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Abstract
Generative models are gaining traction in syn-
thetic data generation but see limited industry
adoption because of lack of standardized data util-
ity, fidelity, and especially privacy metrics. In this
paper, we focus on privacy and propose a practical
ϵ-differential privacy auditing technique focused
on structured generative and foundation models
that measures memorization via nearest-neighbor
distances between real training data and gener-
ated synthetic samples. By independently select-
ing a small subset of training data for auditing,
our method operates in a single training run and
treats the generative pipeline as a black box. Our
approach models synthetic samples as reconstruc-
tion attacks and yields significantly stronger lower
bounds on privacy loss than traditional member-
ship inference attacks. We test our technique on
five tabular generative models and one foundation
model, and show our method provides a robust
baseline to evaluate privacy of generative models.

1. Introduction
An ideal generative algorithm should be privacy-preserving
and learn the overall data distribution without memorizing
any training examples. Synthetic data generated from such
models should not reveal if any particular data point was part
of the original dataset. In this work, we leverage memoriza-
tion, which occurs when generated samples cluster around
real training points, as a proxy to audit the ϵ-differential
privacy (ϵ-DP) guarantees of structured generative and foun-
dation models. We focus on tabular models and frame their
synthetic outputs as approximate reconstructions of training
data. Next, we assess privacy risk by computing the nearest-
neighbor distances between real and generated samples.

Our work addresses a central challenge in benchmarking
tabular generative and foundation models: how to provide

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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quantifiable privacy guarantees to prove if a model is memo-
rizing. Our auditing technique offers a practical mechanism
for certifiably detecting when a model has memorized its in-
puts, thus alerting of potential privacy risks. This assurance
can provide a baseline for the privacy assessment of tabular
models and encourage their wider adoption.

Audit idea. Synthetic data generated from tabular mod-
els are typically evaluated for data fidelity by comparing
data distributions and for data utility by checking Machine
Learning (ML) performance, respectively. A recent empha-
sis from global data protection regulations is on provable
data protection guarantees. Our auditing addresses this by
providing a tight and interpretable lower bound on the ϵ-DP
level of tabular models. It can operate without requiring
model retraining, adversarial crafting, or access to internal
parameters, making it suitable for real-world use.

The core idea behind our approach is rooted in the definition
of ϵ-DP: if a mechanism satisfies ϵ-DP, then the posterior
distribution over audit inputs given the synthetic outputs
must remain close to the prior; assumed here to be uniform
over a region X . When generated samples cluster tightly
around audit samples, they effectively reveal “hot-spots”
where those examples are likely to reside. This posterior
deviation violates the ϵ-DP condition, allowing us to confi-
dently reject the hypothesis that the generative mechanism
satisfies the claimed privacy guarantee. Our main result
formalizes this observation, showing that smaller nearest-
neighbor distances imply provably larger lower bounds on
the model’s true ϵ value, with high statistical confidence.

Procedure. We begin by uniformly sampling m audit ex-
amples within a unit-volume region X ⊂ Rd in the training
data’s d-dimensional space, ideally from an unused area to
minimize impact on generative capabilities. The generative
model G is then trained on these m audit examples (op-
tionally alongside real training data) and used to generate
n synthetic samples, which can optionally be restricted to
region X via rejection sampling for improved audit quality.
Finally, we obtain a lower bound on the data pipeline’s dif-
ferential privacy parameter ϵ by computing nearest-neighbor
distances between the audit and synthetic samples.

Comparison with existing work. What distinguishes our
approach from the existing literature is that we do not rely
on membership inference attacks, which has a major limita-
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tion when it comes to auditing privacy in machine learning.
Each membership prediction on a target tests for a single
bit regarding whether the target was included or excluded
from the training dataset, which provides very limited infor-
mation for auditing differential privacy—even if the attack
succeeds 100% of the time on m audit targets, the largest
lower bound on privacy parameter ϵ derivable that holds
with (1− β)100% probability is ϵ ≥ log( m

√
β/(1− m

√
β)),

which is only ≈ 12.71 for m = 1, 000, 000 targets at a
confidence level of 95% (i.e. for β = 0.05). In con-
trast, a reconstruction attack seeks to predict all the bits
that make up the target, which can be infinitely more in-
formative than the outcome of a membership inference at-
tack. Our main result shows that with m audit examples
in d dimensions, observing nearest-neighbor distance sum
ν̂ from n reconstructed samples results in a lower bound
ϵ ≥ log (Γ(d/2)/Γ(d)) + log

(
m
√
β · (md)!

/
2πd/2nν̂d

)
,

that holds with (1− β)100% probability. To contextualize,
for just m = n = 10 audit and synthetic samples in d = 10
dimensions, a nearest-neighbor distance sum ν̂ ≤ 1 yields
ϵ ≥ 17.34, ν̂ ≤ 0.1 yields ϵ ≥ 40.36, and ν̂ ≤ 0.01 yields
ϵ ≥ 63.39 with 99.9% confidence. For larger and more
practical values of audit examples m, synthetic samples n
and dimension d, our lower bounds improve substantially.

Relevance. Our auditing method is particularly well-suited
for structured generative and foundation models trained on
tabular data, where model scale and training cost prohibit
multiple training runs. Auditing privacy with membership
inference is cumbersome, requiring outlier selection as audit
targets, designing a discriminator for membership detec-
tion, and performing shadow runs to train the discrimina-
tor (Shokri et al., 2017). In contrast, our scheme is remark-
ably simpler: viewing synthetic samples as reconstruction
attempts means auditing involves merely generating samples
and computing distances to audit examples. By filling the
privacy assessment gap in synthetic data benchmarks, our
audit methodology serves as a key enabler for quantifiable
privacy evaluations of contemporary generative models.

Related work. The prior literature on privacy auditing
schemes is based on conducting membership inference at-
tacks over multiple independent runs of a private algorithm
on adjacent datasets that differ in a single record to directly
test the ϵ-DP inequality (Gilbert & McMillan, 2018; Ding
et al., 2018; Bichsel et al., 2021; 2018; Zanella-Beguelin
et al., 2023; Niu et al., 2022). These approaches do not scale
for evaluating privacy of large foundational models as even
a single training run is costly (Neel & Chang, 2023).

The work of (Steinke et al., 2023) removes the multi-run
limitation by noting that the DP guarantee holds simulta-
neously for all the input data points. Their audit strategy
exploits the parallelism of including or excluding multiple
audit targets in a single run, linking membership-inference

accuracy to high-confidence bounds on the algorithm’s DP
parameters. Our main result exploits not only this paral-
lelism across multiple targets, but also parallelism across
the possible high-dimensional values each target can have.

Prior audit methods are impractical for generative models
due to their reliance on membership inference, retraining,
or access to model internals. Our work provides a low-
overhead, practically deployable privacy audit for generative
model training pipelines that are increasingly treated as
black boxes in the industry. As such, our contributions are:

1. A one-run black-box audit strategy for tabular models.
2. A novel view of synthetic samples as reconstructions;

using it to audit privacy better than inference attacks.
3. An ϵ-DP audit instantiation that provides a substantially

tighter lower bound compared to prior methods.
4. Demonstration on generative models including GANs,

VAEs, diffusion, and LLM-based synthesizers.

2. Background
The generation of structured synthetic data from real data
typically follows a number of steps. First, the original
records from a data universe D, potentially with hetero-
geneous features, are transformed into corresponding d-
dimensional feature vectors via an invertible transformer
T : D → Rd. For instance, in case of tabular data, numeri-
cal features can be normalization or standardization; cate-
gorical features are often encoded as one-hot vectors; and
ordinal features may be mapped to an interval scale. This
transformation yields a vectorized training dataset D ⊂ Rd.

Next, a generative model G (e.g. GAN (Xu et al., 2019b;
Zhao et al., 2022), diffusion model (Kotelnikov et al., 2023),
LLM model (Zhao et al., 2023; Wang et al., 2024)) is either
trained or fine-tuned on the training dataset D using gradient
descent to learn the underlying real distribution. To create
synthetic samples in the original format, a set of new d-
dimensional vectors S is sampled from the generative model
G, which are then transformed back using T −1 : Rd → D.

A formal guarantee is often desired to prevent generative
models from memorizing sensitive training data; Differen-
tial privacy is the gold standard for quantifying this risk.

Definition 2.1 (Differential Privacy (Dwork et al., 2006b;a)).
Let A : Xm → Y be a randomized algorithm. We say A is
ϵ-differentially private (ϵ-DP) if, for all X,X′ ∈ Xm that
differ only by replacement of one element, we have

∀S ⊂ Y, Pr[A(X) ∈ S] ≤ eϵ · Pr[A(X′) ∈ S]. (1)

3. Auditing Process
Our audit process evaluates the privacy of the main segment
of the real-to-synthetic genAI pipeline that lies between the
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Algorithm 1 ϵ-DP Auditor using NN distance sum
Require: Algorithm A to audit, number of audit examples

m, number of synthetic samples n, dimension of feature
vectors d, significance level β.

1: Uniformly sample X = (X1, · · · , Xm)←$ [0, 1]d×m

2: Generate synthetic samples (S1, · · · , Sn)←$ A(X)
3: Initialize ν̂ ← 0
4: for i = 1 to m do
5: ν̂ ← ν̂ + infj∈[n] ∥Xi − Sj∥2
6: end for
7: return ϵlower ← max

{
0, log

(
Γ(d/2)
Γ(d) ·

m
√

β·(md)!

2πd/2n·ν̂d

)}

transformation step T on the input training data and the in-
verse transformation step T −1 on the output synthetic data.
This audit begins by uniformly sampling m vectors in the
d-dimensional hypercube X = [0, 1]d ⊂ Rd, which we call
audit examples and denote X ∈ Xm. The hypercube X
has a unit volume and can be located anywhere within the
d-dimensional space Rd (where the training data resides),
rather than being fixed at the origin 0d. We then use audit
examples, optionally along with the real training dataset
D ⊂ Rd, to train a generative model G as usual in the next
step of the genAI pipeline. After training, we sample n syn-
thetic feature vectors S = (S1, · · · , Sn) in Rd. If sampling
is inexpensive, we can optionally restrict synthetic samples
S to X via rejection sampling for better audit performance.
We denote this audit-to-synthetic generation process as the
algorithmA : Xm → Rn, where the real training dataset D
(if used) is considered fixed and “hardcoded” into A itself.

In the next phase, we compute the sum of the Euclidean
distance ν̂(X,S) between the audit examples X and their
nearest neighbors among synthetic examples S, which gives
us a proxy measurement of the level of memorization exhib-
ited by the intermediate generative model G in the pipeline.

In the last phase, we convert the measurement ν̂ into an esti-
mate ϵlower that lower-bounds A’s true differential privacy
parameter with probability (1− β)100%. This conversion
is enabled by the main result of our paper, which is pre-
sented in Theorem 3.1. In Algorithm 1, we present the
pseudocode of our auditing procedure and also provide a
numerically-stable Python implementation in Appendix B.
Theorem 3.1 (Main Result). Let X = [0, 1]d. Let A :
Xm → Rn satisfy ϵ-DP. Let X = (X1, · · · , Xm) ∈ Xm be
uniformly random. Let S = (S1, · · · , Sn) = A(X) ∈ Rn.
Let d(1)

Xi
= infj∈[n] ∥Xi − Sj∥2. Then, for all ν ≥ 0 and

s ∈ Rn in the support of S,

Pr

[
m∑
i=1

d
(1)
Xi
≤ ν

∣∣∣∣∣S = s

]
≤ 1

(md)!

(
2π

d
2 neϵνd

Γ(d)

Γ(d2 )

)m

.

Theorem 3.1 gives a way to test the hypothesis that “algo-
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Figure 1. Lower bound on the DP parameter ϵ from Theorem 3.1
as the memorization metric (ν̂) changes for different choices of
audit examples m, synthetic samples n, and dimension d.

rithmA is ϵ-DP”. This can be seen by rearranging the terms
in the equation and taking expectation over the distribution
of S to get the following statement: If A is ϵ-DP, then

Pr
X←[0,1]d

S←A(X)

ν̂(X,S) ≤

(
Γ(d/2)

Γ(d)
·

m
√
(md)!

2πd/2neϵ

) 1
d

 ≤ β,

where ν̂(X,S) :=
∑m

i=1 infj∈[n] ∥Xi − Sj∥2 is the sum of
the nearest-neighbour (NN) distances of audit examples to
synthetic samples. Put differently, under the assumption
that A is ϵ-DP, the metric ν̂(X,S) will exceed the constant
ν(ϵ, β,m, n, d) with high probability. Thus, if the observed
value of ν̂(X,S) is less than ν, we can confidently reject
the ϵ-DP claim for A, with a false rejection probability ≤ β.

Our auditor in Algorithm 1 uses the hypothesis test for ϵ-DP
in Theorem 3.1 to estimate a lower bound ϵlower on the true
ϵ-DP parameter of A, facilitated by the following lemma.

Lemma 3.2 ((Steinke et al., 2023)). For eachA, let ν̂A ∈ Ω
be a random variable and let PA ∈ R+ be a fixed number.
For each ϵ, β > 0, let Tϵ,β ⊂ Ω satisfy

∀A : (PA = ϵ =⇒ Pr[ν̂A ∈ Tϵ,β ] ≤ β).

Further suppose that, if ϵ1 ≤ ϵ2, then Tϵ1,β ⊃ Tϵ2,β . Then,
for all A and all β > 0,

Pr[PA ≥ sup{ϵ > 0 : ν̂A ∈ Tϵ,β}] ≥ 1− β.

The idea behind this conversion is as follows. Suppose,
for all choices of ϵ, β > 0, we can identify a set Tϵ,β of
extreme values for a statistic ν̂A ∈ Ω that rarely occurs
(with probability ≤ β) whenever the null hypothesis “A is
ϵ-DP” is true (PA = ϵ). Then given an observation of the
statistic ν̂, we can reject the null hypothesis for all values

3
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Figure 2. Our ϵ-DP audit visualization in 2D. Audit dataset X
consists of m = 20 uniformly random points in unit square. We
train a Gaussian Mixture model (8 components) on X and generate
synthetic dataset S containing n = 50 samples.

of ϵ for which the set Tϵ,β contains ν̂ and be rarely wrong
(with probability ≤ β). The maximal such ϵlower that we
can reject is essentially a lower bound estimate of the true
privacy parameter PA of the algorithm A that holds with
high probability (i.e., with probability ≥ 1− β). Figure 1
plots the lower bound ϵlower as a function of normalized ν̂
and Figure 3 in the appendix visualizes the p-value (β) of
rejecting ϵ-DP hypothesis given an observation value ν̂.

4. Experiments
In this section, we present results from applying our ϵ-DP
audit scheme to several synthetic data generation algorithms
from the literature. While our scheme can audit general
structured generative AI, we focus our experiments on tabu-
lar data synthesis techniques to align with the workshop.

Toy experiment. Figure 2 shows the privacy audit of an
8-component Scikit-Learn Gaussian mixture model. This
model was trained on a tiny dataset of m = 20 random 2D
samples and used to generate n = 50 synthetic samples,
which resulted in ϵlower = 1.14 with 95%-confidence.

Large-scale experiments. To demonstrate the effectiveness
of our auditing scheme, we select six state-of-the-art tabular
generative models to evaluate: CTGAN (Xu et al., 2019a),
TVAE (Xu et al., 2019a), CTAB-GAN+ (Zhao et al., 2022),
ARF (Watson et al., 2023), Tabula (Zhao et al., 2023) and
TabDiff (Shi et al., 2024). These algorithms cover a wide
range of generative models, including GANs, VAEs, tree-
based models, LLMs, and diffusion models. For consistent

Table 1. DP audit results for various synthetic data generation ap-
proaches in literature (holds with 95%-confidence).

ALGORITHM ϵlower

GAUSSIAN-MIXTURE (CF. FIGURE 2) 1.14
CTGAN (XU ET AL., 2019A) 0
CTAB-GAN+ (ZHAO ET AL., 2022) 0.04
TVAE (XU ET AL., 2019A) 4.42
ARF (WATSON ET AL., 2023) 2.26
TABDIFF (SHI ET AL., 2024) 2.36
TABULA (ZHAO ET AL., 2023) 57.53

auditing across all evaluations (except the toy example),
we uniformly fix the parameters at m = 100, n = 1, 000,
and d = 60. These settings reflect typical production en-
vironments: d ≤ 60 covers most tabular datasets encoun-
tered, m = 100 audit examples represent a negligible frac-
tion (< 2%) of typical training dataset sizes, and sampling
n = 1, 000 synthetic data is relatively inexpensive.

To achieve the best audit results in these experiments, we
used only the audit dataset X ∈ Xm, omitting a separate
real training dataset D and restrict the synthetic samples to
S ∈ Xn (a configuration that our scheme supports). Given
this small effective training size (m = 100), we increased
the training duration for the evaluated models: CTGAN,
TVAE, and CTAB-GAN+ were trained for 2000 epochs,
Tabula for 1000, and TabDiff for 8000 iterations. Table 1
summarizes the results of our privacy auditing.

5. Conclusion and Future Work
We presented a novel and efficient black-box technique
for auditing the differential privacy level of structured syn-
thetic data generators. By reframing the problem around the
concept of training data reconstruction and utilizing nearest-
neighbor distances between training and synthetic data as a
sensitive indicator of memorization, our approach provides
substantially larger lower bounds on the privacy parameter
ϵ compared to other audit techniques based on membership
inference attacks. This one-run auditing strategy is efficient,
avoids the need for adversarial crafting or calibration via
shadow models, and its minimal assumptions make it widely
applicable for assessing the privacy guarantees of various
synthetic data generation systems in practice. Our work di-
rectly supports the goal of building trust and accountability
in structured generative and foundation models by offering a
principled, scalable, and interpretable privacy auditing tool
tailored for real-world use. In doing so, it contributes to
a broader goal of providing a framework for quantifiable
privacy guarantees for synthetic data, critical for evaluating
the current tabular models and building the future ones.

Future work. An important area for future research in-
volves adapting our audit approach to other notions of dif-
ferential privacy, including (ϵ, δ)-DP, f -DP, and Rényi DP.
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A. Deferred Proofs
Lemma A.1 ((Steinke et al., 2023)). Suppose for all ν ∈ R we have Pr[X1 ≤ ν] ≤ Pr[Y1 ≤ ν] and for all x, ν ∈ R
we have Pr[X2 ≤ ν|X1 = x] ≤ Pr[Y2 ≤ ν]. Assume that Y1 and Y2 are independent. Then for all ν ∈ R we have
Pr[X1 +X2] ≤ Pr[Y1 + Y2].

Proof. For all ν ∈ R, we have

Pr[X1 +X2 ≤ ν] = E
X1

[
Pr
X2

[X2 ≤ ν −X1|X1]

]
≤ E

X1

[
Pr
Y2

[Y2 ≤ ν −X1]

]
= E

Y2

[
Pr
X1

[X1 ≤ ν − Y2]

]
≤ E

Y2

[
Pr
Y1

[Y1 ≤ ν − Y2]

]
= Pr[Y1 + Y2 ≤ ν].

Theorem 3.1 (Main Result). Let X = [0, 1]d. LetA : Xm → Rn satisfy ϵ-DP. Let X = (X1, · · · , Xm) ∈ Xm be uniformly
random. Let S = (S1, · · · , Sn) = A(X) ∈ Rn. Let d(1)

Xi
= infj∈[n] ∥Xi − Sj∥2. Then, for all ν ≥ 0 and s ∈ Rn in the

support of S,

Pr

[
m∑
i=1

d
(1)
Xi
≤ ν

∣∣∣∣∣S = s

]
≤ 1

(md)!

(
2π

d
2 neϵνd

Γ(d)

Γ(d2 )

)m

.

Proof. Assume M is ϵ-DP. Fix some synthetic data s ∈ Rn. We now analyze the distribution of input X conditioned on
S = s. Fix some i ∈ [n] and x<i ∈ X i−1. By Bayes law,

p(Xi = x|S = s,X<i = x<i) =
p(S = s|Xi = x,X<i = x<i)

p(S = s|X<i = x<i)
× p(Xi = x|X<i = x<i)

=
p(Xi = x|X<i = x<i)∫

X
p(S=s|Xi=x′,X<i=x<i)
p(S=s|Xi=x,X<i=x<i)

p(Xi = x′|X<i = x<i)dx′

=
p(Xi = x)∫

X
p(S=s|Xi=x′,X<i=x<i)
p(S=s|Xi=x,X<i=x<i)

p(Xi = x′)dx′
(Since Xis are independent)

=
1∫

X
p(S=s|Xi=x′,X<i=x<i)
p(S=s|Xi=x,X<i=x<i)

dx′
(Since p(Xi = x) = 1 for all x ∈ [0, 1]d)

∈ [e−ϵ, eϵ] (Since A is ϵ-DP)

Basically, this says that the posterior distribution of Xi given the observed synthetic data S (and previous audit examples) is
still ϵ-close to being uniformly distributed on the hypercube [0, 1]d.

We are interested in the random variables d(1)
X1

, · · · ,d(1)
Xm

which denotes the euclidean distance between X1, · · · , Xm and
their respective nearest neighbors among S1, · · · , Sn. But these random variables are dependent on one another. So, our
goal at hand is to come up with random variables Y1, · · · , Ym ∈ X that are mutually independent when conditioned on the
synthetic data S = s such that d(1)

Yi
dominates d(1)

Xi
as follows:

∀i ∈ [m] : Pr
[
d
(1)
Xi
≤ ν

∣∣∣S = s,X<i = x<i

]
≤ Pr

[
d
(1)
Yi
≤ ν

∣∣∣S = s
]

If we could come up with a construction for such new random variables Y1, · · · , Yn, then it would immediately follow from
Lemma A.1 that

Pr

[
m∑
i=1

d
(1)
Xi
≤ ν

∣∣∣∣∣S = s

]
≤ Pr

[
m∑
i=1

d
(1)
Yi
≤ ν

∣∣∣∣∣S = s

]

6
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And since d
(1)
Y1

, · · · ,d(1)
Ym

will also be independent conditioned on S = s, we can easily bound the RHS.

Question. What is the Yi random variables we trying to construct?

We are given n points s1, · · · , sn ∈ Rd within it. We want to construct a distribution p∗ on the hypercube that is ϵ-close to
the uniform distribution (i.e. p∗(x) ∈ [e−ϵ, eϵ] for all x) such that the distance dYi of a Yi ∼ p∗ from the nearest neighbor
among s1, · · · , sn is likely to me smaller than among all other distributions p that are also ϵ-close to uniform:

∀0 ≤ ν ≤
√
d : Pr

Yi∼p

[
d
(1)
Yi
≤ ν

∣∣∣S = s
]
≤ Pr

Yi∼p∗

[
d
(1)
Yi
≤ ν

∣∣∣S = s
]
.

Since the random variable d
(1)
Xi

given S = s and X<i = x<i is also ϵ-close to being uniform, the random variable d
(1)
Yi

where Yi ∼ p∗ will dominate d
(1)
Xi

by construction.

From geometry, this distribution p∗ must give the higher density eϵ to all the n balls Br(s1), · · · , Br(sn) that intersect
with the unit hypercube [0, 1]d and e−ϵ everywhere else inside the hypercube. The value of radius r so that p∗ is a valid
distribution can be computed geometrically, but our analysis doesn’t need the exact value of r (although our analysis can be
improved by computing limits on this r).

For Yi ∼ p∗ we can find an upper bound on the density of d(1)
Yi

as follows

p
(
d
(1)
Yi

= ν
∣∣∣S = s

)
=

∫
{y∈[0,1]d:∃i∈[n] s.t. d(y,si)=ν}

p(Yi = y|S = s)dy

≤
∫
{y∈[0,1]d:∃i∈[n] s.t. d(y,si)=ν}

eϵdy (From ϵ-closeness to uniform)

≤
n∑

i=1

eϵ ·
∫
{y∈[0,1]d:d(y,si)=ν}

dy

≤
n∑

i=1

eϵ ·
∫
Bν(si)

dy

=

n∑
i=1

eϵ ·Ad−1(ν) (where Ad−1(ν) is the surface area of Bν(si))

= neϵ · 2π
d/2

Γ(d2 )︸ ︷︷ ︸
Let constant a=

·νd−1.

Since d
(1)
Y1

, · · · ,d(1)
Ym

are conditionally independent, the conditional density of the sum
∑m

i=1 d
(1)
Yi

is the convolution of

conditional densities of d(1)
Y1

, · · · ,d(1)
Ym

, which is upper bounded by the m-fold convolution of fd(ν) := a · νd−1, as follows.

p

(
m∑
i=1

d
(1)
Yi

= ν

∣∣∣∣∣S = s

)
≤ f⊛m

d (ν)

Let’s solve the m-fold convolution of fd(ν) = a · νd−1. Laplace transform1 of the function fd is

L{fd(t)}(s) = a · L{td−1}(s) = a · Γ(d)
sd

.

From the convolution property of Laplace transforms

L{f⊛m(t)}(s) = am ·
m∏
i=1

L{f(t)}(s) = am · Γ(d)
m

smd
= am · Γ(d)

m

Γ(md)
L{tmd−1}(s) = L

{
am · Γ(d)

m

Γ(md)
· tmd−1

}
(s)

1Laplace transform of function f is defined as L{f}(s) :=
∫∞
0

e−st · f(t)dt. For any two functions f, g, the Laplace transform of
the convolution (f ⊛ g)(t) =

∫ t

0
f(t− τ) · g(τ)dτ is the product of the respective Laplace transforms: L{f ⊛ g} = L{f} · L{g}.
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Therefore,

f⊛m(t) = am · Γ(d)
m

Γ(md)
· tmd−1.

This means,

p

(
m∑
i=1

d
(1)
Yi

= ν

∣∣∣∣∣S = s

)
≤ am · Γ(d)

m

Γ(md)︸ ︷︷ ︸
Let constant b=

·νmd−1.

So, probability Pr
[∑m

i=1 d
(1)
Yi
≤ ν

∣∣∣S = s
]

can be found by integrating:

Pr

[
m∑
i=1

d
(1)
Yi
≤ ν

∣∣∣∣∣S = s

]
≤ b

∫ ν

0

tmd−1dt =
b

md
· νmd.

Finally from Lemma A.1, we get

Pr

[
m∑
i=1

d
(1)
Xi
≤ ν

∣∣∣∣∣S = s

]
≤ Pr

[
m∑
i=1

d
(1)
Yi
≤ ν

∣∣∣∣∣S = s

]
≤ 1

(md)!
·

(
2πd/2neϵ · Γ(d)

Γ(d2 )
· νd
)m

.

B. Implementation of Our DP Auditor from Theorem 3.1
1 import numpy as np
2 from scipy.special import gammaln
3

4 # m = number of audit example vectors
5 # n = number of synthetic sample vectors
6 # d = dimension of audit and synthetic feature vectors
7 # v = sum of Euclidean distances between audit examples and NN synthetic samples
8 # eps = DP guarantee of null hypothesis
9 # output: p-value = probability of <=v NN distance sum under null hypothesis

10 def get_pvalue(m, n, d, v, eps):
11 assert v > 0
12 assert eps >= 0
13 log_gamma_term = gammaln(d) - gammaln(d / 2)
14 log_md_factorial = gammaln(m * d + 1)
15 log_base_terms = np.log(2) + (d / 2) * np.log(np.pi) + np.log(n) + log_gamma_term
16 log_p_value = -log_md_factorial + m * (log_base_terms + eps + d * np.log(v))
17 p_value = np.exp(log_p_value)
18 return np.minimum(p_value, 1)
19

20 # m = number of audit example vectors
21 # n = number of synthetic sample vectors
22 # d = dimension of audit and synthetic feature vectors
23 # v = sum of Euclidean distances between audit examples and NN synthetic samples
24 # p = 1-confidence e.g. p=0.05 corresponds to 95%
25 # output: lower bound on eps i.e. algorithm is not eps-DP
26 def get_epslb(m, n, d, v, p):
27 assert v > 0
28 assert p > 0
29 log_gamma_term = gammaln(d/2) - gammaln(d)
30 log_md_factorial = gammaln(m * d + 1)
31 log_top_terms = (np.log(p) + log_md_factorial) / m
32 log_bottom_terms = np.log(2) + (d / 2) * np.log(np.pi) + np.log(n) + d * np.log(v)
33 eps_lower = log_gamma_term + log_top_terms - log_bottom_terms
34 return np.maximum(0,eps_lower)

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

One-Run Privacy Auditing for Structured Generative and Foundation Models

0.05 0.10 0.15 0.20 0.25
/m d

1

2

3

4

5

6 m = 1, n = 1, d = 1

0.05 0.10 0.15 0.20 0.25
/m d

2

4

6

8

10 m = 2, n = 5, d = 2

0.05 0.10 0.15 0.20 0.25
/m d

2

4

6

8

10

12

14

m = 5, n = 10, d = 5

0.05 0.10 0.15 0.20 0.25
/m d

5

10

15

20

25 m = 20, n = 50, d = 10

0.05 0.10 0.15 0.20 0.25
/m d

20

40

60

80

100 m = 100, n = 500, d = 50

0.05 0.10 0.15 0.20 0.25
/m d

50

100

150

200

250 m = 500, n = 2500, d = 100

0.0001

0.0050

0.0250

0.1000

0.3000

0.5000

0.7000

0.9000

p-
va

lu
e

Figure 3. Visualization of Theorem 3.1’s p-value, presented using the colormap, for rejecting the null hypothesis “algorithm A for training
a generative model is ϵ-differentially private”. Here, m represents the number of uniformly-random audit examples added to the training
dataset, n the number of synthetic samples generated from a model trained using A, and d the dimension of training/synthetic datasets.
The plot shows how the p-value changes as the memorization metric (which we define as the average distance between audit examples and
their respective nearest synthetic samples ν̂/m, normalized by dimension size

√
d) varies across different audit settings.
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