Bias or Factual Recall? Understanding How LLMs Compare Entities.

Anonymous ACL submission

Abstract

We analyze the ability of LLMs to answer com-
parison questions (e.g., “Which is longer, the
Danube or the Nile?”). Our central observa-
tion is that LLMs often make mistakes when
answering such questions, even when they have
the required knowledge (e.g. the length of the
rivers involved). We furthermore find that their
predictions are heavily influenced by superfi-
cial biases, such as the position of the entities in
the question, their relative popularity, and shal-
low co-occurrence statistics. These findings
suggest that simple prompting-based strategies
may not leverage the ranking abilities of LLMs
to their full potential, and that LLMs continue
to struggle with even simple reasoning tasks.

1 Introduction

Ranking is at the core of many applications, and
it is thus perhaps not surprising that LLMs are
increasingly used for this purpose. For example,
they are commonly used for (re-)ranking in docu-
ment retrieval (Sun et al., 2023; Qin et al., 2024;
Ma et al., 2024) and recommendation (Gao et al.,
2025), and for evaluating models in LLM-as-a-
judge settings (Zheng et al., 2023; Liusie et al.,
2024). Different strategies can be used for rank-
ing, including pointwise methods, which assign a
score to each item, and pairwise methods, which
compare two items.! Pointwise methods are easier
to use, but in the learning-to-rank literature they
are consistently found to underperform pairwise
methods. In the context of LLMs, however, the
relative merit of these approaches remains unclear;
e.g., Qin et al. (2024) find the pairwise approach
to be superior, but Tripathi et al. (2025) find that
pairwise approaches are more susceptible to biases.

In this paper, we aim to increase our understand-
ing of pairwise ranking with LLMs, by focusing on

"Listwise approaches form a third category, but these will
not be considered in this paper.

a simplified task where LLMs are asked to compare
two entities according to some factual numerical
attribute (e.g., “Which river is longer, the Danube
or the Nile?”). This task has the advantage that
there is a clear, unambiguous ground truth, which
facilitates analysis. Moreover, it allows us to study
whether LLMs follow a principled strategy (i.e.,
retrieve the attributes for the entities, then compare
their values) or rather rely on heuristics.

In particular, we ask the question: Do LLMs
use numerical attributes for pairwise compar-
isons? (see Section 3). We show that the pairwise
predictions are often inconsistent with predicted
attribute values, which suggests that LLMs do not
consistently exploit their internal knowledge about
these attributes. This is despite the fact that the pair-
wise approach underperforms a pointwise approach
based on predicted attribute values. To better under-
stand the underlying reasons, we ask our next ques-
tion: How susceptible is the pairwise approach
to biases? (see Section 4). We show that pairwise
predictions are strongly biased by the position of
an entity in the prompt, entity popularity, and shal-
low co-occurrence statistics. Given the observed
strength of these biases, we finally ask: To what
extent can an LLM’s pairwise predictions be
explained by these surface cues? (see Section 5).
We find that the majority of model predictions can
indeed be explained by these biases.

2 Experimental Setup

Datasets. We focus on a pairwise ranking task.
We prompt the language model with direct com-
parison questions (e.g., “Which river is longer, the
Danube or the Rhine?”’) and evaluate whether the
model selected the correct item according to the
ground truth. To obtain a sufficiently large set of
test queries, we collected data on 10 different nu-
merical attributes across 9 entity types from Wiki-
data (https://www.wikidata.org). For each at-
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Figure 1: Overall pairwise-ranking performance of each
language model. For every model, we report the mean
and standard deviation across all datasets for three eval-
uation metrics.

tribute, we begin by selecting the most popular enti-
ties, based on their QRank score (https://qrank.
toolforge.org). To obtain a set of entity pairs
that span a range of difficulty levels, we divide the
set of entities into two bins of the same size based
on their ground-truth values. For every entity, we
construct two comparison pairs by randomly se-
lecting one partner from each bin. Details on the
resulting dataset can be found in Appendix B.

Prompting Strategy. The performance of LLMs
can be sensitive to the choice of prompt. For
this reason, each entity pair is evaluated across
six prompt templates. In the first three templates,
we ask which of the two entities has the highest
attribute value. In the remaining three templates,
we ask for the entity with the lowest value. Fur-
thermore, for each template, we prompt the model
twice for every entity pair, i.e., once for either of the
possible entity orderings (e.g., (Danube, Nile)
and (Nile, Danube)). In total, we thus have
6 x 2 = 12 prompts per entity pair.

In addition, we also prompt the model to predict
the numerical attribute values of the entities. To this
end, we use three numerical extraction templates
for each attribute and select the prediction with
the lowest perplexity (i.e., we select the model’s
most confident numerical estimate). The full set of
prompt templates is listed in Appendix D.

Evaluation Metrics. We assess model perfor-
mance along three dimensions. First, we measure
pairwise accuracy, defined as the proportion of
pairwise predictions that are correct according to
the ground truth. Second, we compute internal
consistency, which we define as the proportion of
pairwise predictions that are in agreement with the

ranking implied by the model’s own numerical pre-
dictions. Finally, we evaluate numerical accuracy,
which evaluates the quality of the model’s predicted
attribute values. It is defined as the proportion of
pairwise comparisons for which the ranking im-
plied by the predicted numerical values agrees with
the ground truth ranking. Note that this evaluates
a pointwise approach. To ensure comparability,
we remove all samples for which the model did
not produce a valid answer, either in the pairwise
or numerical setting. As a result, all metrics are
computed over the same filtered set of samples.

Models. We experiment with models of different
families and sizes: Llama3-1B, Llama3-8B (Dubey
et al., 2024), OLMo2-1B, OLMo02-7B, OLMo2-
32B (OLMo et al., 2025), Qwen3-1.7B, Qwen3-8B,
Qwen3-32B (Yang et al., 2025), Mistral-7B (Jiang
et al., 2023a) and Mistral-24B. Full details on these
models can be found in Appendix A.

3 Do LLMs Use Numerical Attributes for
Pairwise Comparisons?

Figure 1 summarizes the performance of the dif-
ferent language models, averaged across all 10 at-
tributes. A more detailed breakdown can be found
in Appendix E. A number of important findings can
be observed. First, numerical accuracy is consis-
tently and substantially higher than pairwise accu-
racy, showing that pairwise ranking underperforms
pointwise ranking on our task. For the smallest
models, pairwise accuracy is barely above random
chance. Pairwise accuracy increases with model
size. For numerical accuracy, on the other hand,
Mistral-7B and Llama3-8B both outperform much
bigger models. For these models, the underperfor-
mance of the pairwise approach can thus not be
explained by a lack of knowledge (cf. Section 5).
This can also be clearly seen from the surprisingly
low internal consistency values, which are even
lower than pairwise accuracy in most cases. This
means that (for smaller models) the pairwise pre-
dictions are inaccurate, both relative to the ground
truth and relative to their own internal beliefs. Over-
all, the results suggest that LLMs rely on shortcuts
when making pairwise predictions, which we will
further analyze in the next section.

4 How Susceptible Is the Pairwise
Approach to Biases?

We analyze the impact of three types of biases
on the pairwise predictions. A breakdown of the
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Figure 2: Accuracy differences illustrating three types of bias in pairwise ranking decisions.

results can be found in Appendix E.

Popularity Bias. A heuristic that LLMs may ex-
ploit is that popular entities might have higher val-
ues (e.g. cities that are mentioned more often may
have higher populations). To analyze this effect,
we estimate the popularity of each Wikidata entity
using its QRank score, which reflects the number
of page views of the corresponding Wikipedia ar-
ticle, and some additional sources. The results are
summarized in Figure 2a. The figure shows the
difference in accuracy between comparisons where
the most popular entity has the highest value, and
comparisons where the opposite is true. As can
be seen, this accuracy difference is positive for
all models, which shows that LLLMs are indeed bi-
ased by entity popularity. Interestingly, increasing
model size does not seem to reduce this effect.

Position Bias. LLM evaluators have been found
to suffer from position bias, favouring responses
depending on the order in which they are presented
(Wang et al., 2024). We analyze whether a similar
bias is also present when comparing entities. To
this end, we compare the accuracy across two sets
of comparisons: those where the first or second
entity has the higher value. Figure 2b summarizes
the results. Note that position bias is not consis-
tent across models: some models favour the first
entity, while others favour the second entity. We
therefore report the absolute value of the difference
in accuracy. We find that all models are affected
by position bias. There is no clear relationship
between model size and the strength of this bias.

Co-occurrence Bias. LLM predictions can be
affected by shallow co-occurrence statistics (Kang
and Choi, 2023). To analyze this effect, we rely
on the ConceptNet Numberbatch pre-trained word
embeddings (Speer et al., 2017) as a model of dis-
tributional similarity. For each numerical attribute,
we selected 5 adjectives that are indicative of high

values (e.g. longest for river length) and averaged
their embeddings, yielding a vector v*. We do
the same for 5 adjectives that are indicative of low
values (e.g. shortest) and obtain v~ . We then score
entity e as cos(e, v — v~), where e is the Num-
berbatch embedding of e.? Figure 2c analyzes the
co-occurrence bias, showing the difference in ac-
curacy between comparisons where the entity with
the highest score has the higher ground truth value
and those where the opposite is true. We can see
that all models suffer from co-occurrence bias, al-
though the magnitude of this effect is smaller than
for popularity and position bias.

5 Can an LLM’s Pairwise Predictions Be
Explained?

The fact that the pairwise predictions are biased in
some ways is, in itself, not unexpected. However,
the magnitude of these biases (0-20%) is more sur-
prising, noting that the pairwise accuracy is only
0-20% above random guessing for most models
(cf. Figure 1). We may thus wonder to what extent
these biases are enough to explain the pairwise pre-
dictions. To analyze this, we first train a logistic
regression model, which we call a meta-predictor,
to predict whether the LLM will predict the first or
second entity. It takes as input two binary features:
whether the first entity is more popular than the
second, and whether its embedding is more similar
to the vector v — v~. Note that position bias
is implicitly taken into account by design. The
meta-predictor is evaluated using 5-fold cross vali-
dations. It is trained for a particular LLM, prompt
and attribute. We average the results across differ-
ent prompts and attributes.

We can now predict an LLM’s pairwise judg-
ments based on (i) its own numerical knowledge
about an attribute (i.e. pointwise prediction); or

2Full details of how the scores are obtained can be found
in Appendix C.



Share of samples

&

100% -
80% -
60% -
40%
20% A
0% T T T T T
5;‘3’ &,«3’ NS 7},«‘2’ &,«‘2’ I

’b,é\\%@

Figure 3: Share of the four cases for every model, ag-
gregated over all datasets.

(i1) the meta-predictor. We distinguish between
the following cases. Case 1: pairwise and point-
wise predictions are consistent, but pairwise and
meta predictions are not consistent (= numerical
knowledge is used); Case 2: pairwise, pointwise
and meta predictions are consistent (= numerical
knowledge or bias); Case 3: pairwise and point-
wise predictions are inconsistent, but pairwise and
meta prediction are consistent (= bias is used);
Case 4: pairwise and pointwise predictions are in-
consistent, and pairwise and meta predictions are
inconsistent (= noise or unexplained bias)

In Figure 3, we plot the relative frequency of
the four cases for every model, across all datasets.
We observe the following. Case 4 is infrequent,
suggesting that the three biases and the pointwise
predictions can almost completely explain the pair-
wise predictions, with an exception for the two
smallest models. For LLMs with lower pairwise
accuracy (i.e., LlaMa3-1B, OLMo2-1B, Qwen3-
1.7B, OLMo02-7B), Case 3 occurs more often than
Case 1.>* Many of the predictions can be explained
by either bias or numerical knowledge (Case 2),
which may explain why the biases are prevalent in
the first place (i.e. popularity and co-occurrence
bias are somewhat predictive). Overall, the three
biases are sufficient to explain the predictions in
the majority of instances (i.e., Case 2 + Case 3).

3See also Figure 15 in Appendix F.

“Figure 3 also gives an explanation for our observation
in Section 3, i.e., even though Mistral-7B and Llama3-8B
perform better wrt. numerical accuracy than larger models
(e.g., Mistral-24B) (see Figure 1), they perform worse wrt.
pairwise accuracy: compared with larger models, Mistral-7B
and Llama3-8B are more influenced by biases (i.e., Case 3)
than numerical knowledge (i.e., Case 1) when doing pairwise
comparisons (see also Figure 15 in Appendix F).

6 Related Work

Previous work has already found that LLM pre-
dictions can be influenced by various types of su-
perficial features. Wang et al. (2024) identified a
position bias in LLM evaluators, where the result
is influenced by the order in which candidates are
presented. McCoy et al. (2023) found how the ac-
curacy of an LLM is influenced by the probability
of the output, which aligns with our findings of pop-
ularity bias. The fact that shallow co-occurrence
statistics can mislead LLMs, being the third bias
that we study, has also been shown in several stud-
ies (Kang and Choi, 2023). While it is thus not
surprising that these biases are present in our anal-
ysis, the significance of our finding stems from
the extent to which these biases affect the result:
these three biases together almost completely ex-
plain pairwise judgments for smaller models. The
lack of internal consistency of LLMs with numeri-
cal features also aligns with various findings from
the literature. In the context of ranking, the non-
transitive nature of pairwise judgments by LLMs
has been highlighted (Xu et al., 2025; Kumar et al.,
2024). The reversal curse (Berglund et al., 2024),
where models fail to answer inverse formulations
of questions, also suggests a lack of internal con-
sistency. Allen-Zhu and Li (2024) also find that
LLMs sometimes memorize knowledge without be-
ing capable of reliably exploiting it for answering
questions. The problem of ranking entities with
LLMs was studied by Kumar et al. (2024), but their
focus was on designing fine-tuning strategies.

7 Conclusion

We have analyzed how LLMs behave when asked
to rank entities according to some well-defined nu-
merical attribute. Intuitively, an LLM could extract
the attribute values for the two given entities and
simply compare these. We found that LLMs can
generally approximate the numerical attributes suf-
ficiently well for such a strategy to be successful.
However, the actual performance of LLMs on pair-
wise comparisons dramatically underperforms this
strategy. We then showed that these pairwise pre-
dictions are affected by at least three biases, namely
popularity bias, position bias and co-occurrence
bias. Finally, we showed that together, these three
biases are highly predictive of model predictions,
especially for smaller models, suggesting that these
biases largely drown out more principled mecha-
nisms that may be present in the models.



Limitations

Our study has been limited to an analysis of the out-
puts of LLMs, and we have not attempted to inter-
pret these models mechanistically. For instance, it
would be interesting to see whether (or under which
conditions) updating the numerical knowledge in-
side models would alter their pairwise judgments.
Furthermore, our analysis has been limited to zero-
shot prompting. In preliminary experiments, we
observed that few-shot prompting may help to par-
tially overcome some of the biases that we studied,
although not entirely. Similarly, it would be in-
teresting to study whether the biases persist after
fine-tuning models on pairwise ranking tasks.
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Appendices

A  Model Details

Unless specified otherwise, all models were run
with greedy decoding and thinking was disabled, if
applicable. Models with more than 10B parameters
were run in 8 bit quantization. All other models
were run with 16 bit floating point precision. An
overview of all models used, along with citations
and Hugging Face repository links, is provided in
Table 1.

B Dataset Details

Table 2 summarizes the datasets used in our ex-
periments, including the target attribute, number
of entities, unique entity pairs, and total samples
evaluated.

C Details on Numberbatch Embeddings

If the word is out-of-vocabulary, we apply a two-
step back-off strategy. We first attempt token-level
averaging: the word is split into individual words,
and any tokens that are found in the vocabulary are
embedded individually and averaged. If no token
vector is obtained, we fall back to prefix matching,
progressively trimming the word from the end until
the longest prefix that is in the vocabulary is lo-
cated and using its vector as a surrogate. Given
the resulting entity embedding e, we compute its
scalar projection onto the “bigger—smaller” axis
as s = (e, d), where more-positive scores corre-
spond to stronger semantic alignment with “larger”
and more-negative scores with “smaller”. Table 3
provides qualitative examples in which cosine sim-
ilarity to attribute-related keywords (e.g., “larger,”
“bigger,” “more”) suggests the wrong ranking, high-
lighting potential co-occurrence bias. The list of
positive and negative keywords used to construct
the “bigger—smaller” axis is shown in Table 4.

D Prompts

Table 5 to Table 26 list the prompt templates used in
our experiments. Each attribute—dataset combina-
tion includes six pairwise prompts (three prompting
for the “larger” entity and three for the “smaller”
one) and three numerical extraction prompts.

E Detailed Accuracies

As explained in the paper, we use both prompts
that ask for the entity with the highest value and

prompts that ask for the entities with the lowest
value. We refer to these as prompts with positive
polarity and negative polarity, respectively. As
there are some differences in the results between
prompts with positive and negative polarity, we
report results for these types of prompts separately.

Main Accuracy Metrics. Figures 4 and 5 report
accuracy comparisons for ranking accuracy, inter-
nal consistency, and numerical accuracy under pos-
itive and negative polarity prompts, respectively.
Each panel corresponds to a specific model, and
each group of bars represents performance on one
dataset.

Popularity Bias. We analyze whether models are
more accurate when the more popular entity (based
on QRank) also has a higher value. Figures 6 and
7 show the impact of popularity bias for positive
and negative polarity prompts, respectively. Solid
bars indicate accuracy when the popular entity has
the higher value, and hatched bars when it has not.
A large accuracy drop in the latter case suggests
reliance on popularity as a heuristic.

Position Bias. Figures 8 and 9 examine whether
the order in which entities are mentioned affects
model predictions. Specifically, we compare accu-
racy when the entity with the higher value appears
first vs. second in the prompt. Consistent differ-
ences indicate a surface-level position bias.

Co-occurrence Bias. Finally, we assess whether
models perform better when the entity with the
higher value is more semantically associated with
“larger” or “smaller” concepts based on a keyword-
derived embedding axis. Figures 10 and 11
show this effect for positive and negative polarity
prompts, respectively. Accuracy gaps here suggest
reliance on semantic co-occurrence cues even when
they contradict ground-truth values.

F Detailed Meta-predictor Analysis

This section provides a deeper analysis of the two
meta-predictors introduced in Section 5. The first
is a numerical oracle that predicts pairwise out-
comes based solely on the model’s extracted nu-
merical values. The second is a logistic-regression
meta-predictor trained on surface-level cues: entity
popularity (QRank), positional advantage (first vs.
second entity), and semantic similarity to “larger”
keywords (co-occurrence bias).



Figures 12 and 13 show the absolute predic-
tion accuracy of both meta-predictors across all
datasets and models, for positive and negative
polarity prompts respectively. The comparison
highlights the extent to which models’ choices
can be explained by shallow heuristics rather than
grounded numerical reasoning. Figure 14 presents
a breakdown of the four diagnostic cases discussed
in Section 5. Each panel corresponds to a different
model, and each bar to a dataset. This figure com-
plements the main paper’s analysis by revealing
which types of errors are most prevalent in each
domain, and whether failures to follow numerical
predictions correlate with surface-level biases. Fi-
nally, Figure 15 summarizes how much better the
bias-only meta-predictor performs compared to the
numerical baseline for each model. Positive values
indicate that surface-level features are more predic-
tive of the model’s behavior than its own internal
numeric extractions—evidence of strong reliance
on popularity, position, and co-occurrence cues.
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mean accuracy; error bars show +1 standard deviation across prompt templates.
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Figure 5: Accuracy comparison for negative polar:

prompts.
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Figure 6: Accuracy comparison in different popularity settings for positive polarity prompts. For each dataset,
we display two side-by-side bars: the solid bar represents the accuracy of the model in cases where the entity with
the higher QRank, also had the higher value, the hatched bar shows the accuracy of the model for cases where the
lower QRank entity had the higher value. Bars indicate mean accuracy; error bars show +1 standard deviation
across prompt templates. Each panel shows results for a single language model.

|}

60%

’
40% Rivers

Stadiums
Universities

pnagaooanmn

20%

0%

Qwen3-88 OLM02-78

100%

AN; ]

N—
=

Hy &

60%
40%

20%

==E
= =

0%

Qwen3-328 OLMo2-32B Mistral-248

100%

60%

40%

Accuracy (mean * SD)
™
N
R
L
L

0%

Qwen3-1.78 OLMo2-1B LLaMa3-1B
100% Case Dataset

Higher QRank Atoms
| II[
LA

= higher value Buildings
OLMo2-78B LLaMa3-88B Mistral-78

| im Im | ELm

= higher value Countries
Mountains
OLMo2-328 Mistral-248
=5
] i &
i 7
1 b &

People (birth)
People (social)

Figure 7: Accuracy comparison in different popularity settings for positive negative prompts. Same layout as

in Figure 6, but for negative polarity prompts.

 — |
80%

60% - fi
40% 4
20% 4

0% - L

Qwen3-88

za

]

= = =

Peppers
Rivers
Stadiums
Universities

Inagaooanmn

K

100%

80%

60%

40%

Accuracy (mean * SD)

~N
S
®

0% -

Qwen3-328
100%

ao'/.| | |I Bf HBE

60%

40%

==

0% -




100%

80%

60%

20%

0%
100%

2 so%

+

» @
S S
X B

~
15
®

= = =

Accuracy (mean

40%

20%

0% -+

Qwen3-1.78

OLMo2-18

LLaMa3-18

Y

Qwen3-88

OLMo2-

Al

LLaMa3-88

Case
[ 1st Entity is Bigger
Z2 2st Entity is Bigger

Mistral-78

Dataset colour
I Atoms
Buildings
Cities
Countries
Mountains
People (birth)
People (social)
Peppers
Rivers
Stadiums
Universities

fnpongonnn

Qwen3-328

il
i

OLMo2

328

AN ]

e

'{i

:

it

Mistral-248

F

i
i

i
[

Figure 8: Accuracy comparison depending on which position the bigger entity had for positive polarity
prompts. For each dataset, we display two side-by-side bars: the solid bar represents the accuracy of the model in
cases where the first mentioned entity had the bigger value, the hatched bar shows the accuracy of the model in
cases where the second mentioned entity had the bigger value. Bars indicate mean accuracy; error bars show +1
standard deviation across prompt templates. Each panel shows results for a single language model.

100%

80%

60%

40%

0%

100%

Quen3-1.78

OLMo2-18

LLaMa3-18

!

Qwen3-88

>

OLMo2

78

Case
[ 1st Entity is Bigger
Z2 2st Entity is Bigger

Mistral-78

Dataset colour
EE Atoms
Buildings
Cities
Countries
Mountains
People (birth)
People (social)
Peppers
Rivers
Stadiums
Universities.

pnagagonnn

& 80%

+SD

Accuracy (mean
IS a
8 3
xR X

N
S
=

0%

100%

Qwen3-328

BH

OLMo2-

328

80%

20%

0%

= = =
= =

~EH

Mistral-248

———

il

il

Figure 9: Accuracy comparison depending on which position the bigger entity had for positive polarity
prompts. Same layout as in Figure 8.

11



Qwen3-1.78 OLMo2-1B LLaMa3-1B
100% Case Dataset

Higher similarity Atoms
= higher value Buildings
o2 Loy . s
Countries
Mountains
People (birth)
People (social)
Peppers
Rivers
Stadiums
Universities

i
I

Figure 10: Accuracy comparison depending on PMI proxy of the entities for positive polarity prompts. For
each dataset, we display two side-by-side bars: the solid bar represents the accuracy of the model ..., the hatched bar
shows the accuracy of the model ... Bars indicate mean accuracy; error bars show +1 standard deviation across
prompt templates. Each panel shows results for a single language model.
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Model Hugging Face Repository

LLaMa3-1B (Grattafiori et al., 2024) meta-llama/LLlama-3.2-1B-Instruct
OLMo2-1B (OLMo et al., 2024) allenai/OLMo-2-0425-1B-Instruct

Qwen3-1.7B (Team, 2025) Qwen/Qwen3-1.7B

Mistral-7B (Jiang et al., 2023b) mistralai/Mistral-7B-Instruct-v0.3
OLMo02-7B (OLMo et al., 2024) allenai/OLMo-2-1124-7B-Instruct
LLaMa3-8B (Grattafiori et al., 2024) meta-llama/LLlama-3.1-8B-Instruct
Qwen3-8B (Team, 2025) Qwen/Qwen3-8B

Mistral-24B (Al, 2024) mistralai/Mistral-Small-24B-Instruct-2501
OLMo02-32B (OLMo et al., 2024) allenai/OLMo-2-0325-32B-Instruct
Qwen3-32B (Team, 2025) Qwen/Qwen3-32B

Table 1: Model information for the models used in this paper.

Dataset Attribute Entities Pairs Samples
Atoms atomic number 118 236 2832
Buildings  height 1000 2000 24000
Cities population 1000 2000 24000
Countries  population 196 392 4704
Mountains elevation 997 1994 23928
Peppers Scoville heat unit 45 90 1080
People birth date 4777 9554 114648
People social media follow- 999 1998 23976
ing
Rivers length 999 1998 23976
Stadiums  capacity 999 1998 23976

Universities Nr. enrolled students 1000 2000 24000

Table 2: Key statistics of the considered datasets: the
number of entities, the number of unique entity pairs
used in the analysis, and the total number of samples.
Each pair is evaluated using 6 prompt templates and
both possible entity orderings, resulting in 12 samples
per pair.
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Dataset Cosine Suggests

Actually Larger

People (social)  George Michael (~ 559k followers)

Buildings Red Fort (33 m)

Atoms chromium (24)

Universities University of Mannheim (~ 12k students)
People (birth) Spike Jonze (born in 1970)

Peppers jalapefio (20k SHU)

Cities Palermo (~ 674k inhabitants)

Stadiums Bolt Arena (~ 10k capacity)

Countries Botswana (~ 2.4M inhabitants)
Mountains Mount Scenery (887 m)

Rivers Mystic River (113 km)

Mackenyu (~ 1M followers)
Colonius (266 m)

niobium (41)

George Washington University (~ 24k students)
Romelu Lukaku (born in 1993)
Pepper X (3.1M SHU)

Islamabad (~ 1.9M inhabitants)
Kashima Stadium (~ 40k capacity)
Yemen (~ 2.8M inhabitants)

Half Dome (2693 m)

Bega River (256 km)

Table 3: Examples of pairs where the similarity to the keywords is opposite to the numerical value. The first entity
is the one with the higher cosine similarity to the keywords, but has a lower numerical value.

Dataset Positive keywords Negative keywords

Atoms heaviest, largest, highest, massive, big lightest, smallest, lowest, tiny, low
Buildings tallest, highest, largest, big, tall shortest, smallest, lowest, tiny, low
Cities largest, populous, big, crowded, dense smallest, quiet, tiny, remote, sparse
Countries largest, populous, big, powerful, dense smallest, sparse, tiny, quiet, remote
Mountains highest, tallest, largest, elevated, big lowest, smallest, shortest, low, tiny
Peppers hottest, spiciest, pungent, intense, fiery mildest, bland, cool, weak, low

People (birth) youngest, recent, modern, newer, late

People (social)  popular, famous, followed, liked, viral

oldest, ancient, early, historic, vintage
unknown, obscure, ignored, unseen, small

Rivers longest, largest, broadest, deep, big shortest, smallest, shallow, narrow, tiny
Stadiums largest, busiest, crowded, massive, big smallest, quiet, empty, tiny, low
Universities largest, populous, crowded, big, prestigious  smallest, quiet, tiny, local, low

Table 4: List of positive and negative keywords that are used to capture co-occurrence bias. The positive keywords
are terms that are associated with high values of the considered attribute, negative keywords are associated with low

values.
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Figure 13: Absolute prediction accuracy of the two meta-predictors (negative polarity). Same layout as

Figure 12, but for negative polarity prompts.
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Figure 14: Detailed breakdown of the four cases (from Section 5) per dataset and model. Within every panel each
colored, stacked bar corresponds to one dataset. The segments show the proportion of test samples that fall into

(numerical and pairwise agree, meta-predictor disagrees), Case 2 (all three agree), Case 3 (pairwise aligns with
surface-bias meta-predictor, but not with numerical comparison), and (neither numbers nor meta-predictor
explain the choice). This figure complements Figure 3 by revealing which datasets drive each pattern for every
model. Percentages are computed after filtering out samples with unanswerable prompts or missing extractions;
bars sum to 100 % within each dataset.
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Prompt

Answer with the one name only. Which chemical
element has the higher atomic number? entity1 or
entity2?

Please state the chemical element with the higher
atomic number only. entityl or entity2?

Answer only with the correct name. Which chemi-
cal element has a higher number of protons? entity1
or entity2?

Answer with the one name only. Which chemical
element has the lower atomic number? entityl or
entity2?

Please state the chemical element with the lower
atomic number only. entity1 or entity2?

Answer only with the correct name. Which chemi-
cal element has a lower number of protons? entityl
or entity2?

Table 5: Pairwise prompts for Atoms.

Prompt

Only state the name of the taller building. Which
building is taller? entityl or entity2?

Respond with only the name of the taller building.
Which building is taller? entity1 or entity2?
Provide only the name of the taller building. Which
building is taller? entityl or entity2?

Only state the name of the shorter building. Which
building is shorter? entity1 or entity2?

Respond with only the name of the shorter building.
Which building is shorter? entity1 or entity2?
Provide only the name of the shorter building.
Which building is shorter? entity1 or entity2?

Table 6: Pairwise prompts for Buildings.
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Prompt

Only state the name of the more populous city.
Which city has a larger population? entityl or
entity2?

Respond with only the name of the more populous
city. Which city has a larger population? entityl or
entity2?

Provide only the name of the more populous city.
Which city has a larger population? entityl or
entity2?

Only state the name of the less populous city.
Which city has a smaller population? entityl or
entity2?

Respond with only the name of the less populous
city. Which city has a smaller population? entity1
or entity2?

Provide only the name of the less populous city.
Which city has a smaller population? entityl or
entity2?

Table 7: Pairwise prompts for Cities.

Prompt

Only state the name of the more populous country.
Which country has a larger population? entity1 or
entity2?

Respond with only the name of the more populous
country. Which country has a larger population?
entity1 or entity2?

Provide only the name of the more populous coun-
try. Which country is more populous? entityl or
entity2?

Only state the name of the less populous country.
Which country has a smaller population? entityl
or entity2?

Respond with only the name of the less populous
country. Which country has a smaller population?
entity1 or entity2?

Provide only the name of the less populous country.
Which country is less populous? entity1 or entity2?

Table 8: Pairwise prompts for Countries.



Prompt

Only state the name of the higher mountain. Which
mountain is higher? entity1 or entity2?

Respond with only the name of the mountain that
has a greater elevation. Which mountain stands
taller? entity1 or entity2?

Provide only the name of the higher mountain.
Which mountain has a greater elevation? entityl or
entity2?

Only state the name of the lower mountain. Which
mountain is lower? entityl or entity2?

Respond with only the name of the mountain that
has a lesser elevation. Which mountain stands
lower? entityl or entity2?

Provide only the name of the lower mountain.
Which mountain has a smaller elevation? entityl
or entity2?

Table 9: Pairwise prompts for Mountains.

Prompt

Only state the name of the hotter pepper. Which
pepper has a higher Scoville Heat Unit rating? en-
tityl or entity2?

Respond with only the name of the hotter pepper.
Which pepper is spicier based on Scoville Heat
Units? entityl or entity2?

Provide only the name of the hotter pepper. Which
pepper has the greater spiciness level according to
the Scoville scale? entityl or entity2?

Only state the name of the milder pepper. Which
pepper has a lower Scoville Heat Unit rating? en-
tityl or entity2?

Respond with only the name of the milder pepper.
Which pepper is less spicy based on Scoville Heat
Units? entityl or entity2?

Provide only the name of the milder pepper. Which
pepper has a lower spiciness level according to the
Scoville scale? entityl or entity2?

Table 10: Pairwise prompts for Peppers.
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Prompt

Only state the name of the person who was born
later. Which person was born later? entityl or
entity2?

Respond with only the name of the younger person.
Which person is younger? entityl or entity2?
Provide only the name of the younger person. Be-
tween entityl and entity2, who is younger?

Only state the name of the person who was born
earlier. Which person was born earlier? entity1l or
entity2?

Respond with only the name of the older person.
Which person is older? entityl or entity2?
Provide only the name of the older person. Be-
tween entityl and entity2, who is older?

Table 11: Pairwise prompts for People (birth).

Prompt

Only state the name of the person with more social
media followers. Which person has a larger social
media following? entityl or entity2?

Respond with only the name of the individual who
has more social media followers. Between entity1
and entity2, who has a larger following?

Provide only the name of the person with more
social media followers. Who has a larger social
media following? entityl or entity2?

Only state the name of the person with fewer social
media followers. Which person has a smaller social
media following? entityl or entity2?

Respond with only the name of the individual who
has fewer social media followers. Between entity 1
and entity2, who has a smaller following?
Provide only the name of the person with fewer
social media followers. Who has a smaller social
media following? entityl or entity2?

Table 12: Pairwise prompts for People (social).



Prompt

Only state the name of the longer river. Which river
is longer? entity1 or entity2?

Respond with only the name of the longer river.
Which river extends further? entityl or entity2?
Provide only the name of the river with the longer
course. Which of these rivers covers a longer dis-
tance? entity1 or entity2?

Only state the name of the shorter river. Which
river is shorter? entityl or entity2?

Respond with only the name of the shorter river.
Which river extends a shorter distance? entity1 or
entity2?

Provide only the name of the river with the shorter
course. Which of these rivers covers a shorter dis-
tance? entityl or entity2?

Table 13: Pairwise prompts for Rivers.

Prompt

Only state the name of the stadium with a larger
seating capacity. Which stadium can accommodate
more spectators? entityl or entity2?

Respond with only the name of the stadium that
has a greater seating capacity. Which stadium has
more seats? entity1 or entity2?

Provide only the name of the stadium with a higher
capacity. Which stadium can hold more people?
entityl or entity2?

Only state the name of the stadium with a smaller
seating capacity. Which stadium can accommodate
fewer spectators? entityl or entity2?

Respond with only the name of the stadium that
has a lower seating capacity. Which stadium has
fewer seats? entityl or entity2?

Provide only the name of the stadium with a smaller
capacity. Which stadium can hold fewer people?
entity1 or entity2?

Table 14: Pairwise prompts for Stadiums.

Prompt

Only state the name of the university with more
enrolled students. Which university has a larger
student population? entityl or entity2?

Respond with only the name of the university that
has a greater number of students. Which university
has more students enrolled? entityl or entity2?
Provide only the name of the university with a
higher student enrollment. Which university has
the largest student body? entityl or entity2?

Only state the name of the university with fewer
enrolled students. Which university has a smaller
student population? entityl or entity2?

Respond with only the name of the university that
has a lower number of students. Which university
has fewer students enrolled? entity1 or entity2?
Provide only the name of the university with a
lower student enrollment. Which university has the
smallest student body? entityl or entity2?

Table 15: Pairwise prompts for Universities.

Prompt

What is the atomic number of entity?
Please state the atomic number of entity.
How many protons does entity have?

Table 16: Numerical prompts for Atoms.

Prompt

What is the length of the entity river in km?

How many kilometers long is the entity river?
Can you provide the length of the entity river in
kilometers?

Table 17: Numerical prompts for Rivers.

Prompt

What is the population size of entity, including its
metropolitan area?

What is the total population of entity, encompass-
ing its metropolitan region?

Please state the population of entity, including its
metropolitan area.

Table 18: Numerical prompts for Cities.
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Prompt

What is the height of entity in meters above sea
level?

What is the altitude of entity expressed in meters
above sea level?

Please state the height of entity in meters above sea
level.

Table 19: Numerical prompts for Mountains.

Prompt

What is the height of the building entity in meters?
How tall is the entity building in meters?

Please state the height of the entity building mea-
sured in meters?

Table 20: Numerical prompts for Buildings.

Prompt

What is the population size of the country entity in
2023?

What is the number of inhabitants in entity as of
2023?

Please state the population of entity in 2023.

Table 21: Numerical prompts for Countries.

Prompt

Do not list multiple platforms! Only answer with a
single number. How many social media followers
does entity have across platforms?

Provide only the total number of social media fol-
lowers for entity across all platforms.

How many social media followers does entity have
in total? Answer with a single number across all
platforms.

Table 22: Numerical prompts for People (social).

Prompt

What year was entity born in?
In what year was entity born?
Please state the year of birth of entity.

Table 23: Numerical prompts for People (birth).
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Prompt

How many students are enrolled at entity?

What is the total student enrollment at entity?
Please state the number of students enrolled at en-
tity.

Table 24: Numerical prompts for Universities.

Prompt

What is the seating capacity of the entity stadium?
How many spectators can the entity stadium ac-
commodate?

Please state the total number of seats available in
the entity stadium.

Table 25: Numerical prompts for Stadiums.

Prompt

What is the Scoville Heat Unit (SHU) rating of the
entity pepper?

How spicy is the entity pepper in terms of Scoville
Heat Units?

Please state the Scoville Heat Unit value of the
entity pepper.

Table 26: Numerical prompts for Peppers.
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Figure 15: Bias-only meta-predictor vs. numerical
baseline. For each language model we report the
mean improvement and standard deviation of a logistic-
regression meta-predictor that relies solely on three sur-
face cues—entity popularity (QRank), positional ad-
vantage, and semantic association with “bigger” key-
words—relative to a baseline that follows the model’s
extracted numerical values. Positive values indicate that
the bias-based predictor anticipates the model’s pairwise
choice more accurately than the model’s own numbers,
revealing how strongly certain models let positional,
popularity and co-occurrence cues override their inter-
nal quantitative knowledge.
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