking on simple questions [13]. To test this potential, we conduct activation steering experi-
ments on two kinds of questions that LRMs tend to overthink: general language understanding dataset
MMLU [51] and Level 1 questions on MATH500 [5]. We reduce the number of reasoning tokens by
applying activation steering with a proper negative steering strength λ. We report the performance
under such steering experiments in Figure 10. As shown in this figure, we can significantly reduce the
number of reasoning tokens on such questions, indicating that LRMs may wrongly allocate reasoning
strengths on these easy tasks, which induces their overthinking. While reducing the number of
reasoning tokens on these tasks can still maintain the performance of LRMs. This result suggests the
potential of using activation steering for efficient reasoning, and also reveals the underlying overthink
mechanism of LRMs on easy questions.

6 Limitations

This work has several limitations. First, we only use a linear probe and do not explore whether
more complex architectures, such as MLPs, could yield better performance in predicting reasoning
length. In addition, our experiments focus primarily on the Qwen model series [52], and it remains
unexplored whether these findings hold for reasoning models based on other backbones [53].

9

7 Conclusion

This paper investigated whether and how large reasoning models (LRMs) plan reasoning strength (i.e.,
the number of reasoning tokens) before generating answers. Using linear probing, we showed that
the reasoning token number can be predicted merely using the activations of the question, suggesting
implicit reasoning strength planning capabilities before generation. We found the existence of pre-
allocated direction vectors in LRMs, whose magnitude causally affects the number of reasoning
tokens. We further revealed that these vectors may affect the logits of the end-of-thinking token
</think> to achieve reasoning strength control. Finally, we discussed two potential applications
of our findings: overthink detection before generation and efficient inference. Our paper studied
the underlying mechanism of the reasoning strength planning in LRMs from the model activation
perspective, which can help the community better understand LRMs 2.

Acknowledgments

This research/project is supported by the National Research Foundation, Singapore under its National
Large Language Models Funding Initiative (AISG Award No: AISG-NMLP-2024-002). Any opinions,
findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not reflect the views of National Research Foundation, Singapore

2The broader impacts will be discussed in Appendix F

10

References
[1] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,

Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam,
Ally Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew
Kondrich, Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph,
Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys
Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman,
Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss,
Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer,
Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David
Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman,
Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace,
Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos
Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista
Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman,
Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman,
Hyung Won Chung, Ian Kivlichan, Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, and
Ilge Akkaya. Openai o1 system card. CoRR, abs/2412.16720, 2024.

[2] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu,
Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan
Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li,
Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian
Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian,
Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong
Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting
Pan, and S. S. Li. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. CoRR, abs/2501.12948, 2025.

[3] Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

[4] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

[5] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In NeurIPS Datasets and Benchmarks, 2021.

[6] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR.
OpenReview.net, 2024.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant

11

https://qwenlm.github.io/blog/qwq-32b/

Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and
Wojciech Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374,
2021.

[8] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program
synthesis with large language models. CoRR, abs/2108.07732, 2021.

[9] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang,
Julien Dirani, Julian Michael, and Samuel R. Bowman. GPQA: A graduate-level google-
proof q&a benchmark. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=Ti67584b98.

[10] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[11] Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian
Yu, Juntao Li, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Thoughts
are all over the place: On the underthinking of o1-like llms. CoRR, abs/2501.18585, 2025.

[12] Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do
NOT think that much for 2+3=? on the overthinking of o1-like llms. CoRR, abs/2412.21187,
2024.

[13] Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang,
Shu Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, Nicholas Thumiger, Aditya Desai, Ion
Stoica, Ana Klimovic, Graham Neubig, and Joseph E. Gonzalez. The danger of overthinking:
Examining the reasoning-action dilemma in agentic tasks. CoRR, abs/2502.08235, 2025.

[14] Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, et al. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond. arXiv preprint arXiv:2503.21614, 2025.

[15] Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun
Cao, and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning
pruning. CoRR, abs/2501.12570, 2025.

[16] Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

[17] Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston, and
Jing Xu. Following length constraints in instructions. arXiv preprint arXiv:2406.17744, 2024.

[18] Bradley Butcher, Michael O’Keefe, and James Titchener. Precise length control for large
language models. Natural Language Processing Journal, page 100143, 2025.

[19] Chung-En Sun, Ge Yan, and Tsui-Wei Weng. Thinkedit: Interpretable weight editing to mitigate
overly short thinking in reasoning models. arXiv preprint arXiv:2503.22048, 2025.

[20] David D Baek and Max Tegmark. Towards understanding distilled reasoning models: A
representational approach. arXiv preprint arXiv:2503.03730, 2025.

[21] Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, and Shiguo Lian. DAST: difficulty-adaptive slow-thinking for large reasoning models.
CoRR, abs/2503.04472, 2025.

[22] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling model parameters. CoRR, abs/2408.03314, 2024.

[23] Zhiyuan Zeng, Qinyuan Cheng, Zhangyue Yin, Yunhua Zhou, and Xipeng Qiu. Revisiting the
test-time scaling of o1-like models: Do they truly possess test-time scaling capabilities? CoRR,
abs/2502.12215, 2025.

12

https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98

[24] Weixiang Zhao, Xingyu Sui, Jiahe Guo, Yulin Hu, Yang Deng, Yanyan Zhao, Bing Qin,
Wanxiang Che, Tat-Seng Chua, and Ting Liu. Trade-offs in large reasoning models: An
empirical analysis of deliberative and adaptive reasoning over foundational capabilities. CoRR,
abs/2503.17979, 2025.

[25] Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, Evan Hubinger, and Alexander Matt
Turner. Steering llama 2 via contrastive activation addition. In ACL, 2024.

[26] Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao,
Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, Yingying Zhang, Fei Yin, Jiahua Dong,
Zhijiang Guo, Le Song, and Cheng-Lin Liu. From system 1 to system 2: A survey of reasoning
large language models. CoRR, abs/2502.17419, 2025.

[27] Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Zhihan Guo, Yufei Wang,
Irwin King, Xue Liu, and Chen Ma. What, how, where, and how well? A survey on test-time
scaling in large language models. CoRR, abs/2503.24235, 2025.

[28] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
NeurIPS, 2020.

[29] Wilson Wu, John X Morris, and Lionel Levine. Do language models plan ahead for future
tokens? In COLM, 2024.

[30] Tianyi Men, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. Unlocking the
future: Exploring look-ahead planning mechanistic interpretability in large language models. In
EMNLP, pages 7713–7724. Association for Computational Linguistics, 2024.

[31] Anthropic. On the biology of a large language model, March 2025. URL https://
transformer-circuits.pub/2025/attribution-graphs/biology.html.

[32] Zhichen Dong, Zhanhui Zhou, Zhixuan Liu, Chao Yang, and Chaochao Lu. Emergent response
planning in LLM. CoRR, abs/2502.06258, 2025.

[33] Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the
geometry of large language models. In ICML, 2024.

[34] Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier
probes. In ICLR (Workshop), 2017.

[35] Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and
Neel Nanda. Refusal in language models is mediated by a single direction. In NeurIPS, 2024.

[36] Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat,
Vikrant Varma, János Kramár, Anca D. Dragan, Rohin Shah, and Neel Nanda. Gemma scope:
Open sparse autoencoders everywhere all at once on gemma 2. CoRR, abs/2408.05147, 2024.

[37] Tom Wollschläger, Jannes Elstner, Simon Geisler, Vincent Cohen-Addad, Stephan Günnemann,
and Johannes Gasteiger. The geometry of refusal in large language models: Concept cones and
representational independence. CoRR, abs/2502.17420, 2025.

[38] Yihuai Hong, Dian Zhou, Meng Cao, Lei Yu, and Zhijing Jin. The reasoning-memorization
interplay in language models is mediated by a single direction. arXiv preprint arXiv:2503.23084,
2025.

[39] Xinyu Tang, Xiaolei Wang, Zhihao Lv, Yingqian Min, Wayne Xin Zhao, Binbin Hu, Ziqi Liu,
and Zhiqiang Zhang. Unlocking general long chain-of-thought reasoning capabilities of large
language models via representation engineering. CoRR, abs/2503.11314, 2025.

13

https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html

[40] Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steer-
able reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986,
2025.

[41] Wes Gurnee and Max Tegmark. Language models represent space and time. CoRR,
abs/2310.02207, 2023.

[42] Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda B. Viégas, Hanspeter Pfister, and Martin
Wattenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In ICLR, 2023.

[43] Jonas Ranstam and Jonathan A Cook. Lasso regression. Journal of British Surgery, 105(10):
1348–1348, 2018.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[45] Sam Marks and Max Tegmark. Diff-in-means concept editing is worst-case optimal, May 2024.
URL https://blog.eleuther.ai/diff-in-means/.

[46] Mathematical Association of America. American invitational mathematics ex-
amination (aime), February 2024. URL https://maa.org/math-competitions/
american-invitational-mathematics-examination-aime.

[47] Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual
multimodal scientific problems. In ACL (1), pages 3828–3850. Association for Computational
Linguistics, 2024.

[48] Abhinav Kumar, Jaechul Roh, Ali Naseh, Marzena Karpinska, Mohit Iyyer, Amir Houmansadr,
and Eugene Bagdasarian. Overthink: Slowdown attacks on reasoning llms. CoRR,
abs/2502.02542, 2025.

[49] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Hanjie Chen, Xia Hu, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[50] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. CoRR, abs/2404.04475, 2024.

[51] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. In ICLR. OpenRe-
view.net, 2021.

[52] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. CoRR,
abs/2412.15115, 2024.

[53] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne
Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano,

14

https://blog.eleuther.ai/diff-in-means/
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime

Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily
Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee,
Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell,
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra,
Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana
Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny
Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng
Jia, Kalyan Vasuden Alwala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin
Stone, and et al. The llama 3 herd of models. CoRR, abs/2407.21783, 2024.

[54] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu,
Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large lan-
guage model serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium
on Operating Systems Principles, 2023.

[55] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. In ICLR. OpenReview.net, 2025.

15

A Implementation Details

We implement all the experiments on 8 NVIDIA A100 GPUs. The whole computational resource
cost of this research is about 80 A100 GPU days, which is mainly spent on the answer generation.

For the answer generation, we use the vLLM [54] framework for acceleration. Following the
suggestions of DeepSeek 3, we set the temperature as 0.6 to prevent endless repetitions, set the
maximum new generation length as 16,384, and set the rollout number as 8. We take the average
accuracy of all 8 rollouts as the accuracy of one question, and report the final accuracy by taking the
average accuracy of each question.

We use the following template for generation:

PROMPT:
Please reason step by step, and put your final answer within \boxed{}.
This is the problem:
{problem}

Figure 11: Prompts used for answer generation.
Here, the {problem} will be replaced by a real question. After we finish generation, we extract the
answer inside the \boxed{} for evaluation.

3https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

16

https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B

B Reasoning Strength in LRMs is Pre-Planned

B.1 Experimental Details

We visualize the linear probing process in Figure 12. We first extract the activation of LRMs h(l)

at the last token position. Then we train a linear regression for predicting the subsequent reasoning
token number y, which is calculated through the tokenizer. For reducing the overfitting, we set the
regularization term α in Equation 1 as 10.

Figure 12: The procedure of linear probing.

B.2 Layer-wise Regression Results

We visualize the layer-wise regression results on R1-Distill-Qwen-14B and R1-Distill-Qwen-32B in
Figure 13. On these two models, the linear regression exhibits the same pattern of an increasing trend
as the model depth increases. Similarly, the correlation coefficient reaches over 0.8, indicating that
the reasoning strength can be predicted before the model generation.

(a) R1-Distill-Qwen-14B (b) R1-Distill-Qwen-32B
Figure 13: Layer-wise linear regression results

17

C LRMs Encode Reasoning Strength via a Pre-allocated Direction Vector

C.1 Existence of Pre-allocated Direction Vectors for Reasoning Strength Control

We visualize the cosine similarity matrix of the four extracted vectors from R1-Distill-Qwen-14B
and R1-Distill-Qwen-32B in Figure 14. We have a similar observation that all these vectors exhibit
extremely high cosine similarities near 1.0. This indicates that LRMs actually use a single direction
vector for distinguishing questions of different difficulty levels.

(a) R1-Distill-Qwen-14B (b) R1-Distill-Qwen-32B
Figure 14: Cosine similarity between pre-allocated vectors across different difficulties. These vectors
exhibit extremely high cosine similarities, indicating LRMs pre-allocate a single direction vector for
distinguishing different question difficulties.
We visualize the layer-wise mean cosine similarities between four extracted vectors from R1-Distill-
Qwen-14B and R1-Distill-Qwen-32B in Figure 15. We observe that these vectors exhibit consistently
high cosine similarities, with an increasing trend as the layer depth increases. Finally, the mean
cosine similarity reaches around 1.0, indicating these vectors become a single direction vector in the
later layers.

(a) R1-Distill-Qwen-14B (b) R1-Distill-Qwen-32B
Figure 15: Layer-wise cosine similarities between four pre-allocated vectors

We visualize the L2 norm of these extracted four vectors from R1-Distill-Qwen-14B and R1-Distill-
Qwen-32B in Figure 16. We observe that the norm of these vectors becomes bigger as the difficulty
increases. Moreover, this trend is also similar to the increased reasoning token number as the difficulty
increases, as shown in Figure 17. This indicates that LRMs use the magnitude of these direction
vectors for handling different question difficulties.

(a) R1-Distill-Qwen-14B (b) R1-Distill-Qwen-32B
Figure 16: L2 norms of four pre-allocated vectors. The norm becomes bigger as the difficulty
increases.

18

(a) R1-Distill-Qwen-14B (b) R1-Distill-Qwen-32B
Figure 17: Average reasoning token number for different question difficulties.

C.2 Pre-allocated Vectors Causally Affect the Reasoning Strengths

We apply the activation steering at each layer and each position of LRMs. We provide more results
when steering with the pre-allocation vector r(l), in Figure 18, Figure 19, and Figure 20. We have
similar observations to those in Section 4.2. When steering with negative λ, we observe a consistent
decreasing trend in the reasoning token number and the decreased performance. When steering
with positive λ, we observe a consistent increasing trend in the reasoning token number. However,
despite appropriate positive λ can improve the performance, this is not consistent as the λ increases.
We attribute this to the capability upper bound of these LRMs. Moreover, the steering only affects
the reasoning token number, while maintaining the answer token number largely unchanged. This
indicates that the pre-allocated direction vector is mainly responsible for the reasoning token number.

(a) R1-Distill-Qwen-14B (b) R1-Distill-Qwen-32B
Figure 18: The causal effect on the reasoning token number and corresponding performance under
different steering strength λ on the dataset MATH500.

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B
Figure 19: The causal effect on the reasoning token number and corresponding performance under
different steering strength λ on the dataset AIME.

(a) R1-Distill-Qwen-1.5B (b) R1-Distill-Qwen-7B (c) QwQ-32B
Figure 20: The causal effect on the reasoning token number and corresponding performance under
different steering strength λ on the dataset OlympiadBench.

19

C.3 Pre-allocation Vectors Yield Positive Reasoning Token Number Prediction

We provide more results in predicting the reasoning token number directly using the pre-allocation
vectors in Figure 21. As shown in this figure, in most cases, the pre-allocation vectors yield positive
predictions, indicating the close correlation of such vectors with our obtained predictors. This
suggests that LRMs are indeed using such pre-allocated vectors for planning their reasoning strength,
and the predication also largely relies on these vectors.

(a) R1-Distill-Qwen-14B (b) R1-Distill-Qwen-32B

Figure 21: The predicted reasoning number ŷ(l) yielded by the pre-allocation vector r(l). Pre-
allocation vector yields positive predictions in most cases.

C.4 Pre-allocated Vectors Control Reasoning Strengths by Modifying Logits of </think>

We provide more results about how these pre-allocated direction vectors control the reasoning strength
by modifying the logits of the end-of-reasoning token </think>.

We conduct the same activation steering as we do in Section 4.2, varying the steering strength λ
from -0.2 to 0.2. Then, we directly extract the logits of each token at the last token position (i.e.,
the start-of-reasoning <think>). We visualize the results in Figure 22. We can observe that, as the
steering strength λ increases from -0.2 to 0.2, the logits of the end-of-reasoning token </think>
decrease. This indicates that LRMs are less likely to generate such tokens, thereby leading to more
reasoning tokens. Moreover, as shown in Figure 22b, this steering mainly has more impact on the
logits of </think> than randomly selected tokens and the EOS token <endoftext>. Here, the
random token logits denote the average logits of 500 randomly selected tokens. This indicates that
the steering mainly focuses on adjusting the reasoning strength by manipulating the </think>.

(a) Logit distribution shift of </think> (b) Impact on the logit across different tokens
Figure 22: The effect on the end thinking token </think> when steering with different strengths
on R1-Distill-Qwen-7B. (8a) The pre-allocated vectors control the reasoning strength by causally
affecting the logits of end-of-reasoning token </think>. (8a) The impact of logits on </think> is
significantly higher than other tokens.

C.5 Pre-allocated Vectors Control Reasoning-related Token Logits

We further test the changes in the logits of reasoning-related tokens. We find that with a positive
steering strength, the logits of complex reasoning-related tokens also increase, beyond merely
decreased logits of the end-of-reasoning token </think>.

We report the changes in the logits for these reasoning-related tokens as follows in Table 2. These
tokens are usually regarded as reflection patterns in the R1-style response. Increasing the logits of

20

these tokens increases the probabilities of reflection and increases of reasoning token numbers, and
decreasing them has the opposite effect. As shown in Table 2, positive steering strengths increase the
logits of these tokens while negative steering strengths decrease them. This indicates the reasoning
strength control is not superficial.

Table 2: Impact of activation steering on logits of reasoning-related tokens.

Token λ = −0.2 λ = −0.1 λ = 0.1 λ = 0.2

Alright -0.2033 -0.0638 +0.0117 +0.0061
Hmm -1.1171e-4 -4.7589e-5 +2.5699e-5 +7.8185e-6
Oh -5.1966e-8 -2.9514e-8 +8.5295e-8 +2.2929e-7
Wait -7.3789e-9 -1.6405e-14 +2.8739e-8 +9.2974e-8

Additionally, to further test whether simply changing the logits of the end-of-reasoning token can
achieve the same performance, we conduct experiments by multiplying the logits of the end-of-
reasoning token with a factor γ (i.e., , logitnew = γ ∗ logitold). We report the results on
MATH500 in Table 3. We find that naively changing the logits will lead to unstable manners, either
leading to overly increased answer token number (i.e., γ = 2 on R1-Distill-Qwen-7B) or easily leading
to decoding errors (i.e., γ = 0.8).

These results further suggest that the changes in the logits of the end-of-reasoning token are the result
of planning, rather than the cause of planning.

Table 3: Effect of changing the logits with γ.

Reasoning Token Number Answer Token Number Accuracy
R1-Distill-Qwen-1.5B
γ = 2 4445.93 376.89 82.00
γ = 1 4316.95 372.12 82.78
γ = 0.8 16159.28 2.00 0.15

R1-Distill-Qwen-7B
γ = 2 1013.48 5795.13 56.20
γ = 1 3392.95 386.03 92.18
γ = 0.8 11309.18 2.00 0.00

R1-Distill-Qwen-14B
γ = 2 3267.30 387.06 94.35
γ = 1 3148.91 391.72 93.37
γ = 0.8 15913.95 2.00 0.15

R1-Distill-Qwen-32B
γ = 2 3038.15 393.72 95.10
γ = 1 3029.32 395.75 94.05
γ = 0.8 6963.46 2.00 0.00

QwQ-32B
γ = 2 3623.64 423.12 95.45
γ = 1 3690.35 436.25 95.90
γ = 0.8 16256.47 1.00 0.00

21

D Potentials of Our Findings

D.1 Overthink Detection before Model Generation

In this section, we discuss whether our findings can help us detect the potential overthinking phe-
nomenon even before the generation. To study this, we sample 100 questions from the AlpacaEval
[50] dataset as the vanilla questions. We then generate one overthink question for each vanilla
question, with the overthink attack [48], which proves to be effective in inducing overthink while
maintaining the accuracy on vanilla questions. In this way, we can test whether our predictor can
detect the overthink phenomenon in advance, by checking whether the predicted token number on
overthink questions is much more than that on vanilla questions. Results in Section 5.1 show that our
predictor shows potential in overthink detection.

D.2 Efficient Inference

D.2.1 Details

For evaluation efficiency, we sample 100 questions from MMLU [51] and transform them into
single-choice questions for LRMs to answer. We adopt the same setting as in lm-evaluation-harness 4

for evaluation.

4https://github.com/EleutherAI/lm-evaluation-harness

22

https://github.com/EleutherAI/lm-evaluation-harness

E Discussion

E.1 Generalization on More Domains

We discussed the generalization capabilities of our findings on other general domains beyond MATH,
such as AlpacaEval and MMLU in Section 5, where our findings of reasoning strength prediction and
strength control also hold on these two datasets. We also add one more experiment on the complex
logic reasoning tasks such as GPQA diamond [9] and LiveCodeBench [55] to better demonstrate the
generalization capabilities. As shown in Table 4 and Table 5, the number of reasoning tokens generally
exhibits a similar pattern with the λ, indicating the generalization of this pre-allocation vector to other
domains. Additionally, proper positive steering can also bring performance improvements. Since
we found it hard to extract the generated code in a correct format for evaluation for code generation
tasks when varying the response lengths, we just report the effect on the reasoning token numbers.
There is only one exception on R1-Distill-Qwen-1.5B, where reducing the reasoning token number
even brings the performance gain. We carefully analyze this model and find that when generating
overlong responses, it tends to forget to follow the original instruction, and sometimes the results get
cut off. Therefore, reducing the reasoning token number helps it avoid such bad issues like cut off,
and increasing it will have the opposite effect.

Table 4: The effect of steering and performance on GPQA diamond.

λ

Model -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
R1-Distill-Qwen-1.5B
Tokens 959.44 2930.29 5659.00 6677.72 7428.22 7690.48 7902.20 7805.64 7784.97
Accuracy 8.01 6.05 8.20 12.30 13.86 16.80 17.58 16.80 19.53
R1-Distill-Qwen-7B
Tokens 1022.10 2755.88 5250.92 6243.68 6998.01 7326.04 7875.52 8103.89 8380.32
Accuracy 5.66 12.30 22.27 28.13 33.92 36.13 40.23 39.26 40.33
R1-Distill-Qwen-14B
Tokens 886.26 2289.21 3910.04 6035.36 6365.84 6167.72 5927.13 5463.18 5137.19
Accuracy 15.42 17.97 23.24 44.34 50.78 51.95 51.56 51.76 50.20
R1-Distill-Qwen-32B
Tokens 266.07 296.68 1612.85 4696.14 5881.31 6391.68 6809.91 7128.37 7274.20
Accuracy 17.38 19.33 19.14 44.73 55.76 56.83 59.77 59.38 54.30
QwQ-32B
Tokens 6490.33 6826.64 7368.09 7472.53 8087.62 8811.63 8763.01 9161.22 9862.67
Accuracy 48.43 58.79 59.38 59.76 60.55 60.96 60.16 59.38 55.86

Table 5: The effect of steering and performance on LiveCodeBench (Code Execution).

λ

Model -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
R1-Distill-Qwen-1.5B
Tokens 1971.90 2569.96 3112.51 3942.85 4682.46 5856.20 7120.98 8660.37 10482.23
Accuracy 26.30 23.02 18.32 13.20 8.72 5.48 2.30 1.41 0.84
R1-Distill-Qwen-7B
Tokens 281.09 358.46 678.20 1209.86 1625.67 2198.33 2942.55 3701.05 4688.05
Accuracy 61.85 66.75 72.65 79.33 79.23 79.30 74.63 80.17 80.85
R1-Distill-Qwen-14B
Tokens 346.57 461.33 929.89 1267.48 1428.35 1562.22 1745.25 1966.76 2197.66
Accuracy 68.42 74.01 82.05 91.54 91.03 91.28 89.35 89.35 89.67
R1-Distill-Qwen-32B
Tokens 230.60 345.78 501.81 827.44 1201.67 1682.29 2317.60 2916.74 3465.59
Accuracy 52.14 56.89 58.51 68.58 79.54 86.69 90.03 93.63 86.01
QwQ-32B
Tokens 1053.54 1151.99 1284.14 1439.79 1682.31 1895.04 2202.13 2521.79 2927.20
Accuracy 93.74 94.99 96.45 98.38 99.06 99.27 99.27 98.64 98.49

23

Table 6: The effect of steering and performance on LiveCodeBench (Code Generation).

λ

Model -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
R1-Distill-Qwen-1.5B
Tokens 9176.89 9548.69 9915.46 9999.58 10422.80 10744.27 10963.86 11083.30 11070.14
R1-Distill-Qwen-7B
Tokens 1905.08 6409.04 8333.01 8747.09 8964.33 9194.85 9549.61 9635.65 10233.36
R1-Distill-Qwen-14B
Tokens 6732.97 6987.67 7578.29 7310.26 7299.31 7238.23 7008.38 6797.31 6494.35
R1-Distill-Qwen-32B
Tokens 3959.58 6786.27 6674.37 6735.45 6801.60 6969.60 7105.03 7702.86 8340.40
QwQ-32B
Tokens 5523.47 5563.86 5673.22 6040.58 6337.92 6921.26 7511.89 8164.05 8345.72

24

E.2 Generalization on More Model Backbones

We add experiments on another kind of LRM DeepSeek-R1-Distill-Llama-8B [2]. All of our findings
also hold on this model, and we will add more results in our paper. We illustrate some datapoints of
our main observations on DeepSeek-R1-Distill-Llama-8B [2]. We report the linear probing results in
Table 7, Table 8, and Table 9. We also report the activation steering results in Table 10. Interestingly,
DeepSeek-R1-Distill-Llama-8B is more sensitive to the steering strength λ.

Table 7: Prediction on middle layers.

Layer 25 26 27 28 29 30
R 0.8481 0.8467 0.8442 0.8464 0.8423 0.8430

Table 8: Cosine similarity between pre-allocated vectors on layer 31.

r2←1 r3←1 r4←1 r5←1
r2←1 1.00 0.98 0.98 0.90
r3←1 0.98 1.00 1.00 0.93
r4←1 0.98 1.00 1.00 0.94
r5←1 0.90 0.93 0.94 1.00

Table 9: Mean cosine similarities on middle layers.

Layer 25 26 27 28 29 30
R 0.9681 0.9661 0.8873 0.9620 0.9660 0.9124

Table 10: Activation Steering results across datasets.

λ

Dataset -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
MATH500
Tokens 3042.42 3391.56 3312.67 3478.20 3457.01 3484.90 3530.19 3702.91 3654.19
Accuracy 75.18 80.00 81.78 83.55 82.80 83.38 83.98 84.88 84.48
AIME2024
Tokens 10366.34 10910.79 10458.87 10750.82 11049.53 10774.68 10888.95 11553.91 11622.77
Accuracy 26.67 32.08 34.78 38.75 38.96 38.75 37.08 42.50 41.67
OlympiadBench
Tokens 6926.34 7174.21 7254.21 7265.71 7234.64 7338.05 7522.05 7615.02 7345.39
Accuracy 43.69 48.24 49.94 50.13 49.76 49.59 50.41 51.20 49.30

25

E.2.1 Case Study

Question: Compute: 1− 2 + 3− 4 + 5− · · ·+ 99− 100.

w/o Steering: <think>Okay, so I have this problem to compute the sum: 1 - 2 + 3 - 4 + 5 -
6 + ... + 99 - 100. Hmm, that looks like an alternating series where the signs alternate between
positive and negative. Let me try to figure this out step by step. First, let me write out the series
to understand the pattern better: 1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100. I notice that this series
alternates between adding an odd number and subtracting the next even number. So, each pair of
terms is like (1 - 2), (3 - 4), (5 - 6), and so on. Maybe I can group them into these pairs and see
what each pair adds up to. Let me compute a few pairs: 1 - 2 = -1, 3 - 4 = -1, 5 - 6 = -1, 7 - 8 =
-1, ... It seems like each pair of terms adds up to -1. That’s interesting. So, if I can figure out how
many such pairs there are, I can multiply that number by -1 to get the total sum. Since the series
starts at 1 and ends at 100, that’s a total of 100 numbers. If I’m pairing them two by two, the
number of pairs should be 100 divided by 2, which is 50. So, there are 50 pairs.
· · ·
That is, for each term, if n is odd, we add it, and if n is even, we subtract it. So, the general term
is (−1)(n+1) ∗ n. Maybe I can use a formula for such alternating series. I remember that the
sum of an alternating series can sometimes be calculated using arithmetic series formulas or by
grouping terms. Wait, another approach: Maybe I can separate the series into two separate sums:
the sum of the odd terms and the sum of the even terms. Let’s see: The series is 1 + 3 + 5 + ...
+ 99 minus (2 + 4 + 6 + ... + 100). So, if I can compute both of these sums separately, I can
subtract them to get the result. First, the sum of the odd numbers from 1 to 99. How many terms
are there? Since we’re going up to 99, which is the 50th odd number (since 99 = 2*50 - 1). So,
the number of terms is 50.
· · ·
Wait, another way: Let’s think about the series as telescoping. But I don’t think it’s telescoping
because there’s no cancellation beyond the immediate pairs. Each term cancels only part of the
next term, but in this case, each pair is independent. Alternatively, maybe writing the series as:
(1 - 2) + (3 - 4) + ... + (99 - 100). Each parenthesis is -1, and there are 50 of them. So, 50*(-1)
= -50. Yep, same result. I think I’ve approached this problem in multiple ways: pairing terms,
separating into odd and even sums, using the formula for alternating series, and each time I get
-50. So, it seems pretty solid. Just to recap all the methods: 1. Pairing: Each pair (1-2), (3-4),
etc., is -1, 50 pairs total, sum is -50. 2. Separating into odds and evens: Sum of odds is 2500,
sum of evens is 2550, difference is -50. 3. Using the formula for the sum of an alternating series
of consecutive integers with even terms: -n/2, which gives -50. All methods lead to the same
conclusion, so I think it’s safe to say the answer is -50. **Final Answer** The value of the series
is \boxed{-50}</think>. (2253 tokens)

w Steering: <think>First, I observe that the sequence alternates between addition and
subtraction of consecutive integers. To simplify the calculation, I can group the terms in pairs:
(1 - 2), (3 - 4), (5 - 6), and so on, up to (99 - 100). Each pair results in -1. Since there are 100
numbers in total, there are 50 such pairs. Multiplying the number of pairs by each result gives
50 times -1, which equals -50.</think> (113 tokens)

Figure 23: Case study on R1-Distill-Qwen-32B. The model generates the correct answer both with
(i.e., w) and without (i.e., w/o) steering, but steering significantly reduces the reasoning token
number.

26

Question: What is the correct answer to this question: Kant’s humanity formulation of the
categorical imperative makes it impermissible for us to, he argues, Choices: (A) sell one of our
teeth. (B) engage in prostitution. (C) both A and B (D) Neither A nor B Only put the option
letter in the box, e.g.
boxedA. There is only one correct answer, .

w/o Steering: <think> Okay, so I need to figure out what Kant’s humanity formulation
says about selling one of our teeth or engaging in prostitution. Let me start by recalling what
the humanity formulation is. From what I remember, Kant’s categorical imperative has several
formulations, and one of them is the humanity formulation. The key idea here is that we should
treat humanity, whether in oneself or in others, always as an end and never merely as a means
to an end. So, the question is asking which actions Kant would consider impermissible under
this principle. The options are selling one’s tooth, prostitution, both, or neither. First, let me
break down each option. Selling a tooth: that’s essentially selling part of your body. Now, in the
context of Kant’s ethics, using oneself as a means to an end might be problematic.
· · ·
Wait, but what about the actual examples? I remember that Kant specifically mentions prostitution
in his works, right? He considered it immoral because it treats the person as an object for sexual
use, which is a means to an end. Similarly, selling body parts might be similar. But selling a
tooth is a physical part, whereas prostitution is an action. However, in both cases, the person
is using their body for monetary gain, possibly reducing themselves to a means. But maybe
Kant would say that selling a tooth is permissible if it’s for a good reason, like saving a life, but
not sure. Wait, the formulation is about treating humanity as an end. So any action that uses
a person (including oneself) merely as a means would be wrong. So selling your tooth would
involve using your body as a means to get money, but does that mean you’re treating yourself as
a mere means? Maybe. Because you’re using your body as a commodity, rather than valuing
it as an end in itself. Alternatively, maybe Kant would distinguish between selling a tooth (a
part) and selling services (like prostitution). But I think both involve commodifying the body.
So perhaps both are impermissible. Thus, the answer would be (C) both A and B.
· · ·
Alternatively, maybe he only opposes prostitution, but I think both. Let me think again. Another
angle: the humanity formulation requires that in any action, you never use a person merely as a
means. So if you sell your tooth, you are using yourself as a means (to get money), but you’re
also an end. However, if you are selling a tooth, maybe you are treating yourself as an end in
some way. Wait, perhaps the distinction is whether you are using your body as a mere means.
If you sell a tooth, you are using that part of your body as a tool, but does that mean you are
treating your humanity as a means? The humanity is your rational nature. So maybe selling a
tooth doesn’t directly violate that, as it’s a physical part. Alternatively, Kant might argue that the
body is part of what makes a person, so using it as a commodity reduces oneself. So perhaps
both are wrong. Since I’m a bit torn here, but I think the standard interpretation is that Kant
would say both are impermissible. Hence, answer (C). </think>. (1610 tokens)

w Steering: <think> "Okay, so I need to figure out what the answer is here. The question
is about Kant’s humanity formulation of the categorical imperative and what he says is imper-
missible. The options are selling a tooth, prostitution, both, or neither. First, I remember that
Kant’s categorical imperative has different formulations.
· · ·
So both selling a tooth (if it’s your own) and prostitution would be impermissible because both
involve treating humanity (either your own or someone else’s) as a means. So the answer should
be C, both A and B? But wait, maybe selling a tooth isn’t considered the same as prostitution?
Like, a tooth is part of your body but maybe it’s not using humanity as an end? Hmm, but Kant
might say that even your own body shouldn’t be treated merely as a resource to exploit for gain.
So selling a tooth could still be wrong because you’re using your own body as a means to an end
(making money) rather than respecting your own humanity as an end in itself. So both A and B
are impermissible. Therefore, the answer should be C. " </think> (418 tokens)

Figure 24: Case study on QwQ-32B. The model generates the correct answer both with (i.e., w) and
without (i.e., w/o) steering, but steering significantly reduces the reasoning token number.

27

F Broader Impacts

This paper aims to investigate whether LRMs pre-plan their reasoning strength within their activation
space, and how such planning is encoded with pre-allocated direction vectors. Our study contributes
to a deeper understanding of LRMs within the LLM research community.

However, our findings may also pose potential risks. For instance, malicious methods could exploit the
discovered property that reasoning length can be manipulated through the model’s internal activations
to implant backdoor attacks. Such attacks might trigger excessively long chains of thought under
specific conditions, thereby significantly slowing down model execution.

28

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have claimed our key contributions and scope in the abstract and introduc-
tion clearly.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in Section 6.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

29

Justification: This is an empirical paper without any theoretical proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have discussed all the implementation details in Appendix A. We also
release our code for reproducibility, where the anonymous GitHub link is presented in the
abstract.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all the data and code in this paper through the anonymous GitHub
link presented in the abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present all the experimental settings and details in Appendix A

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We adopt 8 times rollouts to make our experimental results convincing,
following the standard methods as reported in the technical report of R1 [2]. We conducted
the significance check, and the results are significant with p-value less than 0.05.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

31

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present the compute resources requirements in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to all ethical guidelines outlined by NeurIPS. Specifically,
we have ensured that our data collection methods are ethical, our experiments are conducted
responsibly, and all potential biases are addressed. Additionally, we have considered the
broader impacts of our work and have taken steps to mitigate any negative consequences.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We consider the broader impacts in Appendix F.

Guidelines:

32

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets, models, and codes used in this paper are open-sourced. We
have properly credited these efforts with correct citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

33

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release the linear predictor and activation steering vectors introduced in
this paper, according to the anonymous GitHub link provided in the abstract.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

34

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLMs for writing proof.
Guidelines:
• The answer NA means that the core method development in this research does not

involve LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)

for what should or should not be described.

35

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Large Reasoning Models
	Planning in Language Models
	Activation Steering with Linear Direction

	Reasoning Strength in LRMs is Pre-Planned
	Experimental Setup
	Results

	LRMs Encode Reasoning Strength via Pre-allocated Direction Vectors
	Pre-allocated Direction Vectors Exist for Reasoning Strength Planning
	Pre-allocation Vectors Causally Affect the Reasoning Strengths
	Pre-allocation Vectors Yield Positive Reasoning Token Number Prediction
	Pre-allocation Vectors Control Reasoning Strengths by Modifying Logits of </think>

	Potentials of Our Findings
	Overthink Detection before Model Generation
	Efficient Inference

	Limitations
	Conclusion
	Implementation Details
	Reasoning Strength in LRMs is Pre-Planned
	Experimental Details
	Layer-wise Regression Results

	LRMs Encode Reasoning Strength via a Pre-allocated Direction Vector
	Existence of Pre-allocated Direction Vectors for Reasoning Strength Control
	Pre-allocated Vectors Causally Affect the Reasoning Strengths
	Pre-allocation Vectors Yield Positive Reasoning Token Number Prediction
	Pre-allocated Vectors Control Reasoning Strengths by Modifying Logits of </think>
	Pre-allocated Vectors Control Reasoning-related Token Logits

	Potentials of Our Findings
	Overthink Detection before Model Generation
	Efficient Inference
	Details

	Discussion
	Generalization on More Domains
	Generalization on More Model Backbones
	Case Study

	Broader Impacts

