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Abstract001

We analyze the ability of LLMs to answer com-002
parison questions (e.g., “Which is longer, the003
Danube or the Nile?”). Our central observa-004
tion is that LLMs often make mistakes when005
answering such questions, even when they have006
the required knowledge (e.g. the length of the007
rivers involved). We furthermore find that their008
predictions are heavily influenced by superfi-009
cial biases, such as the position of the entities in010
the question, their relative popularity, and shal-011
low co-occurrence statistics. These findings012
suggest that simple prompting-based strategies013
may not leverage the ranking abilities of LLMs014
to their full potential, and that LLMs continue015
to struggle with even simple reasoning tasks.016

1 Introduction017

Ranking is at the core of many applications, and018

it is thus perhaps not surprising that LLMs are019

increasingly used for this purpose. For example,020

they are commonly used for (re-)ranking in docu-021

ment retrieval (Sun et al., 2023; Qin et al., 2024;022

Ma et al., 2024) and recommendation (Gao et al.,023

2025), and for evaluating models in LLM-as-a-024

judge settings (Zheng et al., 2023; Liusie et al.,025

2024). Different strategies can be used for rank-026

ing, including pointwise methods, which assign a027

score to each item, and pairwise methods, which028

compare two items.1 Pointwise methods are easier029

to use, but in the learning-to-rank literature they030

are consistently found to underperform pairwise031

methods. In the context of LLMs, however, the032

relative merit of these approaches remains unclear;033

e.g., Qin et al. (2024) find the pairwise approach034

to be superior, but Tripathi et al. (2025) find that035

pairwise approaches are more susceptible to biases.036

In this paper, we aim to increase our understand-037

ing of pairwise ranking with LLMs, by focusing on038

1Listwise approaches form a third category, but these will
not be considered in this paper.

a simplified task where LLMs are asked to compare 039

two entities according to some factual numerical 040

attribute (e.g., “Which river is longer, the Danube 041

or the Nile?”). This task has the advantage that 042

there is a clear, unambiguous ground truth, which 043

facilitates analysis. Moreover, it allows us to study 044

whether LLMs follow a principled strategy (i.e., 045

retrieve the attributes for the entities, then compare 046

their values) or rather rely on heuristics. 047

In particular, we ask the question: Do LLMs 048

use numerical attributes for pairwise compar- 049

isons? (see Section 3). We show that the pairwise 050

predictions are often inconsistent with predicted 051

attribute values, which suggests that LLMs do not 052

consistently exploit their internal knowledge about 053

these attributes. This is despite the fact that the pair- 054

wise approach underperforms a pointwise approach 055

based on predicted attribute values. To better under- 056

stand the underlying reasons, we ask our next ques- 057

tion: How susceptible is the pairwise approach 058

to biases? (see Section 4). We show that pairwise 059

predictions are strongly biased by the position of 060

an entity in the prompt, entity popularity, and shal- 061

low co-occurrence statistics. Given the observed 062

strength of these biases, we finally ask: To what 063

extent can an LLM’s pairwise predictions be 064

explained by these surface cues? (see Section 5). 065

We find that the majority of model predictions can 066

indeed be explained by these biases. 067

2 Experimental Setup 068

Datasets. We focus on a pairwise ranking task. 069

We prompt the language model with direct com- 070

parison questions (e.g., “Which river is longer, the 071

Danube or the Rhine?”) and evaluate whether the 072

model selected the correct item according to the 073

ground truth. To obtain a sufficiently large set of 074

test queries, we collected data on 10 different nu- 075

merical attributes across 9 entity types from Wiki- 076

data (https://www.wikidata.org). For each at- 077
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Figure 1: Overall pairwise-ranking performance of each
language model. For every model, we report the mean
and standard deviation across all datasets for three eval-
uation metrics.

tribute, we begin by selecting the most popular enti-078

ties, based on their QRank score (https://qrank.079

toolforge.org). To obtain a set of entity pairs080

that span a range of difficulty levels, we divide the081

set of entities into two bins of the same size based082

on their ground-truth values. For every entity, we083

construct two comparison pairs by randomly se-084

lecting one partner from each bin. Details on the085

resulting dataset can be found in Appendix B.086

Prompting Strategy. The performance of LLMs087

can be sensitive to the choice of prompt. For088

this reason, each entity pair is evaluated across089

six prompt templates. In the first three templates,090

we ask which of the two entities has the highest091

attribute value. In the remaining three templates,092

we ask for the entity with the lowest value. Fur-093

thermore, for each template, we prompt the model094

twice for every entity pair, i.e., once for either of the095

possible entity orderings (e.g., (Danube, Nile)096

and (Nile, Danube)). In total, we thus have097

6× 2 = 12 prompts per entity pair.098

In addition, we also prompt the model to predict099

the numerical attribute values of the entities. To this100

end, we use three numerical extraction templates101

for each attribute and select the prediction with102

the lowest perplexity (i.e., we select the model’s103

most confident numerical estimate). The full set of104

prompt templates is listed in Appendix D.105

Evaluation Metrics. We assess model perfor-106

mance along three dimensions. First, we measure107

pairwise accuracy, defined as the proportion of108

pairwise predictions that are correct according to109

the ground truth. Second, we compute internal110

consistency, which we define as the proportion of111

pairwise predictions that are in agreement with the112

ranking implied by the model’s own numerical pre- 113

dictions. Finally, we evaluate numerical accuracy, 114

which evaluates the quality of the model’s predicted 115

attribute values. It is defined as the proportion of 116

pairwise comparisons for which the ranking im- 117

plied by the predicted numerical values agrees with 118

the ground truth ranking. Note that this evaluates 119

a pointwise approach. To ensure comparability, 120

we remove all samples for which the model did 121

not produce a valid answer, either in the pairwise 122

or numerical setting. As a result, all metrics are 123

computed over the same filtered set of samples. 124

Models. We experiment with models of different 125

families and sizes: Llama3-1B, Llama3-8B (Dubey 126

et al., 2024), OLMo2-1B, OLMo2-7B, OLMo2- 127

32B (OLMo et al., 2025), Qwen3-1.7B, Qwen3-8B, 128

Qwen3-32B (Yang et al., 2025), Mistral-7B (Jiang 129

et al., 2023a) and Mistral-24B. Full details on these 130

models can be found in Appendix A. 131

3 Do LLMs Use Numerical Attributes for 132

Pairwise Comparisons? 133

Figure 1 summarizes the performance of the dif- 134

ferent language models, averaged across all 10 at- 135

tributes. A more detailed breakdown can be found 136

in Appendix E. A number of important findings can 137

be observed. First, numerical accuracy is consis- 138

tently and substantially higher than pairwise accu- 139

racy, showing that pairwise ranking underperforms 140

pointwise ranking on our task. For the smallest 141

models, pairwise accuracy is barely above random 142

chance. Pairwise accuracy increases with model 143

size. For numerical accuracy, on the other hand, 144

Mistral-7B and Llama3-8B both outperform much 145

bigger models. For these models, the underperfor- 146

mance of the pairwise approach can thus not be 147

explained by a lack of knowledge (cf. Section 5). 148

This can also be clearly seen from the surprisingly 149

low internal consistency values, which are even 150

lower than pairwise accuracy in most cases. This 151

means that (for smaller models) the pairwise pre- 152

dictions are inaccurate, both relative to the ground 153

truth and relative to their own internal beliefs. Over- 154

all, the results suggest that LLMs rely on shortcuts 155

when making pairwise predictions, which we will 156

further analyze in the next section. 157

4 How Susceptible Is the Pairwise 158

Approach to Biases? 159

We analyze the impact of three types of biases 160

on the pairwise predictions. A breakdown of the 161
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(a) Popularity bias
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(b) Position bias
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(c) Co-occurrence bias

Figure 2: Accuracy differences illustrating three types of bias in pairwise ranking decisions.

results can be found in Appendix E.162

Popularity Bias. A heuristic that LLMs may ex-163

ploit is that popular entities might have higher val-164

ues (e.g. cities that are mentioned more often may165

have higher populations). To analyze this effect,166

we estimate the popularity of each Wikidata entity167

using its QRank score, which reflects the number168

of page views of the corresponding Wikipedia ar-169

ticle, and some additional sources. The results are170

summarized in Figure 2a. The figure shows the171

difference in accuracy between comparisons where172

the most popular entity has the highest value, and173

comparisons where the opposite is true. As can174

be seen, this accuracy difference is positive for175

all models, which shows that LLMs are indeed bi-176

ased by entity popularity. Interestingly, increasing177

model size does not seem to reduce this effect.178

Position Bias. LLM evaluators have been found179

to suffer from position bias, favouring responses180

depending on the order in which they are presented181

(Wang et al., 2024). We analyze whether a similar182

bias is also present when comparing entities. To183

this end, we compare the accuracy across two sets184

of comparisons: those where the first or second185

entity has the higher value. Figure 2b summarizes186

the results. Note that position bias is not consis-187

tent across models: some models favour the first188

entity, while others favour the second entity. We189

therefore report the absolute value of the difference190

in accuracy. We find that all models are affected191

by position bias. There is no clear relationship192

between model size and the strength of this bias.193

Co-occurrence Bias. LLM predictions can be194

affected by shallow co-occurrence statistics (Kang195

and Choi, 2023). To analyze this effect, we rely196

on the ConceptNet Numberbatch pre-trained word197

embeddings (Speer et al., 2017) as a model of dis-198

tributional similarity. For each numerical attribute,199

we selected 5 adjectives that are indicative of high200

values (e.g. longest for river length) and averaged 201

their embeddings, yielding a vector v+. We do 202

the same for 5 adjectives that are indicative of low 203

values (e.g. shortest) and obtain v−. We then score 204

entity e as cos(e,v+ − v−), where e is the Num- 205

berbatch embedding of e.2 Figure 2c analyzes the 206

co-occurrence bias, showing the difference in ac- 207

curacy between comparisons where the entity with 208

the highest score has the higher ground truth value 209

and those where the opposite is true. We can see 210

that all models suffer from co-occurrence bias, al- 211

though the magnitude of this effect is smaller than 212

for popularity and position bias. 213

5 Can an LLM’s Pairwise Predictions Be 214

Explained? 215

The fact that the pairwise predictions are biased in 216

some ways is, in itself, not unexpected. However, 217

the magnitude of these biases (0–20%) is more sur- 218

prising, noting that the pairwise accuracy is only 219

0–20% above random guessing for most models 220

(cf. Figure 1). We may thus wonder to what extent 221

these biases are enough to explain the pairwise pre- 222

dictions. To analyze this, we first train a logistic 223

regression model, which we call a meta-predictor, 224

to predict whether the LLM will predict the first or 225

second entity. It takes as input two binary features: 226

whether the first entity is more popular than the 227

second, and whether its embedding is more similar 228

to the vector v+ − v−. Note that position bias 229

is implicitly taken into account by design. The 230

meta-predictor is evaluated using 5-fold cross vali- 231

dations. It is trained for a particular LLM, prompt 232

and attribute. We average the results across differ- 233

ent prompts and attributes. 234

We can now predict an LLM’s pairwise judg- 235

ments based on (i) its own numerical knowledge 236

about an attribute (i.e. pointwise prediction); or 237

2Full details of how the scores are obtained can be found
in Appendix C.
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Figure 3: Share of the four cases for every model, ag-
gregated over all datasets.

(ii) the meta-predictor. We distinguish between238

the following cases. Case 1: pairwise and point-239

wise predictions are consistent, but pairwise and240

meta predictions are not consistent (⇒ numerical241

knowledge is used); Case 2: pairwise, pointwise242

and meta predictions are consistent (⇒ numerical243

knowledge or bias); Case 3: pairwise and point-244

wise predictions are inconsistent, but pairwise and245

meta prediction are consistent (⇒ bias is used);246

Case 4: pairwise and pointwise predictions are in-247

consistent, and pairwise and meta predictions are248

inconsistent (⇒ noise or unexplained bias)249

In Figure 3, we plot the relative frequency of250

the four cases for every model, across all datasets.251

We observe the following. Case 4 is infrequent,252

suggesting that the three biases and the pointwise253

predictions can almost completely explain the pair-254

wise predictions, with an exception for the two255

smallest models. For LLMs with lower pairwise256

accuracy (i.e., LlaMa3-1B, OLMo2-1B, Qwen3-257

1.7B, OLMo2-7B), Case 3 occurs more often than258

Case 1.34 Many of the predictions can be explained259

by either bias or numerical knowledge (Case 2),260

which may explain why the biases are prevalent in261

the first place (i.e. popularity and co-occurrence262

bias are somewhat predictive). Overall, the three263

biases are sufficient to explain the predictions in264

the majority of instances (i.e., Case 2 + Case 3).265

3See also Figure 15 in Appendix F.
4Figure 3 also gives an explanation for our observation

in Section 3, i.e., even though Mistral-7B and Llama3-8B
perform better wrt. numerical accuracy than larger models
(e.g., Mistral-24B) (see Figure 1), they perform worse wrt.
pairwise accuracy: compared with larger models, Mistral-7B
and Llama3-8B are more influenced by biases (i.e., Case 3)
than numerical knowledge (i.e., Case 1) when doing pairwise
comparisons (see also Figure 15 in Appendix F).

6 Related Work 266

Previous work has already found that LLM pre- 267

dictions can be influenced by various types of su- 268

perficial features. Wang et al. (2024) identified a 269

position bias in LLM evaluators, where the result 270

is influenced by the order in which candidates are 271

presented. McCoy et al. (2023) found how the ac- 272

curacy of an LLM is influenced by the probability 273

of the output, which aligns with our findings of pop- 274

ularity bias. The fact that shallow co-occurrence 275

statistics can mislead LLMs, being the third bias 276

that we study, has also been shown in several stud- 277

ies (Kang and Choi, 2023). While it is thus not 278

surprising that these biases are present in our anal- 279

ysis, the significance of our finding stems from 280

the extent to which these biases affect the result: 281

these three biases together almost completely ex- 282

plain pairwise judgments for smaller models. The 283

lack of internal consistency of LLMs with numeri- 284

cal features also aligns with various findings from 285

the literature. In the context of ranking, the non- 286

transitive nature of pairwise judgments by LLMs 287

has been highlighted (Xu et al., 2025; Kumar et al., 288

2024). The reversal curse (Berglund et al., 2024), 289

where models fail to answer inverse formulations 290

of questions, also suggests a lack of internal con- 291

sistency. Allen-Zhu and Li (2024) also find that 292

LLMs sometimes memorize knowledge without be- 293

ing capable of reliably exploiting it for answering 294

questions. The problem of ranking entities with 295

LLMs was studied by Kumar et al. (2024), but their 296

focus was on designing fine-tuning strategies. 297

7 Conclusion 298

We have analyzed how LLMs behave when asked 299

to rank entities according to some well-defined nu- 300

merical attribute. Intuitively, an LLM could extract 301

the attribute values for the two given entities and 302

simply compare these. We found that LLMs can 303

generally approximate the numerical attributes suf- 304

ficiently well for such a strategy to be successful. 305

However, the actual performance of LLMs on pair- 306

wise comparisons dramatically underperforms this 307

strategy. We then showed that these pairwise pre- 308

dictions are affected by at least three biases, namely 309

popularity bias, position bias and co-occurrence 310

bias. Finally, we showed that together, these three 311

biases are highly predictive of model predictions, 312

especially for smaller models, suggesting that these 313

biases largely drown out more principled mecha- 314

nisms that may be present in the models. 315
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Limitations316

Our study has been limited to an analysis of the out-317

puts of LLMs, and we have not attempted to inter-318

pret these models mechanistically. For instance, it319

would be interesting to see whether (or under which320

conditions) updating the numerical knowledge in-321

side models would alter their pairwise judgments.322

Furthermore, our analysis has been limited to zero-323

shot prompting. In preliminary experiments, we324

observed that few-shot prompting may help to par-325

tially overcome some of the biases that we studied,326

although not entirely. Similarly, it would be in-327

teresting to study whether the biases persist after328

fine-tuning models on pairwise ranking tasks.329

References330

Mistral AI. 2024. Mistral small 3. https://mistral.331
ai. Large Language Model.332

Zeyuan Allen-Zhu and Yuanzhi Li. 2024. Physics of333
language models: Part 3.1, knowledge storage and334
extraction. In Forty-first International Conference on335
Machine Learning, ICML 2024, Vienna, Austria, July336
21-27, 2024. OpenReview.net.337

Lukas Berglund, Meg Tong, Maximilian Kaufmann,338
Mikita Balesni, Asa Cooper Stickland, Tomasz Ko-339
rbak, and Owain Evans. 2024. The reversal curse:340
Llms trained on "a is b" fail to learn "b is a". In341
The Twelfth International Conference on Learning342
Representations, ICLR 2024, Vienna, Austria, May343
7-11, 2024. OpenReview.net.344

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,345
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,346
Akhil Mathur, Alan Schelten, Amy Yang, Angela347
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,348
Archi Mitra, Archie Sravankumar, Artem Korenev,349
Arthur Hinsvark, Arun Rao, Aston Zhang, and 82350
others. 2024. The llama 3 herd of models. CoRR,351
abs/2407.21783.352

Jingtong Gao, Bo Chen, Xiangyu Zhao, Weiwen Liu,353
Xiangyang Li, Yichao Wang, Wanyu Wang, Huifeng354
Guo, and Ruiming Tang. 2025. Llm4rerank: Llm-355
based auto-reranking framework for recommenda-356
tions. In Proceedings of the ACM on Web Conference357
2025, WWW 2025, Sydney, NSW, Australia, 28 April358
2025- 2 May 2025, pages 228–239. ACM.359

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,360
Abhinav Pandey, Abhishek Kadian, Ahmad Al-361
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-362
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh363
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-364
tra, Archie Sravankumar, Artem Korenev, Arthur365
Hinsvark, and 542 others. 2024. The Llama 3 Herd366
of Models. arXiv preprint. ArXiv:2407.21783 [cs].367

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 368
sch, Chris Bamford, Devendra Singh Chaplot, Diego 369
de Las Casas, Florian Bressand, Gianna Lengyel, 370
Guillaume Lample, Lucile Saulnier, Lélio Re- 371
nard Lavaud, Marie-Anne Lachaux, Pierre Stock, 372
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo- 373
thée Lacroix, and William El Sayed. 2023a. Mistral 374
7b. CoRR, abs/2310.06825. 375

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 376
sch, Chris Bamford, Devendra Singh Chaplot, Diego 377
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 378
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 379
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 380
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 381
and William El Sayed. 2023b. Mistral 7b. Preprint, 382
arXiv:2310.06825. 383

Cheongwoong Kang and Jaesik Choi. 2023. Impact 384
of co-occurrence on factual knowledge of large lan- 385
guage models. In Findings of the Association for 386
Computational Linguistics: EMNLP 2023, pages 387
7721–7735, Singapore. Association for Computa- 388
tional Linguistics. 389

Nitesh Kumar, Usashi Chatterjee, and Steven Schock- 390
aert. 2024. Ranking entities along conceptual space 391
dimensions with LLMs: An analysis of fine-tuning 392
strategies. In Findings of the Association for Com- 393
putational Linguistics: ACL 2024, pages 7974–7989, 394
Bangkok, Thailand. Association for Computational 395
Linguistics. 396

Adian Liusie, Potsawee Manakul, and Mark Gales. 2024. 397
LLM comparative assessment: Zero-shot NLG eval- 398
uation through pairwise comparisons using large lan- 399
guage models. In Proceedings of the 18th Confer- 400
ence of the European Chapter of the Association for 401
Computational Linguistics (Volume 1: Long Papers), 402
pages 139–151, St. Julian’s, Malta. Association for 403
Computational Linguistics. 404

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and 405
Jimmy Lin. 2024. Fine-tuning llama for multi-stage 406
text retrieval. In Proceedings of the 47th Interna- 407
tional ACM SIGIR Conference on Research and De- 408
velopment in Information Retrieval, SIGIR 2024, 409
Washington DC, USA, July 14-18, 2024, pages 2421– 410
2425. ACM. 411

R. Thomas McCoy, Shunyu Yao, Dan Friedman, 412
Matthew Hardy, and Thomas L. Griffiths. 2023. Em- 413
bers of autoregression: Understanding large language 414
models through the problem they are trained to solve. 415
CoRR, abs/2309.13638. 416

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen- 417
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling 418
Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, 419
Dustin Schwenk, Oyvind Tafjord, Taira Anderson, 420
David Atkinson, Faeze Brahman, Christopher Clark, 421
Pradeep Dasigi, Nouha Dziri, and 21 others. 2025. 2 422
olmo 2 furious. CoRR, abs/2501.00656. 423

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen- 424
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling 425

5

https://mistral.ai
https://mistral.ai
https://mistral.ai
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=5x788rqbcj
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://openreview.net/forum?id=GPKTIktA0k
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.1145/3696410.3714922
https://doi.org/10.1145/3696410.3714922
https://doi.org/10.1145/3696410.3714922
https://doi.org/10.1145/3696410.3714922
https://doi.org/10.1145/3696410.3714922
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2023.findings-emnlp.518
https://doi.org/10.18653/v1/2024.findings-acl.474
https://doi.org/10.18653/v1/2024.findings-acl.474
https://doi.org/10.18653/v1/2024.findings-acl.474
https://doi.org/10.18653/v1/2024.findings-acl.474
https://doi.org/10.18653/v1/2024.findings-acl.474
https://aclanthology.org/2024.eacl-long.8/
https://aclanthology.org/2024.eacl-long.8/
https://aclanthology.org/2024.eacl-long.8/
https://aclanthology.org/2024.eacl-long.8/
https://aclanthology.org/2024.eacl-long.8/
https://doi.org/10.1145/3626772.3657951
https://doi.org/10.1145/3626772.3657951
https://doi.org/10.1145/3626772.3657951
https://doi.org/10.48550/ARXIV.2309.13638
https://doi.org/10.48550/ARXIV.2309.13638
https://doi.org/10.48550/ARXIV.2309.13638
https://doi.org/10.48550/ARXIV.2309.13638
https://doi.org/10.48550/ARXIV.2309.13638
https://doi.org/10.48550/ARXIV.2501.00656
https://doi.org/10.48550/ARXIV.2501.00656
https://doi.org/10.48550/ARXIV.2501.00656


Gu, Shengyi Huang, Matt Jordan, Nathan Lambert,426
Dustin Schwenk, Oyvind Tafjord, Taira Anderson,427
David Atkinson, Faeze Brahman, Christopher Clark,428
Pradeep Dasigi, Nouha Dziri, and 21 others. 2024. 2429
olmo 2 furious. Preprint, arXiv:2501.00656.430

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,431
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu432
Liu, Donald Metzler, Xuanhui Wang, and Michael433
Bendersky. 2024. Large language models are effec-434
tive text rankers with pairwise ranking prompting. In435
Findings of the Association for Computational Lin-436
guistics: NAACL 2024, pages 1504–1518, Mexico437
City, Mexico. Association for Computational Lin-438
guistics.439

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.440
Conceptnet 5.5: An open multilingual graph of gen-441
eral knowledge. In Proceedings of the Thirty-First442
AAAI Conference on Artificial Intelligence, February443
4-9, 2017, San Francisco, California, USA, pages444
4444–4451. AAAI Press.445

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang446
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and447
Zhaochun Ren. 2023. Is ChatGPT good at search?448
investigating large language models as re-ranking449
agents. In Proceedings of the 2023 Conference on450
Empirical Methods in Natural Language Process-451
ing, pages 14918–14937, Singapore. Association for452
Computational Linguistics.453

Qwen Team. 2025. Qwen3.454

Tuhina Tripathi, Manya Wadhwa, Greg Durrett, and455
Scott Niekum. 2025. Pairwise or pointwise? evaluat-456
ing feedback protocols for bias in llm-based evalua-457
tion. arXiv preprint arXiv:2504.14716.458

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei459
Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,460
Qi Liu, Tianyu Liu, and Zhifang Sui. 2024. Large lan-461
guage models are not fair evaluators. In Proceedings462
of the 62nd Annual Meeting of the Association for463
Computational Linguistics (Volume 1: Long Papers),464
pages 9440–9450, Bangkok, Thailand. Association465
for Computational Linguistics.466

Yi Xu, Laura Ruis, Tim Rocktäschel, and Robert Kirk.467
2025. Investigating non-transitivity in llm-as-a-judge.468
CoRR, abs/2502.14074.469

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,470
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,471
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-472
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao473
Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41474
others. 2025. Qwen3 technical report. Preprint,475
arXiv:2505.09388.476

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan477
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,478
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,479
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging480
llm-as-a-judge with mt-bench and chatbot arena. In481
Advances in Neural Information Processing Systems482

36: Annual Conference on Neural Information Pro- 483
cessing Systems 2023, NeurIPS 2023, New Orleans, 484
LA, USA, December 10 - 16, 2023. 485

6

https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.18653/v1/2024.findings-naacl.97
https://doi.org/10.1609/AAAI.V31I1.11164
https://doi.org/10.1609/AAAI.V31I1.11164
https://doi.org/10.1609/AAAI.V31I1.11164
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://doi.org/10.18653/v1/2023.emnlp-main.923
https://qwenlm.github.io/blog/qwen3/
https://doi.org/10.18653/v1/2024.acl-long.511
https://doi.org/10.18653/v1/2024.acl-long.511
https://doi.org/10.18653/v1/2024.acl-long.511
https://doi.org/10.48550/ARXIV.2502.14074
https://arxiv.org/abs/2505.09388
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html


Appendices486

A Model Details487

Unless specified otherwise, all models were run488

with greedy decoding and thinking was disabled, if489

applicable. Models with more than 10B parameters490

were run in 8 bit quantization. All other models491

were run with 16 bit floating point precision. An492

overview of all models used, along with citations493

and Hugging Face repository links, is provided in494

Table 1.495

B Dataset Details496

Table 2 summarizes the datasets used in our ex-497

periments, including the target attribute, number498

of entities, unique entity pairs, and total samples499

evaluated.500

C Details on Numberbatch Embeddings501

If the word is out-of-vocabulary, we apply a two-502

step back-off strategy. We first attempt token-level503

averaging: the word is split into individual words,504

and any tokens that are found in the vocabulary are505

embedded individually and averaged. If no token506

vector is obtained, we fall back to prefix matching,507

progressively trimming the word from the end until508

the longest prefix that is in the vocabulary is lo-509

cated and using its vector as a surrogate. Given510

the resulting entity embedding e, we compute its511

scalar projection onto the “bigger–smaller” axis512

as s = ⟨e,d⟩, where more-positive scores corre-513

spond to stronger semantic alignment with “larger”514

and more-negative scores with “smaller”. Table 3515

provides qualitative examples in which cosine sim-516

ilarity to attribute-related keywords (e.g., “larger,”517

“bigger,” “more”) suggests the wrong ranking, high-518

lighting potential co-occurrence bias. The list of519

positive and negative keywords used to construct520

the “bigger–smaller” axis is shown in Table 4.521

D Prompts522

Table 5 to Table 26 list the prompt templates used in523

our experiments. Each attribute–dataset combina-524

tion includes six pairwise prompts (three prompting525

for the “larger” entity and three for the “smaller”526

one) and three numerical extraction prompts.527

E Detailed Accuracies528

As explained in the paper, we use both prompts529

that ask for the entity with the highest value and530

prompts that ask for the entities with the lowest 531

value. We refer to these as prompts with positive 532

polarity and negative polarity, respectively. As 533

there are some differences in the results between 534

prompts with positive and negative polarity, we 535

report results for these types of prompts separately. 536

Main Accuracy Metrics. Figures 4 and 5 report 537

accuracy comparisons for ranking accuracy, inter- 538

nal consistency, and numerical accuracy under pos- 539

itive and negative polarity prompts, respectively. 540

Each panel corresponds to a specific model, and 541

each group of bars represents performance on one 542

dataset. 543

Popularity Bias. We analyze whether models are 544

more accurate when the more popular entity (based 545

on QRank) also has a higher value. Figures 6 and 546

7 show the impact of popularity bias for positive 547

and negative polarity prompts, respectively. Solid 548

bars indicate accuracy when the popular entity has 549

the higher value, and hatched bars when it has not. 550

A large accuracy drop in the latter case suggests 551

reliance on popularity as a heuristic. 552

Position Bias. Figures 8 and 9 examine whether 553

the order in which entities are mentioned affects 554

model predictions. Specifically, we compare accu- 555

racy when the entity with the higher value appears 556

first vs. second in the prompt. Consistent differ- 557

ences indicate a surface-level position bias. 558

Co-occurrence Bias. Finally, we assess whether 559

models perform better when the entity with the 560

higher value is more semantically associated with 561

“larger” or “smaller” concepts based on a keyword- 562

derived embedding axis. Figures 10 and 11 563

show this effect for positive and negative polarity 564

prompts, respectively. Accuracy gaps here suggest 565

reliance on semantic co-occurrence cues even when 566

they contradict ground-truth values. 567

F Detailed Meta-predictor Analysis 568

This section provides a deeper analysis of the two 569

meta-predictors introduced in Section 5. The first 570

is a numerical oracle that predicts pairwise out- 571

comes based solely on the model’s extracted nu- 572

merical values. The second is a logistic-regression 573

meta-predictor trained on surface-level cues: entity 574

popularity (QRank), positional advantage (first vs. 575

second entity), and semantic similarity to “larger” 576

keywords (co-occurrence bias). 577
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Figures 12 and 13 show the absolute predic-578

tion accuracy of both meta-predictors across all579

datasets and models, for positive and negative580

polarity prompts respectively. The comparison581

highlights the extent to which models’ choices582

can be explained by shallow heuristics rather than583

grounded numerical reasoning. Figure 14 presents584

a breakdown of the four diagnostic cases discussed585

in Section 5. Each panel corresponds to a different586

model, and each bar to a dataset. This figure com-587

plements the main paper’s analysis by revealing588

which types of errors are most prevalent in each589

domain, and whether failures to follow numerical590

predictions correlate with surface-level biases. Fi-591

nally, Figure 15 summarizes how much better the592

bias-only meta-predictor performs compared to the593

numerical baseline for each model. Positive values594

indicate that surface-level features are more predic-595

tive of the model’s behavior than its own internal596

numeric extractions—evidence of strong reliance597

on popularity, position, and co-occurrence cues.598
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Figure 4: Accuracy comparison for positive polarity prompts. Each panel shows results for a single language
model. For each dataset, we display three side-by-side bars: the solid bar represents the ranking accuracy, the
hatched bar shows the internal consistency and the cross-hatched bars show the numerical accuracy. Bars indicate
mean accuracy; error bars show ±1 standard deviation across prompt templates.
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Figure 5: Accuracy comparison for negative polarity prompts. Same layout as Figure 4, but for negative polarity
prompts.
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Figure 6: Accuracy comparison in different popularity settings for positive polarity prompts. For each dataset,
we display two side-by-side bars: the solid bar represents the accuracy of the model in cases where the entity with
the higher QRank, also had the higher value, the hatched bar shows the accuracy of the model for cases where the
lower QRank entity had the higher value. Bars indicate mean accuracy; error bars show ±1 standard deviation
across prompt templates. Each panel shows results for a single language model.
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Figure 7: Accuracy comparison in different popularity settings for positive negative prompts. Same layout as
in Figure 6, but for negative polarity prompts.
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Figure 8: Accuracy comparison depending on which position the bigger entity had for positive polarity
prompts. For each dataset, we display two side-by-side bars: the solid bar represents the accuracy of the model in
cases where the first mentioned entity had the bigger value, the hatched bar shows the accuracy of the model in
cases where the second mentioned entity had the bigger value. Bars indicate mean accuracy; error bars show ±1
standard deviation across prompt templates. Each panel shows results for a single language model.
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Figure 9: Accuracy comparison depending on which position the bigger entity had for positive polarity
prompts. Same layout as in Figure 8.
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Figure 10: Accuracy comparison depending on PMI proxy of the entities for positive polarity prompts. For
each dataset, we display two side-by-side bars: the solid bar represents the accuracy of the model ..., the hatched bar
shows the accuracy of the model ... Bars indicate mean accuracy; error bars show ±1 standard deviation across
prompt templates. Each panel shows results for a single language model.
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Figure 11: Accuracy comparison depending on PMI proxy of the entities for positive polarity prompts. Same
layout as Figure 10.
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Figure 12: Absolute prediction accuracy of the two meta-predictors (positive polarity). For each dataset, we
display two side-by-side bars: the solid bar represents the numerical-oracle baseline, which follows the model’s
extracted numbers to predict its choice; the hatched bar shows the accuracy of a logistic-regression meta-predictor
that uses only surface-level cues (popularity, positional advantage, and semantic association with “bigger” keywords).
Bars indicate mean accuracy; error bars show ±1 standard deviation across prompt templates. Each panel shows
results for a single language model.
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Model Hugging Face Repository

LLaMa3-1B (Grattafiori et al., 2024) meta-llama/Llama-3.2-1B-Instruct
OLMo2-1B (OLMo et al., 2024) allenai/OLMo-2-0425-1B-Instruct
Qwen3-1.7B (Team, 2025) Qwen/Qwen3-1.7B
Mistral-7B (Jiang et al., 2023b) mistralai/Mistral-7B-Instruct-v0.3
OLMo2-7B (OLMo et al., 2024) allenai/OLMo-2-1124-7B-Instruct
LLaMa3-8B (Grattafiori et al., 2024) meta-llama/Llama-3.1-8B-Instruct
Qwen3-8B (Team, 2025) Qwen/Qwen3-8B
Mistral-24B (AI, 2024) mistralai/Mistral-Small-24B-Instruct-2501
OLMo2-32B (OLMo et al., 2024) allenai/OLMo-2-0325-32B-Instruct
Qwen3-32B (Team, 2025) Qwen/Qwen3-32B

Table 1: Model information for the models used in this paper.

Dataset Attribute Entities Pairs Samples

Atoms atomic number 118 236 2832
Buildings height 1000 2000 24000
Cities population 1000 2000 24000
Countries population 196 392 4704
Mountains elevation 997 1994 23928
Peppers Scoville heat unit 45 90 1080
People birth date 4777 9554 114648
People social media follow-

ing
999 1998 23976

Rivers length 999 1998 23976
Stadiums capacity 999 1998 23976
Universities Nr. enrolled students 1000 2000 24000

Table 2: Key statistics of the considered datasets: the
number of entities, the number of unique entity pairs
used in the analysis, and the total number of samples.
Each pair is evaluated using 6 prompt templates and
both possible entity orderings, resulting in 12 samples
per pair.
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Dataset Cosine Suggests Actually Larger

People (social) George Michael (∼ 559k followers) Mackenyu (∼ 1M followers)
Buildings Red Fort (33 m) Colonius (266 m)
Atoms chromium (24) niobium (41)
Universities University of Mannheim (∼ 12k students) George Washington University (∼ 24k students)
People (birth) Spike Jonze (born in 1970) Romelu Lukaku (born in 1993)
Peppers jalapeño (20k SHU) Pepper X (3.1M SHU)
Cities Palermo (∼ 674k inhabitants) Islamabad (∼ 1.9M inhabitants)
Stadiums Bolt Arena (∼ 10k capacity) Kashima Stadium (∼ 40k capacity)
Countries Botswana (∼ 2.4M inhabitants) Yemen (∼ 2.8M inhabitants)
Mountains Mount Scenery (887 m) Half Dome (2693 m)
Rivers Mystic River (113 km) Bega River (256 km)

Table 3: Examples of pairs where the similarity to the keywords is opposite to the numerical value. The first entity
is the one with the higher cosine similarity to the keywords, but has a lower numerical value.

Dataset Positive keywords Negative keywords

Atoms heaviest, largest, highest, massive, big lightest, smallest, lowest, tiny, low
Buildings tallest, highest, largest, big, tall shortest, smallest, lowest, tiny, low
Cities largest, populous, big, crowded, dense smallest, quiet, tiny, remote, sparse
Countries largest, populous, big, powerful, dense smallest, sparse, tiny, quiet, remote
Mountains highest, tallest, largest, elevated, big lowest, smallest, shortest, low, tiny
Peppers hottest, spiciest, pungent, intense, fiery mildest, bland, cool, weak, low
People (birth) youngest, recent, modern, newer, late oldest, ancient, early, historic, vintage
People (social) popular, famous, followed, liked, viral unknown, obscure, ignored, unseen, small
Rivers longest, largest, broadest, deep, big shortest, smallest, shallow, narrow, tiny
Stadiums largest, busiest, crowded, massive, big smallest, quiet, empty, tiny, low
Universities largest, populous, crowded, big, prestigious smallest, quiet, tiny, local, low

Table 4: List of positive and negative keywords that are used to capture co-occurrence bias. The positive keywords
are terms that are associated with high values of the considered attribute, negative keywords are associated with low
values.
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Figure 13: Absolute prediction accuracy of the two meta-predictors (negative polarity). Same layout as
Figure 12, but for negative polarity prompts.
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Figure 14: Detailed breakdown of the four cases (from Section 5) per dataset and model. Within every panel each
colored, stacked bar corresponds to one dataset. The segments show the proportion of test samples that fall into Case
1 (numerical and pairwise agree, meta-predictor disagrees), Case 2 (all three agree), Case 3 (pairwise aligns with
surface-bias meta-predictor, but not with numerical comparison), and Case 4 (neither numbers nor meta-predictor
explain the choice). This figure complements Figure 3 by revealing which datasets drive each pattern for every
model. Percentages are computed after filtering out samples with unanswerable prompts or missing extractions;
bars sum to 100 % within each dataset.
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Prompt

Answer with the one name only. Which chemical
element has the higher atomic number? entity1 or
entity2?
Please state the chemical element with the higher
atomic number only. entity1 or entity2?
Answer only with the correct name. Which chemi-
cal element has a higher number of protons? entity1
or entity2?
Answer with the one name only. Which chemical
element has the lower atomic number? entity1 or
entity2?
Please state the chemical element with the lower
atomic number only. entity1 or entity2?
Answer only with the correct name. Which chemi-
cal element has a lower number of protons? entity1
or entity2?

Table 5: Pairwise prompts for Atoms.

Prompt

Only state the name of the taller building. Which
building is taller? entity1 or entity2?
Respond with only the name of the taller building.
Which building is taller? entity1 or entity2?
Provide only the name of the taller building. Which
building is taller? entity1 or entity2?
Only state the name of the shorter building. Which
building is shorter? entity1 or entity2?
Respond with only the name of the shorter building.
Which building is shorter? entity1 or entity2?
Provide only the name of the shorter building.
Which building is shorter? entity1 or entity2?

Table 6: Pairwise prompts for Buildings.

Prompt

Only state the name of the more populous city.
Which city has a larger population? entity1 or
entity2?
Respond with only the name of the more populous
city. Which city has a larger population? entity1 or
entity2?
Provide only the name of the more populous city.
Which city has a larger population? entity1 or
entity2?
Only state the name of the less populous city.
Which city has a smaller population? entity1 or
entity2?
Respond with only the name of the less populous
city. Which city has a smaller population? entity1
or entity2?
Provide only the name of the less populous city.
Which city has a smaller population? entity1 or
entity2?

Table 7: Pairwise prompts for Cities.

Prompt

Only state the name of the more populous country.
Which country has a larger population? entity1 or
entity2?
Respond with only the name of the more populous
country. Which country has a larger population?
entity1 or entity2?
Provide only the name of the more populous coun-
try. Which country is more populous? entity1 or
entity2?
Only state the name of the less populous country.
Which country has a smaller population? entity1
or entity2?
Respond with only the name of the less populous
country. Which country has a smaller population?
entity1 or entity2?
Provide only the name of the less populous country.
Which country is less populous? entity1 or entity2?

Table 8: Pairwise prompts for Countries.
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Prompt

Only state the name of the higher mountain. Which
mountain is higher? entity1 or entity2?
Respond with only the name of the mountain that
has a greater elevation. Which mountain stands
taller? entity1 or entity2?
Provide only the name of the higher mountain.
Which mountain has a greater elevation? entity1 or
entity2?
Only state the name of the lower mountain. Which
mountain is lower? entity1 or entity2?
Respond with only the name of the mountain that
has a lesser elevation. Which mountain stands
lower? entity1 or entity2?
Provide only the name of the lower mountain.
Which mountain has a smaller elevation? entity1
or entity2?

Table 9: Pairwise prompts for Mountains.

Prompt

Only state the name of the hotter pepper. Which
pepper has a higher Scoville Heat Unit rating? en-
tity1 or entity2?
Respond with only the name of the hotter pepper.
Which pepper is spicier based on Scoville Heat
Units? entity1 or entity2?
Provide only the name of the hotter pepper. Which
pepper has the greater spiciness level according to
the Scoville scale? entity1 or entity2?
Only state the name of the milder pepper. Which
pepper has a lower Scoville Heat Unit rating? en-
tity1 or entity2?
Respond with only the name of the milder pepper.
Which pepper is less spicy based on Scoville Heat
Units? entity1 or entity2?
Provide only the name of the milder pepper. Which
pepper has a lower spiciness level according to the
Scoville scale? entity1 or entity2?

Table 10: Pairwise prompts for Peppers.

Prompt

Only state the name of the person who was born
later. Which person was born later? entity1 or
entity2?
Respond with only the name of the younger person.
Which person is younger? entity1 or entity2?
Provide only the name of the younger person. Be-
tween entity1 and entity2, who is younger?
Only state the name of the person who was born
earlier. Which person was born earlier? entity1 or
entity2?
Respond with only the name of the older person.
Which person is older? entity1 or entity2?
Provide only the name of the older person. Be-
tween entity1 and entity2, who is older?

Table 11: Pairwise prompts for People (birth).

Prompt

Only state the name of the person with more social
media followers. Which person has a larger social
media following? entity1 or entity2?
Respond with only the name of the individual who
has more social media followers. Between entity1
and entity2, who has a larger following?
Provide only the name of the person with more
social media followers. Who has a larger social
media following? entity1 or entity2?
Only state the name of the person with fewer social
media followers. Which person has a smaller social
media following? entity1 or entity2?
Respond with only the name of the individual who
has fewer social media followers. Between entity1
and entity2, who has a smaller following?
Provide only the name of the person with fewer
social media followers. Who has a smaller social
media following? entity1 or entity2?

Table 12: Pairwise prompts for People (social).
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Prompt

Only state the name of the longer river. Which river
is longer? entity1 or entity2?
Respond with only the name of the longer river.
Which river extends further? entity1 or entity2?
Provide only the name of the river with the longer
course. Which of these rivers covers a longer dis-
tance? entity1 or entity2?
Only state the name of the shorter river. Which
river is shorter? entity1 or entity2?
Respond with only the name of the shorter river.
Which river extends a shorter distance? entity1 or
entity2?
Provide only the name of the river with the shorter
course. Which of these rivers covers a shorter dis-
tance? entity1 or entity2?

Table 13: Pairwise prompts for Rivers.

Prompt

Only state the name of the stadium with a larger
seating capacity. Which stadium can accommodate
more spectators? entity1 or entity2?
Respond with only the name of the stadium that
has a greater seating capacity. Which stadium has
more seats? entity1 or entity2?
Provide only the name of the stadium with a higher
capacity. Which stadium can hold more people?
entity1 or entity2?
Only state the name of the stadium with a smaller
seating capacity. Which stadium can accommodate
fewer spectators? entity1 or entity2?
Respond with only the name of the stadium that
has a lower seating capacity. Which stadium has
fewer seats? entity1 or entity2?
Provide only the name of the stadium with a smaller
capacity. Which stadium can hold fewer people?
entity1 or entity2?

Table 14: Pairwise prompts for Stadiums.

Prompt

Only state the name of the university with more
enrolled students. Which university has a larger
student population? entity1 or entity2?
Respond with only the name of the university that
has a greater number of students. Which university
has more students enrolled? entity1 or entity2?
Provide only the name of the university with a
higher student enrollment. Which university has
the largest student body? entity1 or entity2?
Only state the name of the university with fewer
enrolled students. Which university has a smaller
student population? entity1 or entity2?
Respond with only the name of the university that
has a lower number of students. Which university
has fewer students enrolled? entity1 or entity2?
Provide only the name of the university with a
lower student enrollment. Which university has the
smallest student body? entity1 or entity2?

Table 15: Pairwise prompts for Universities.

Prompt

What is the atomic number of entity?
Please state the atomic number of entity.
How many protons does entity have?

Table 16: Numerical prompts for Atoms.

Prompt

What is the length of the entity river in km?
How many kilometers long is the entity river?
Can you provide the length of the entity river in
kilometers?

Table 17: Numerical prompts for Rivers.

Prompt

What is the population size of entity, including its
metropolitan area?
What is the total population of entity, encompass-
ing its metropolitan region?
Please state the population of entity, including its
metropolitan area.

Table 18: Numerical prompts for Cities.
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Prompt

What is the height of entity in meters above sea
level?
What is the altitude of entity expressed in meters
above sea level?
Please state the height of entity in meters above sea
level.

Table 19: Numerical prompts for Mountains.

Prompt

What is the height of the building entity in meters?
How tall is the entity building in meters?
Please state the height of the entity building mea-
sured in meters?

Table 20: Numerical prompts for Buildings.

Prompt

What is the population size of the country entity in
2023?
What is the number of inhabitants in entity as of
2023?
Please state the population of entity in 2023.

Table 21: Numerical prompts for Countries.

Prompt

Do not list multiple platforms! Only answer with a
single number. How many social media followers
does entity have across platforms?
Provide only the total number of social media fol-
lowers for entity across all platforms.
How many social media followers does entity have
in total? Answer with a single number across all
platforms.

Table 22: Numerical prompts for People (social).

Prompt

What year was entity born in?
In what year was entity born?
Please state the year of birth of entity.

Table 23: Numerical prompts for People (birth).

Prompt

How many students are enrolled at entity?
What is the total student enrollment at entity?
Please state the number of students enrolled at en-
tity.

Table 24: Numerical prompts for Universities.

Prompt

What is the seating capacity of the entity stadium?
How many spectators can the entity stadium ac-
commodate?
Please state the total number of seats available in
the entity stadium.

Table 25: Numerical prompts for Stadiums.

Prompt

What is the Scoville Heat Unit (SHU) rating of the
entity pepper?
How spicy is the entity pepper in terms of Scoville
Heat Units?
Please state the Scoville Heat Unit value of the
entity pepper.

Table 26: Numerical prompts for Peppers.
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Figure 15: Bias-only meta-predictor vs. numerical
baseline. For each language model we report the
mean improvement and standard deviation of a logistic-
regression meta-predictor that relies solely on three sur-
face cues—entity popularity (QRank), positional ad-
vantage, and semantic association with “bigger” key-
words—relative to a baseline that follows the model’s
extracted numerical values. Positive values indicate that
the bias-based predictor anticipates the model’s pairwise
choice more accurately than the model’s own numbers,
revealing how strongly certain models let positional,
popularity and co-occurrence cues override their inter-
nal quantitative knowledge.
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