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Abstract

The Voronoi Density Estimator (VDE) is an es-
tablished density estimation technique that adapts
to the local geometry of data. However, its ap-
plicability has been so far limited to problems in
two and three dimensions. This is because Voronoi
cells rapidly increase in complexity as dimensions
grow, making the necessary explicit computations
infeasible. We define a variant of the VDE deemed
Compactified Voronoi Density Estimator (CVDE),
suitable for higher dimensions. We propose com-
putationally efficient algorithms for numerical ap-
proximation of the CVDE and formally prove con-
vergence of the estimated density to the original
one. We implement and empirically validate the
CVDE through a comparison with the Kernel Den-
sity Estimator (KDE). Our results indicate that the
CVDE outperforms the KDE on sound and image
data.

1 INTRODUCTION

Given a discrete set of data sampled from an unknown proba-
bility distribution, the aim of density estimation is to recover
the underlying Probability Density Function (PDF) (Diggle
2013; Scott 2015). Non-parametric methods achieve this
by directly computing the PDF through a closed formula,
avoiding the potentially expensive need of searching for
optimal parameters.

One of the most common non-parametric density estimation
techniques is the Kernel Density Estimator (KDE; Gramacki
2018). The resulting PDF is a convolution between a fixed
kernel and the discrete distribution of samples. In case of the
Gaussian kernel, this corresponds to a mixture density with
a Gaussian distribution centered at each sample. Another

*Equal contribution.

Figure 1: Graph of a density estimated by the CVDE, with
the Voronoi tessellation underneath.

popular density estimator, more commonly used for visu-
alization purposes is given by histograms (Freedman and
Diaconis 1981), which depend on a prior tessellation of the
ambient space (typically, a grid). The estimation is piece-
wise constant and is obtained by the number of samples
falling in each cell normalised by its volume.

A common limitation of the aforementioned methods is
a bias towards a fixed local geometry. Namely, estimates
through KDE near a sample are governed by the level sets of
the chosen kernel. In the Gaussian case, such level sets are
ellipsoids of high estimated probability. Histograms suffer
from an analogous bias towards the geometry of the cells of
the tessellation (i.e., the bins of the histograms), on which
the estimated PDF is constant. The issue of geometrical
bias severely manifests when considering real-world high-
dimensional data. Indeed, one cannot expect to approximate
the rich local geometries of complex data with a simple
fixed one. Both the estimators come with hyperparameters
controlling the scale of the local geometries which require
tuning. This amounts to the bandwidth for KDE and the
diameter of the cells for histograms.

The Voronoi Density Estimator (VDE) has been suggested
to tackle the challenges discussed above (Ord 1978). By con-
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sidering the Voronoi tessellation generated by data (Okabe
et al. 2009), the estimated PDF is piece-wise constant on the
cells and proportional to their inverse volume. The Voronoi
tessellation adapts local polytopes so that each datapoint is
equally likely to be the closest when sampling from the re-
sulting PDF. This has enabled successful application of the
VDE to geometrically articulated real-world distributions in
lower dimensions (Duyckaerts, Godefroy, and Hauw 1994;
Ebeling and Wiedenmann 1993; Vavilova et al. 2021).

The goal of the present work is to enable the VDE for
high-dimensional scenarios. Although the VDE constitutes a
promising candidate due to its local adaptivity, the following
aspects have to be addressed:

Computation. The Voronoi cells are arbitrary convex poly-
topes and their volume is thus challenging to compute ex-
plicitly, which yields the necessity for fast approximate
computations.

Compactification. Data is often concentrated around low-
dimensional submanifolds, which makes most of the ambi-
ent space empty and several Voronoi cells unbounded, i.e.
of infinite volume (see Figure 3). One still needs to produce
a finite estimate on those cells, a process we refer to as
’compactification’.

We propose solutions to the problems above. First, we
present efficient algorithmic procedures for volume com-
putation and sampling from the estimated density. We for-
mulate the cell volumes as integrals over a sphere, which
can then be approximated by Monte Carlo methods. Further-
more, we propose a sampling procedure for the distribution
estimated by the VDE. This consists in randomly traversing
the Voronoi cells via a ’hit-and-run’ Markov chain (Chen
and Schmeiser 1996). The proposed algorithms are highly
parallelizable, allowing efficient computations on the GPU.

In order to compactify the cells, we place a finite measure
on each of them by means of a fixed kernel (typically, a
Gaussian one), leading to an altered version of the VDE
which we refer to as Compactified Voronoi Density Esti-
mator (CVDE). Figure 1 shows an example of an estimate
by the CVDE on a simple two-dimensional dataset. All the
computational and sampling procedures naturally extend to
the CVDE.

A further contribution of the present work is a theoretical
proof of convergence for the CVDE. Assuming the original
density has support in the whole ambient space, we show
that the PDF estimated by the CVDE converges (with re-
spect to an appropriate notion for random measures) to the
ground-truth one as the number of datapoints increases. The
convergence holds without any continuity assumptions on
the ground-truth PDF nor on the kernel and does not require
the kernel bandwidth to vanish asymptotically. This is in
contrast with the convergence properties of the KDE. Due
to the aforementioned local geometric bias of the KDE, the

bandwidth has to decrease at an appropriate rate in order to
amend for the local influence of the kernel and guarantee
convergence to the underlying distribution (Devroye and
Wagner 1979; Jiang 2017).

Finally, we implement the CVDE in C++ and parallelize
computations via the OpenCL framework. Our code, with a
provided Python interface, is publicly available at
https://github.com/vlpolyansky/cvde.

2 COMPACTIFIED VORONOI DENSITY
ESTIMATOR

This section presents Voronoi cell compactification and
Compactified Voronoi Density Estimator, CVDE. We begin
by defining the Voronoi tessellations in a general setting (see
Okabe et al. 2009 for a comprehensive treatment). Suppose
that (X, d) is a connected metric space and P ⊆ X is
a finite collection of distinct points referred to as generators.

Definition 2.1. The Voronoi cell1 of p ∈ P is defined as

C(p) = {x ∈ X | ∀q ∈ P d(x, q) ≥ d(x, p)}. (1)

The Voronoi cells intersect at the boundary and cover the am-
bient space X . The collection {C(p)}p∈P is called Voronoi
tessellation generated by P . For a point x ∈ X not on the
boundary of any cell, we write C(x) for the unique cell
containing it. When X = Rn with Euclidean distance, the
Voronoi cells are convex n-dimensional polytopes which
are possibly unbounded.

Assume now that X is equipped with a finite Borel measure
denoted by Vol. An additional technical condition is that
the boundaries of the Voronoi cells have vanishing measure.

Definition 2.2. The Voronoi Density Estimator (VDE) at a
point x ∈ X is defined almost everywhere as

f̃(x) =
1

|P |Vol(C(x))
(2)

where | · | denotes cardinality.

The function f̃ defines a locally constant PDF onX and thus
a probability measure f̃ Vol. With respect to this distribution
the cells are equally likely, and the restriction to each cell
coincides with the normalisation of Vol.

We focus on the case where X = Rn equipped with Eu-
clidean distance. One major issue for the choice of Vol is
that the standard Lebesgue measure does not satisfy the
finiteness requirement. A common solution in the literature
is to restrict the measure to a fixed bounded region A ⊆ Rn

1Sometimes referred to as Dirichlet cell.
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Figure 2: Comparison between VDE and CVDE for generators in the plane. A darker color represents higher estimated
density.

containing P (Moradi et al. 2019; Barr and Schoenberg
2010), which is equivalent to setting X = A as the ambient
space. However, this results in an often unsuitable solution
for high-dimensional data. Under the manifold hypothesis
(Fefferman, Mitter, and Narayanan 2016), data are concen-
trated around a submanifold with high codimension which
implies that most of Rn falls outside the support. Moreover,
the cells of the points lying at the boundary of the convex
hull of data, which constitute the majority of cells for such
submanifolds, are unbounded (see Figure 3). Estimating the
density as uniform, after eventually intersecting with the
bounded region A, becomes thus unreasonable and heavily
relies on the a priori choice of A.

Figure 3: Voronoi tessellation for generators distributed on a
submanifold (a parabola). In this case, all the Voronoi cells
are unbounded and the VDE is strongly biased by the choice
of the bounding region A.

We instead take a different route. The idea is to make
the measure of each cell finite (’compactify’) by consid-
ering a local distribution with mode at the corresponding
generator in P . In general terms, we fix a positive kernel
K : Rn × Rn → R≥0 which is at least integrable in the
second variable and define the following:

Definition 2.3. The Compactified Voronoi Density Estima-
tor (CVDE) at a point x ∈ Rn is defined almost everywhere
as

f(x) =
K(p, x)

|P |Volp(C(x))
(3)

where Volp(C(x)) =
∫
C(x)

K(p, y) dy and p is the genera-

tor of C(x) i.e., the generator p ∈ P closest to x.

In practice, a commonly considered kernel is the Gaussian
one

K(p, x) = e−
‖p−x‖2

2h2 (4)

where h ∈ R>0 is a hyperparameter referred to as ’band-
width’. More generally, with abuse of notation a kernel
can be constructed from an arbitrary integrable map K ∈
L1(Rn):

K(p, x) = K

(
p− x
h

)
. (5)

Note that the VDE with a bounding region A corresponds
to the particular case of the CVDE with the characteristic
function of A as kernel i.e., K(p, x) = χA(x). Figure 2
shows a comparison between the VDE and the Gaussian
CVDE on a simple two-dimensional dataset.

It is worth to briefly compare the CVDE to the Kernel Den-
sity Estimator (KDE). Recall that the KDE with kernel K
(which is assumed to integrate to 1 in the second variable)
is given by 1

|P |
∑
pK(p, x). The kernel is aggregated over

all the generators, which can possibly oversmooth the esti-
mation. In contrast, the CVDE f(x) involves K evaluated
at the closest generator alone. Furthermore, assume that all
the cells have the same local volume i.e, Volp(C(p)) = 1
for all p ∈ P , and that K monotonically decreases with
respect to the distance i.e., K(p, x) ≤ K(p′, x) when
d(p, x) ≥ d(p′, x). Then the CVDE reduces to

f(x) =
1

|P |
max
p∈P

K(p, x) (6)

which is a variant of the KDE where the sum gets replaced
by a maximum. Such distributions are sometimes referred to
as ‘max-mixtures’ (Olson and Agarwal 2013). An empirical
comparison with KDE is presented in our experimental
section (Section 6.4).



Figure 4: An illustration of the directional radius involved
in volume estimation and sampling.

3 ALGORITHMIC PROCEDURES

The CVDE presents a number of computational challenges
in high dimensions (n� 3) due to the increasing geometric
complexity of Voronoi tessellations. We propose to deploy
raycasting methods on polytopes which reduce the problem
to one-dimensional subspaces. In the context of Voronoi
tessellations raycasting has been considered to explore the
boundaries of the cells in (Mitchell et al. 2018), which has
led to a US Patent (Ebeida 2019), as well as in (Polianskii
and Pokorny 2020). We utilize these techniques for vol-
ume computation and point sampling, and improve the time
complexity through pre-computations and parallelization.

We first introduce an algebraic quantity necessary for the
subsequent methods. Consider an arbitrary versor σ and a
point z ∈ Rn. Define lz(σ) as the maximum t such that
z + tσ is contained in C(z), and lz(σ) =∞ if such t does
not exist. We refer to this value as a directional radius,
originating at z in the direction σ (see Figure 4). The direc-
tional radius can be expressed via a closed and computable
formula. Denote by p the generator closest to z and for
q ∈ P \ {p}, set

lqz(σ) =
‖q − z‖2 − ‖p− z‖2

2〈σ, q − p〉
. (7)

As shown in (Polianskii and Pokorny 2019), the directional
radius is given by

lz(σ) = min
q 6=p, lqz(σ)≥0

lqz(σ) (8)

with lz(σ) =∞ if lqz(σ) is negative for all q.

3.1 VOLUME ESTIMATION AND SAMPLING

We now present a way to efficiently compute the (local)
volumes Volp via spherical integration. Such an approach
to integration over high-dimensional Voronoi tessellations
has been explored in the past by (Winovich et al. 2019) and
(Polianskii and Pokorny 2019).

Assume that the kernel is as in Equation 5 for a continuous
K. By a change of variables into spherical coordinates cen-

tered at p and due to convexity of C(p), the volumes can be
rewritten as an integral over the unit sphere Sn−1 ⊆ Rn:

Volp =

∫
Sn−1

∫
[0,lp(σ)]

K(tσ)tn−1dtdσ (9)

where lp(σ) is the directional radius of the cell originating
from its generator (z = p). The spherical integral can be
computed via Monte Carlo approximation by sampling a
finite set of versors Σp ⊆ Sn−1 uniformly and estimating
the empirical average

2π
n
2

|Σp|Γ(n2 )

∑
σ∈Σp

∫
[0,lp(σ)]

K(tσ)tn−1dt (10)

where Γ denotes Euler’s Gamma function. In the case of
Gaussian kernel (Equation 4), by bringing the constant
Vol(Sn−1) = 2π

n
2

Γ( n
2 ) under the summation the summand

simplifies to (2πh2)
n
2 γ
(
n
2 , lp(σ)

)
, where γ denotes the

regularized lower incomplete Gamma function γ(a, z) =
1

Γ(a)

∫ z
0
ta−1e−tdt.

Next, we propose a sampling procedure for the CVDE which
is a version of the hit-and-run sampling for distributions on
higher-dimensional polytopes (Chen and Schmeiser 1996).
It consists in first choosing a generator p = z(0) ∈ P uni-
formly. Then, one traverses the cell C(p) by constructing a
Markov chain {z(i)} in the following way. A random versor
σ(i+1) ∈ Sn−1 is sampled uniformly and the next point
z(i+1) is sampled from 1

Volp
K(p, ·) restricted to the segment

{z(i) + tσ(i+1) | t ∈ [−lz(i)(−σ(i+1)), lz(i)(σ
(i+1))]}. As

shown by Chen and Schmeiser 1996, the Markov chain con-
verges w.r.t. total variation distance to the underlying dis-
tribution 1

Volp
K(p, ·) over C(p). In practice, one terminates

the sampling process after a number I of steps returning the
last point z(I). Figure 5 shows an instance of hit-and-run on
a simple two-dimensional dataset.

3.2 COMPUTATIONAL COMPLEXITY

The computational optimizations deserve a separate discus-
sion. As seen from Equations 8 and 7, the natural way of
estimating the directional radius lz(σ) for given z ∈ Rn
and σ ∈ Sn−1 would require O(n|P |) numerical oper-
ations. This would bring the overall computational cost
to O(nmaxp |Σp||P |2) for the spherical integrals and to
O(n|P |I) for a sampling run with I hit-and-run steps.

In order to optimize the algorithms, we first rewrite Equation
7 as

lqz(σ) =
〈q, q〉 − 〈p, p〉 − 2 〈z, q〉+ 2 〈z, p〉

2 〈σ, q〉 − 2 〈σ, p〉
. (11)

In spherical integration, we deploy the same set of versors
Σ = Σp ⊂ Sn−1 for all the generators. This allows to pre-
compute 〈q, p〉 and 〈σ, p〉 for all p, q ∈ P, σ ∈ Σ, achieving



Algorithm 1 Volp computation with Gaussian kernel

Input: P ⊂ Rn set of generators
Σ ⊂ Sn−1 set of versors

Output: Volp for all p ∈ P
Compute 〈q, p〉 for all (q, p) ∈ P × P
Compute 〈σ, p〉 for all (σ, p) ∈ Σ× P
for all p ∈ P do

Initialize Volp ← 0
for all σ ∈ Σ do

Initialize lp(σ)←∞
for all q ∈ P \ {p} do

lqp(σ)← 〈q,q〉−2〈q,p〉+〈p,p〉
2〈σ,q〉−2〈σ,p〉

if lqp(σ) > 0 then
lp(σ)← min{lp(σ), lqp(σ)}

end if
end for
Volp ← Volp +|Σ|−1

(
2πh2

)n
2 γ

(
n
2
, lp(σ)

)
end for

end for

a total computational complexity of O(n|P |2 + n|Σ||P |+
|Σ||P |2).

For the sampling procedure, we similarly fix a prior fi-
nite set Σ of all available versors. This does not affect the
convergence property of the hit-and-run Markov chain as-
suming Σ linearly spans Rn (Bélisle, Romeijn, and Smith
1993). While 〈σ, p〉 and 〈q, p〉 can be pre-computed in
O(n|P |2 +n|Σ||P |) time, the terms involving z in Equation
11 require more care. To that end, the i-th step of the hit-and-
run Markov chain is given by z(i) = z(i−1) + t(i−1)σ(i−1)

for appropriately sampled t(i−1), σ(i−1). The term 〈z, p〉
can then be updated inductively in O(1) as

〈
z(i), p

〉
=〈

z(i−1), p
〉

+ t(i−1)
〈
σ(i−1), p

〉
. Summing up, the cost of a

hit-and-run Markov chain run reduces to O((|Σ|+ |P |)I),
which does not depend on the space dimensionality n multi-
plicatively.

Algorithms 1 and 2 provide a more detailed description of
volume computation and point sampling via the hit-and-run
procedure respectively, including the discussed optimiza-
tions. Note that the loops in both algorithms are independent
and involve elementary algebraic operations. This allows to
utilize GPU capabilities, which also significantly boosts the
computation performance.

4 THEORETHICAL PROPERTIES

4.1 CONVERGENCE

We now discuss the convergence of the CVDE when the
set P of generators is sampled from an underlying distri-
bution. Suppose thus that there is an absolutely continuous
probability measure P = ρdx on Rn defined by a density
ρ ∈ L1(Rn). When P is sampled from P the CVDE can be
considered as (the density of) a random probability measure.

Algorithm 2 CVDE sampling
Input: P ⊂ Rn set of generators

Σ ⊂ Sn−1 set of versors
m desired number of samples
I number of hit-and-run steps

Output: Z = Z(I) ⊂ Rn samples from CVDE
Initialize Z(0) ∼ Unim(P )
Compute 〈p, p〉 for all p ∈ P
Compute 〈z, p〉 for all (z, p) ∈ Z(0) × P
Compute 〈σ, p〉 for all (σ, p) ∈ Σ× P
for i = 1 to I do

for all z ∈ Z(i−1) do
σ ← Uni(Σ), p← z(0)

Initialize lz(−σ)←∞, lz(σ)←∞
for all q ∈ P \ {p} do

lqz(σ)← 〈q,q〉−〈p,p〉−2〈z,q〉+2〈z,p〉
2〈σ,q〉−2〈σ,p〉

if lqz(σ) > 0 then
lz(σ)← min{lz(σ), lqz(σ)}

else
lz(−σ)← min{lz(−σ),−lqz(σ)}

end if
end for
Sample t ∈ [−lz(−σ), lz(σ)]
Add z + tσ to Z(i)

Update 〈z, p〉 ← 〈z, p〉+ t 〈σ, p〉 for all p ∈ P
end for

end for

Figure 5: An illustration of the hit-and-run sampling proce-
dure, with a trajectory of length I = 4 for each generator.
The sampled points are displayed in orange.

We denote by Pm this random measure when the number of
generators is m i.e., Pm = fdx for P ∼ ρm.

The following is our main theoretical result. It guarantees
that Pm converges to P with respect to a canonical notion
of convergence for random measures, assuming ρ has full
support.

Theorem 4.1. Suppose that ρ has support in the whole
Rn. For any K ∈ L1(Rn × Rn) the sequence of random
probability measures Pm converges to P in distribution w.r.t.
x and in probability w.r.t. P . Namely, for any measurable
set E ⊆ Rn the sequence Pm(E) of random variables



converges in probability to the constant P(E).

Proof. We outline here an idea of the proof and refer to the
Appendix for full details. For a measurable set E, Pm(E)
is equal to

1

m
|P ∩ E|+ residue (12)

where the residue bounded by (twice) the relative number R
of generators whose Voronoi cell intersects the boundary ∂E
of E. The variable 1

m |P ∩ E| tends to P(E) in probability
by the law of large numbers.

We then proceed to show that the boundary termR tends to 0
in probability. To this end, we first prove that the diameters
of the Voronoi cells intersecting E tend uniformly to 0,
which in turn requires a preliminary result constraining such
cells in a neighbour of E (which is assumed to be bounded).
Given that, we conclude that R tends to P(∂E) by the law
of large numbers. By the Portmanteau Lemma (Van der
Vaart 2000), we can assume that P(∂E) = 0 (and that E is
bounded), which concludes the proof.

Note that the above results holds for any (integrable) kernel,
thus even for discontinuous ones. The kernel is fixed, and
there is no need for an eventual bandwidth (Equation 5) to
vanish asymptotically. This is in contrast with KDE, which
requires h to tend to 0 at an appropriate rate in order to
obtain convergence to ρ (Devroye and Wagner 1979; Jiang
2017). This is because of the local geometric bias inherent
to the KDE, as discussed in Section 1. In order to obtain
convergence, such bias has to be amended with a vanishing
bandwidth that annihilates the local geometry of the kernel.

We remark that the assumption on the support of ρ in The-
orem 4.1 is satisfied in the presence of noise, which is re-
alistic in practical scenarios. Assuming that data exhibit,
say, Gaussian noise, the actual underlying distribution is of
full support even when the ideal one is concentrated on a
submanifold of Rn.

4.2 BANDWIDTH ASYMPTOTICS

Consider a kernel in the form of Equation 5. The asymptotics
with respect to h (with fixed set of generators P ) can be
easily deduced:

Proposition 4.2. For a continuous K : Rn → R≥0, the
following hold:

(i) As h tends to 0, f converges in distribution to the empiri-
cal measure 1

|P |
∑
p∈P δp, where deltap denotes the Dirac’s

delta centered in p i.e., the probability measure concentrated
in the singleton {p}.

(ii) Consider the restriction of the kernel to a bounded region
A (i.e., its product with χA). As h tends to +∞, f converges
in distribution to the VDE f̃ .

Proof. For the first statement, note that 1
hnK(xh ) tends to

K(0)δ0 in distribution by the general theory of approxima-
tors of unity. Since limh→0 Volp(C(x)) = K(0) as well
for every p, the claim follows from the definition of the
CVDE (Equation 3). As for the second part, observe that
K(x, p) tends to K(0) by continuity of K and thus f(x)

tends to f̃(x) for almost every x. To conclude, pointwise
convergence of PDFs implies convergence in distribution
(Scheffé’s Lemma).

The asymptotics for small bandwidth are the same as for
the KDE. For bandwidth tending to infinity, however, the
KDE tends to the uniform distribution over A, while the
CVDE still gives reasonable estimates in the form of its
non-compactified version.

5 RELATED WORK

Non-parametric Density Estimation. The first traces of
systematic density estimation date back to the introduc-
tion of histograms (Pearson 1894). Those have been subse-
quently considered with a variety of cell geometries such
as rectangles, triangles (Scott 1988) and hexagons (Carr,
Olsen, and White 1992). The choice of geometry constitutes
the main source of bias for the histogram-based density
estimator.

Arguably, the most popular density estimator is the KDE,
first discussed by Rosenblatt 1956 and Parzen 1962. Numer-
ous extensions have followed, for example, to the multivari-
ate case (Izenman 1991; Dehnad 1987), bandwidth selection
methods (Marron 1987; Wand, Jones, et al. 1994) and algo-
rithms for adaptive bandwidths (B. Wang and X. Wang 2007;
Walt and Barnard 2017). The latter aim to partially amend
for the local geometric bias of the KDE, which is in line
with the present work. However, adapting the bandwidth
alone provides a partial solution since it enables different
scales of the same local geometry. Among applications, the
KDE has been deployed to estimate traffic incidents (Xie
and Yan 2008), archeological data (Baxter, Beardah, and
Wright 1997) and wind speed (Bo et al. 2017) to name a
few.

VDE and its Applications. The VDE has been originally
introduced by Ord 1978 under the name ’ideal estimator’
because of its local geometric adaptivity. Subsequent works
have discussed regularisation (Moradi et al. 2019) and lower-
dimensional aspects (Barr and Schoenberg 2010). The VDE
has seen a applications to a variety of real-world densities
such as neurons in the brain (Duyckaerts, Godefroy, and
Hauw 1994), photons (Ebeling and Wiedenmann 1993) and
stars in a galaxy (Vavilova et al. 2021). Although promising,
the VDE has been previously limited to low-dimensional
problems.

Theoretical Convergence. Convergence of the VDE



n = 2 n = 10

Original

VDE

CVDE

Figure 6: Visual comparison between samples from the
CVDE and the VDE estimating an n-dimensional Gaussian
for n = 2, 10. In the 10-dimensional case, points are pro-
jected onto a plane. In high dimensions, the VDE appears
as biased towards a uniform distribution. This is because
of abundance of unbounded cells, over which the estimated
density is constant.

has been previously considered in the literature, usu-
ally in the language of Poisson point processes. For
uniform underlying distribution, pointwise convergence
of the averaged estimated density (i.e., unbiasedness:
limm→∞ EP∼ρm [f̃(x)] = ρ(x) for almost all x) has been
proven by Last 2010. For non-uniform distributions, the
same convergence has been shown by Moradi et al. 2019
with strong continuity assumptions on the density, which
allows a reduction to the uniform case. Our theoretical result
is based on a different, non-averaged notion of convergence
and holds for the more general CVDE with no continuity
assumptions.

6 EXPERIMENTS

6.1 DATASET DESCRIPTION

In our experiments, we evaluate the CVDE on datasets of
different nature: simple synthetic distributions of Gaussian
type, image data in pixel-space, and sound data in a fre-
quency space. The datasets we deploy are the following:

Gaussians and Gaussian Mixtures: for synthetic exper-
iments we generate two types of datasets, each contain-

10-dimensional Gaussian
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Figure 7: Stabilisation of the Monte Carlo spherical integral.
The plots display the average log-likelihood of the estimated
density on the training set as the number of sampled versors
increases. For each of the 2 datasets, 10 experimental runs
are shown.

ing 1000 training and 1000 test points. The first one con-
sists of samples from an n-dimensional standard Gaus-
sian distribution. The second one is sampled from a Gaus-
sian mixture density ρ = 1

2 (ρ1 + ρ2). Here, ρ1, ρ2 are
Gaussian distributions with means µ1 = (−0.5, 0, · · · , 0),
µ2 = (0.5, 0, · · · , 0) and standard deviations σ1 = 0.1,
σ2 = 100 respectively.

MNIST (Deng 2012): the dataset consists of 28 × 28
grayscale images of handwritten digits which are normalised
in order to lie in [0, 1]28×28. For each experimental run, we
sample half of the 60000 training datapoints in order to
evaluate the variance of the estimation. The test set size is
10000.

Anuran Calls (Dua and Graff 2017): the datasets consists
of 7195 calls from 10 species of frogs which are represented
by 21 normalised mel-frequency cepstral coefficients in
[0, 1]21. We retain 10% of data for testing and again sample
half of the training data at each experimental run.

6.2 COMPARISON WITH VDE

In this section, we evaluate empirically the necessity of
compactification for high-dimensional data. To this end, we
visually compare samples from the CVDE (with Gaussian
kernel) and from the the VDE. The VDE is implemented
with a bounding hypercube A = [− 7

2 ,
7
2 ]n as described in

Section 2.



Gaussian Mixture MNIST Anuran Calls

Figure 8: Empirical comparisons between the CVDE , the KDE and the KDE with adaptive bandwidth ( AdaKDE ). The
plots display the average log-likelihood over the test set as the bandwidth varies. The shadowed region represents standard
deviation (with respect to sampling of the dataset) on 5 experimental runs.

We consider the Gaussian dataset in n = 2 and n = 10
dimensions. For both the estimators, 1000 points are sam-
pled via hit-and-run (with trajectories of length I = 1000)
from the estimated density. The bandwidth for the CVDE is
chosen following Scott’s rule (Scott 2015) and amounts to
h = 0.33 in two dimensions and to 0.66 in ten dimensions.

The results are presented in Figure 6. In two dimensions,
both the estimators produce samples that are visually close
to the ground-truth distribution. However, in ten dimensions
the sampling quality of VDE drastically decreases, while the
CVDE still produces a satisfactory result. In the provided
examples, more than 85% of points sampled from the VDE
belong to the Voronoi cells intersecting the boundary of A.
Since the VDE is uniform within each cell, the estimation
and the consequent sampling is biased by the choice of the
bounding region A, especially in high dimensions.

6.3 CONVERGENCE OF THE SPHERICAL
INTEGRAL

We now empirically estimate the amount of Monte Carlo
samples required for spherical integration (Equation 10).
To this end, we visualize how the approximation for the
volumes in the CVDE (with Gaussian kernel) changes as the
number |Σ| of versors increases. We consider two datasets:
the 10-dimensional Gaussian one and MNIST. Each plot in
Figure 7 displays 10 curves, each corresponding to one ex-
perimental run. What is shown is the average log-likelihood
of the estimated density on the training set, which cor-
reponds up to an additive constant to the average nega-
tive logarithmic volume − 1

|P |
∑
p∈|P | log Volp(C(p)) of

the Voronoi cells. The bandwidth is again chosen according
to Scott’s rule for the Gaussian dataset while it is set to 1 for
MNIST. Evidently, all the curves are stable at |Σ| = 5000
sampled versors, which we fix as a parameter in later exper-
iments.

6.4 COMPARISON WITH KDE

We now compare the CVDE with the KDE (both with Gaus-
sian kernel) on the synthetic and real-world data described in
Section 6.1. However, the distribution of high-dimensional
real-world data is too sparse in the original ambient space to
allow for a meaningful comparison. We consequently pre-
process the MNIST and the Anuran Calls datasets via Prin-
cipal Component Analysis (PCA) and orthogonally project
them to the 10-dimensional subspace with largest variance.
We set the dimension of the synthetic Gaussian mixture to
10 as well.

We compare the CVDE with the standard KDE as well
as the KDE with local, adaptive bandwidths (AdaKDE)
described in B. Wang and X. Wang 2007. In the AdaKDE
the bandwidth hp depends on p ∈ P and is smaller when
data is denser around p. Specifically, denote by f̂(p) the
standard KDE estimate with a global bandwidth h. Then
hp = hλp where λp = (g/f̂(p))

1
2 and g =

∏
q∈P f̂(q)

1
|P | .

We score the estimators via the average log-likelihood on
a test set i.e., Ptest i.e., 1

|Ptest|
∑
p∈Ptext

log f(p). Such score
measures the adherence of the estimated density to the
ground-truth one and penalizes overfitting thanks to the
deployment of the test set.

The results are displayed in Figure 8 with the bandwidth
varying for all the estimators. For AdaKDE we vary the
global bandwidth for f̂ . Sampling of training and test data
is repeated for 5 experimental runs, from which mean and
standard deviation of the score are displayed.

When each estimator is considered with its best bandwidth,
the CVDE outperforms the baselines. This shows that the
local geometric adaptivity of the CVDE leads to density
estimates that are closer to the ground-truth distribution.
Moreover, the CVDE displays remarkably better scores as
the bandwidth increases. This is consistent with the dis-
cussion in Section 4.2 as the CVDE has more informative



asymptotics than the KDE for large h. On the real-world
datasets (MNIST and Anuran Calls), the adaptive bandwidth
does not drastically improve the performance of KDE. On
the synthetic data, the AdaKDE is instead competitive with
the CVDE. This indicates that the local adaptivity of the
AdaKDE is enough to capture simple densities such as a
Gaussian mixture. However, for more complex distributions
the AdaKDE still suffers from the bias due to the Gaussian
kernel (albeit with a local bandwidth) as mentioned in Sec-
tion 5. The CVDE instead effectively adapts to the local
geometry of data via the Voronoi tessellation.

7 CONCLUSIONS AND FUTURE WORK

In this work, we defined an extension of the Voronoi Density
Estimator suitable for high-dimensional data, providing effi-
cient methods for approximate computation and sampling.
Additionally, we proved convergence to the underlying data
density.

A promising line of future research lies in exploring both the-
ory and applications of the VDE and CVDE to metric spaces
beyond the Euclidean one, in particular higher-dimensional
Riemannian manifolds. Spheres, for example, naturally ap-
pear in the context of normalised data, while complex pro-
jective spaces of arbitrary dimension arise as Kendall shape
spaces on the plane (Mardia and Jupp 2009).
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