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Abstract
Automated segmentation of abdominal multi-organ from 3D

computed tomography images (CTs) is necessary for organ quantification,
surgical planning, and disease diagnosis. Manual delineation practices
require anatomical knowledge, are expensive, time consuming and can be
inaccurate due to human error. Here, we describe a semi-supervised
efficient context-aware segmentation network for abdominal multi-organ
segmentation from 3D CTs based on encoder-decoder architecture. For
learning more useful feature information from unlabeled cases, a
variational auto-encoder branch is added to reconstruct the input image
itself in order to regularize the shared encoder and impose additional
constraints on its layers. And for the purpose of consuming less source,
an efficient context-aware segmentation backbone network is used in this
paper.
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1 Introduction
In this paper, we focus on semi-supervised abdominal multi-organ

segmentation from CT scans. Here we obtain 50 labeled cases and 2000
unlabeled cases. As shown in Figure 1, the main difficulties stem from
four aspects: 1) The variations in field-of-views, shape and size of
different organs. 2) The abnormalities, like lesion-affected organ, may
lead to segmentation failure. 3) The diversity of data source in term of
multi-center, multi-phase and multi-vendor cases. 4) The limited GPU
memory size and high computation cost. 5) The effectiveness of
extracting organ feature information from unlabeled cases.



Figure 1. 13 abdominal organs of a person. (a) 3D organ segmentation display. (b-c) Transverse and
coronal segmentation illustrations.

A common solution [1] is to develop a sliding-window method, which
can balance the GPU memory usage. Usually, this method need to sample
sub-volumes overlap with each other to improve the segmentation
accuracy, while leading to more computation cost. Meanwhile,
sub-volumes sampled from entire CT volume inevitably lose some 3D
context, which is important for distinguishing multi-organ with respect to
background.

2 Methods
As mentioned in Figure 2, this end-to-end semi-supervised network is

composed of segmentation flow and reconstruction flow. A detail
description of the method is as follows.

2.1 Preprocessing
The baseline method includes the following preprocessing steps:
• Reorientation image to target direction.
• Resampling image to fixed size. [160, 160, 160]
• Intensity normalization: First, the image is clipped to the range
[-325, 325]. Then a z-score normalization is applied based on the
mean and standard deviation of the intensity values.



Figure 2. A schematic diagram of end-to-end semi-supervised segmentation network.

Figure 3. Illustration of the encoder block and decoder block.



Figure 4. Illustration of the context block.

2.2 Proposed Method
The proposed framework consists of four major parts: the feature

encoder module, the context extractor module, the feature decoder
module for segmentation and the feature decoder module for
reconstruction, as shown in Figure 2.

As depicted in Figure 3, the encoder module is composed of two
residual convolution blocks, and the decoder module with one residual
convolution block. As to decoder module, we separate a standard 3D
convolution with kernel size 3×3×3 into a 3×3×1 intraslice convolution
and a 1×1×3 inter-slice convolution. The residual convolution block is
implemented as follows: conv-instnorm-ReLU-conv-instnorm-ReLU
(where the addition of the residual takes place before the last ReLU
activation). We adopt 3D-based mixed pyramid pooling (Figure 4) to
extract contextual feature, which is composed of the standard spatial
pooling and the anisotropic strip pooling. The standard spatial pooling
employs two average pooling with the stride of 2×2×2 and 4×4×4. The
anisotropic strip pooling with three different-direction receptive fields:
1×N×N, N×1×N and N×N×1, where N is the size of feature map in last
encoder module.

3 Dataset and Evaluation Metrics
3.1 Dataset

There are a small number of labeled cases (50) and a large number of
unlabeled cases (2000) in the training set, 50 visible cases for validation,
and 200 hidden cases for testing. The segmentation targets include 13
organs: liver, spleen, pancreas, right kidney, left kidney, stomach,



gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left
adrenal gland, and duodenum.

3.2 Evaluation Metrics
• Dice Similarity Coefficient (DSC)
• Normalized Surface Distance (NSD)
• Running time
• Maximum used GPU memory (when the inference is stable)

4 Results and discussion
Due to various reasons, our team did not have enough time to prepare

for the challenge, so we achieved worse verification results.
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