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ABSTRACT

Solving tough clinical questions that require both image and text understanding
is still a major challenge in healthcare AI. In this work, we propose Q-FSRU, a
new model that combines Frequency Spectrum Representation and Fusion (FSRU)
with a method called Quantum Retrieval-Augmented Generation (Quantum RAG)
for medical Visual Question Answering (VQA). The model takes in features from
medical images and related text, then shifts them into the frequency domain using
Fast Fourier Transform (FFT). This helps it focus on more meaningful data and
filter out noise or less useful information. To improve accuracy and ensure that
answers are based on real knowledge, we add a quantum inspired retrieval sys-
tem. It fetches useful medical facts from external sources using quantum-based
similarity techniques. These details are then merged with the frequency-based
features for stronger reasoning. We evaluated our model using the VQA-RAD
dataset, which includes real radiology images and questions. The results showed
that Q-FSRU outperforms earlier models, especially on complex cases needing
image text reasoning. The mix of frequency and quantum information improves
both performance and explainability. Overall, this approach offers a promising
way to build smart, clear, and helpful AI tools for doctors.

1 INTRODUCTION

Medical visual question answering (Med-VQA) represents an emerging interdisciplinary challenge
that sits at the intersection of computer vision, natural language processing, and clinical decision-
making (Lin et al., 2023). In real-world clinical environments, radiologists and medical practitioners
frequently interact with imaging studies by formulating diagnostic questions such as ’Is there ev-
idence of a pulmonary nodule?’ or ’Does this MRI show signs of cerebral edema?’. Addressing
such queries demands not only sophisticated understanding of visual content in medical images
but also deep contextual knowledge and nuanced language comprehension (Lau et al., 2018). The
development of AI systems for Med-VQA faces several unique challenges that distinguish it from
general-domain VQA. These include severe data scarcity due to privacy concerns, highly specialized
medical terminology, complex imaging modalities (CT, MRI, X-ray, etc.), and the critical nature of
medical decision-making where errors can have serious consequences. While transformer-based
architectures and cross-modal fusion techniques have shown remarkable progress in general VQA
benchmarks (Antol et al., 2015; Vaswani et al., 2017), their direct application to medical domains
has yielded limited success. Recent medical-specific vision-language models such as LLaVA-Med
(Li et al., 2023), STLLaVA-Med (Sun et al., 2024a), and concept-aligned approaches like MMCAP
(Yan et al., 2024) have improved domain adaptation, but they predominantly operate in the spa-
tial domain, potentially overlooking subtle frequency-based patterns that are particularly relevant in
medical imaging. Most current Med-VQA models rely on convolutional or attention-based feature
extractors that process images in the spatial domain. While effective for capturing local structures,
these approaches may miss global contextual cues embedded in frequency spectra that are especially
important for detecting pathological patterns in medical images (Cai et al., 2023). Concurrently,
retrieval-augmented methods that incorporate external knowledge have shown promise in improv-
ing factual grounding (Lewis et al., 2021), but they typically rely on classical similarity measures
like cosine similarity, which may not fully capture the complex semantic relationships required for
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clinical reasoning. Recent work has demonstrated the effectiveness of frequency-domain represen-
tations in various multimodal tasks. As shown by Lao et al. (2024), frequency spectrum analysis
can be more effective for multimodal representation and fusion in rumor detection, while Cai et al.
(2023) proposed FDTrans, a frequency-domain transformer for multimodal medical image analysis.
In medical imaging specifically, frequency-aware components have been incorporated into architec-
tures like FreqU-FNet (Xing, 2025) for segmentation tasks. However, these approaches have not
been comprehensively explored for medical VQA, where the combination of visual and textual fre-
quency analysis could potentially capture complementary diagnostic information. To address these
limitations, we propose Q-FSRU, a novel framework that combines Frequency Spectrum Repre-
sentation and Fusion (FSRU) with a Quantum-inspired Retrieval-Augmented Generation (Quantum
RAG) mechanism for medical VQA. Our approach is motivated by two key insights: first, that
transforming multimodal features into the frequency domain can help capture global contextual pat-
terns often missed by spatial processing; and second, that quantum-inspired similarity measures
may offer advantages over classical retrieval methods for capturing nuanced semantic relationships
in medical knowledge. The frequency fusion component of Q-FSRU transforms input features from
both image and text modalities using Fast Fourier Transform (FFT), allowing the model to selec-
tively attend to salient frequency-domain signals while suppressing irrelevant spatial noise. This
spectral transformation enables our model to capture global contextual cues that are particularly
valuable for identifying pathological patterns in medical images. To complement this, we integrate
a quantum-inspired retrieval mechanism that fetches relevant external clinical knowledge based on
amplitude-based similarity principles, helping ground the model’s reasoning in verifiable medical
facts. Our contributions can be summarized as follows:

1. We introduce a novel frequency domain fusion framework for medical VQA that transforms
visual and textual features using FFT to capture complementary spectral patterns.

2. We propose a quantum-inspired retrieval mechanism that enhances factual grounding by
retrieving relevant medical knowledge based on amplitude similarity measures.

3. We demonstrate through extensive experiments on the VQA-RAD dataset that our approach
achieves competitive performance compared to existing methods, with particular strengths
in complex reasoning cases.

4. We provide analysis showing that the combination of spectral processing and knowledge
retrieval improves both performance and interpretability, making the model more suitable
for clinical applications.

2 RELATED WORK

2.1 MEDICAL VISUAL QUESTION ANSWERING

Medical Visual Question Answering (Med-VQA) is a core challenge in healthcare AI, requiring joint
reasoning over medical images and domain-specific language. Early efforts adapted general VQA
frameworks to clinical data but struggled with specialized terminology and imaging complexity (Lau
et al., 2018; Lin et al., 2023). More recent approaches such as STLLaVA-Med (Sun et al., 2024b)
leverage large language models and self-training strategies, achieving notable gains through domain
adaptation. However, most existing methods operate solely in the spatial domain and have limited
ability to capture frequency-based patterns that may hold diagnostic value. Furthermore, knowledge
integration remains constrained by conventional retrieval techniques. To address these gaps, we pro-
pose a framework that combines frequency-domain representations with quantum-inspired retrieval
to better align image-text reasoning with clinical requirements.

2.2 FREQUENCY-DOMAIN REPRESENTATIONS

Frequency-domain analysis has demonstrated value across various computer vision applications.
In medical imaging specifically, Cai et al. (2023) developed FDTrans, a frequency-domain trans-
former that captures complementary information to spatial representations for diagnostic tasks. This
work highlights how spectral features can enhance medical image analysis beyond conventional
approaches. Xing (2025) incorporated frequency-aware components into segmentation architec-
tures, showing improved performance on imbalanced medical datasets through better global pattern
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capture. The work by Lao et al. (2024) is particularly relevant, showing that frequency spectrum
analysis improves multimodal representation and fusion for rumor detection. However, their focus
on social media content differs from our medical application, and they did not explore knowledge re-
trieval mechanisms. Our approach extends this foundation by applying frequency-domain methods
specifically to medical visual question answering while incorporating novel retrieval components.

2.3 QUANTUM-INSPIRED METHODS IN INFORMATION RETRIEVAL

Quantum-inspired approaches to information retrieval have developed over the past two decades,
offering alternative mathematical frameworks for similarity measurement and representation learn-
ing. As surveyed by Uprety et al. (2021), quantum theory provides a generalized probability and
logic framework that has shown promise for developing more dynamic and context-aware retrieval
systems. This established research area offers theoretical foundations for our quantum-inspired
retrieval approach. Recent applications demonstrate the practical value of quantum-inspired meth-
ods. Kankeu et al. (2025) proposed quantum-inspired projection heads and similarity metrics for
representation learning, showing competitive performance with significantly reduced parameters
compared to classical methods. Their work on embedding compression for information retrieval
tasks provides direct precedent for our quantum-inspired similarity approach. In computer vision
applications, Nguyen et al. (2025) developed Quantum-Brain, a quantum-inspired neural network
for vision-brain understanding problems. Their approach demonstrates how quantum principles
can enhance connectivity learning in neural representations, particularly relevant for tasks requiring
complex relationship modeling. This work shows the applicability of quantum-inspired methods
to vision-related tasks similar to medical visual question answering. These quantum-inspired ap-
proaches differ from our work in their specific applications, but collectively establish the viability of
quantum principles for enhancing similarity measurement and representation learning. Our contri-
bution lies in adapting these principles specifically for medical knowledge retrieval in visual question
answering contexts.

2.4 KNOWLEDGE RETRIEVAL IN VISUAL QUESTION ANSWERING

Retrieval-augmented methods have become increasingly important for tasks requiring external
knowledge integration. The foundational work by Lewis et al. (2021) established retrieval-
augmented generation as a powerful approach for knowledge-intensive tasks. In medical contexts,
however, standard retrieval methods often struggle with the nuanced relationships required for clin-
ical reasoning. Recent multimodal research continues to advance integration techniques. Huang
et al. (2025) explored pixel-level insight for biomedical applications, while datasets like MMVP
from Zhang et al. (2024) provide resources for evaluating multimodal systems. These contributions
highlight the ongoing importance of robust multimodal integration in healthcare applications.

2.4.1 RESEARCH CONTRIBUTIONS

Our work distinguishes itself from existing approaches through several key contributions. While
prior frequency-domain methods that focus on single modalities or non-medical applications, we
specifically address medical visual question answering with integrated frequency processing. Com-
pared to standard retrieval approaches, we introduce quantum-inspired similarity measures grounded
in established research. And unlike conventional medical visual question answering systems, we
combine both frequency-domain analysis and quantum-inspired retrieval within a unified frame-
work, Q-FSRU designed for clinical applications. The integration of these components addresses
limitations in current medical visual question answering systems while building on established re-
search in frequency-domain processing and quantum-inspired information retrieval. This combi-
nation represents a novel approach to enhancing both performance and interpretability in medical
artificial intelligence systems.

3 PROBLEM DEFINITION

We formulate medical visual question answering as a multimodal classification task. Given the
VQA-RAD dataset D = {(Ii, Qi, yi)}Ni=1, where Ii ∈ RH×W×3 represents a medical image, Qi

denotes a clinical question, and yi ∈ {0, 1, . . . , C− 1} indicates the answer class among C possible
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categories. The VQA-RAD dataset contains both binary (”yes”/”no”) and open-ended questions;
we focus on the subset with categorical answers suitable for classification, filtering questions to
those with discrete answer classes. The objective is to learn a mapping function f : (Ii, Qi) →
ŷi that predicts the correct answer. Our Q-FSRU model enhances this mapping through two key
components:

• Frequency-spectral fusion: zfreq
i = fFSRU(Ii, Qi) transforms multimodal features into the

frequency domain
• Knowledge retrieval: ki ∈ Rd represents relevant medical knowledge retrieved from ex-

ternal corpora

• Feature integration: ŷi = fθ(z
freq
i , ki) = MLP([zfreq

i ∥ki]) where ∥ denotes concatenation

The model is trained to minimize a combined objective function:

L = LCE(ŷi, yi) + αLintra + βLcross

where LCE represents the cross-entropy classification loss, Lintra and Lcross denote intra-modal and
cross-modal contrastive losses respectively, and α, β are hyperparameters that balance the con-
trastive objectives. leverages frequency-domain patterns and external medical knowledge while pre-
serving the discriminative power needed for accurate clinical question answering.

4 METHODOLOGY

4.1 MODEL ARCHITECTURE OVERVIEW

The Q-FSRU framework integrates four core components: (1) multimodal feature extraction, (2)
frequency-domain processing via Fast Fourier Transform, (3) quantum-inspired knowledge retrieval,
and (4) multimodal fusion with contrastive learning. The architecture processes medical images
and clinical questions through a sequential pipeline where frequency-domain enhancement precedes
knowledge retrieval, ensuring optimal feature representation before external knowledge integration.

4.2 MULTIMODAL FEATURE EXTRACTION

4.2.1 TEXT FEATURE ENCODING

Clinical questions are processed using a pretrained word embedding approach. Given a tokenized
question Q = [w1, w2, . . . , wL] of length L, each word wi is mapped to a 300-dimensional vector
using domain-specific embeddings:

Etext = Embedding(Q) ∈ RL×300

The sequence undergoes mean pooling across the temporal dimension followed by linear projection:

t⃗ =Wt ·

(
1

L

L∑
i=1

e⃗i

)
+ bt ∈ Rdmodel

where Wt ∈ Rdmodel×300, bt ∈ Rdmodel , and dmodel = 256.

4.2.2 IMAGE FEATURE ENCODING

Medical images are processed using a Vision Transformer (ViT-B/16) backbone pretrained on Im-
ageNet. Each image I ∈ R3×224×224 is divided into 16×16 patches and processed through 12
transformer layers:

v = ViT-B/16(I) ∈ R768

The 768-dimensional output is projected to match the model dimension:

vproj =Wv · v + bv ∈ R256

where Wv ∈ R256×768, bv ∈ R256.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 FREQUENCY SPECTRUM REPRESENTATION AND FUSION

4.3.1 FAST FOURIER TRANSFORM APPLICATION

To capture global contextual patterns in both modalities, the text and image features are transformed
into the frequency domain using a 1D Fast Fourier Transform (FFT) applied along the feature di-
mension.

Let

• t ∈ Rdmodel denote the input text feature vector after token embedding and encoding,

• vproj ∈ Rdmodel denote the projected image feature vector obtained from the visual encoder.

The 1D FFT is applied to each feature vector to obtain complex-valued frequency representations:

F(t),F(vproj) ∈ Cdmodel .

For computational efficiency and stability, we retain only the real-valued magnitude spectrum:

tfreq = |F(t)| ∈ Rdmodel , vfreq = |F(vproj)| ∈ Rdmodel .

4.3.2 UNIMODAL SPECTRUM COMPRESSION

Learnable filter banks compress the frequency representations using parameterized convolution. For
each modality m ∈ {text, image}:

f (k)m =

dmodel∑
j=1

W
(k,j)
filter ·m(j)

freq + b
(k)
filter

where k = 1, . . . , 4 indexes the filter banks, and Wfilter ∈ R4×dmodel are learnable parameters.

Medical

Image I
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midline?

Clinical question Q

Image encoding

Text encoding
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Figure 1: The architecture of the proposed Q-FSRU model for Medical Visual Question Answering.
It integrates four main components: multimodal feature extraction, frequency-domain enhancement
via FFT, quantum-inspired knowledge retrieval, and multimodal fusion with contrastive learning.
Together, these modules enable effective reasoning over medical images and clinical questions.

4.3.3 CROSS-MODAL CO-SELECTION

A gated attention mechanism enables mutual feature enhancement:

gtext = σ(Wgate1 · AvgPool(vcompressed))
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tenhanced = tcompressed ⊙ gtext

gimage = σ(Wgate2 · AvgPool(tcompressed))

venhanced = vcompressed ⊙ gimage

where σ is the sigmoid function and ⊙ denotes element-wise multiplication.

4.4 QUANTUM-INSPIRED RETRIEVAL AUGMENTATION

4.4.1 QUANTUM STATE REPRESENTATION

Following established quantum information principles (Uprety et al., 2021; Kankeu et al., 2025),
we represent features as pure quantum states. For an embedding vector x ∈ Rd, the corresponding
quantum state is:

|ψ(x)⟩ = x

∥x∥2
∈ Cd

The density matrix formulation provides statistical robustness:

ρ(x) = |ψ(x)⟩⟨ψ(x)| ∈ Cd×d

4.4.2 QUANTUM FIDELITY MEASUREMENT

The similarity between query features q and knowledge base entries ki is computed using the
Uhlmann fidelity measure:

Fid(ρq, ρki
) =

(
Tr
√√

ρqρki

√
ρq

)2
This measure satisfies the quantum fidelity properties: Fid(ρ, ρ) = 1 and 0 ≤ Fid(ρ1, ρ2) ≤ 1.

4.4.3 KNOWLEDGE RETRIEVAL PIPELINE

The retrieval process operates after frequency processing:

1. Query Formation: qmulti =
1
2 (tenhanced + venhanced)

2. Similarity Computation: Simi = Fid(ρ(qmulti), ρ(ki))

3. Top-K Retrieval: Kretrieved = Top3({Simi}Ni=1)

4. Knowledge Aggregation: kagg =
∑3

j=1 softmax(Simj/τ) · kj

where τ = 0.1 is the softmax temperature.

4.5 MULTIMODAL FUSION AND CLASSIFICATION

4.5.1 FEATURE INTEGRATION PIPELINE

The model employs a sequential integration strategy:

Step 1: tfreq, vfreq = FrequencyProcessing(t, v)
Step 2: kagg = QuantumRAG(tfreq, vfreq)

Step 3: zconcat = [tfreq∥vfreq∥kagg] ∈ R3dmodel

Step 4: zfinal = MLPclassifier(zconcat)

This ensures frequency-enhanced features guide the knowledge retrieval process.

6
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4.5.2 MULTI-LAYER PERCEPTRON CLASSIFIER

The classification head employs a three-layer MLP with progressive dimensionality reduction. The
fused input consists of only the frequency-enhanced text and image features concatenated, excluding
the quantum knowledge embeddings:

zconcat = [tfreq∥vfreq] ∈ R2dmodel

h1 = LayerNorm(W1 · zconcat + b1), W1 ∈ R1024×512

a1 = GELU(h1)

d1 = Dropout(a1, p = 0.1)

h2 = LayerNorm(W2 · d1 + b2), W2 ∈ R256×1024

a2 = GELU(h2)

d2 = Dropout(a2, p = 0.1)

ŷ =W3 · d2 + b3, W3 ∈ RC×256

The architecture follows a 512 → 1024 → 256 → C dimensionality progression with LayerNorm
and GELU activations after each linear layer except the final classification layer. Softmax is applied
externally during loss computation.

4.5.3 DUAL CONTRASTIVE LEARNING FRAMEWORK

The model employs a multi-scale contrastive learning approach with modality-specific temperatures:

Lintra =
1

2
(Lcontrastive(t, taug; τ = 0.07) + Lcontrastive(v, vaug; τ = 0.07))

Lcross = Lcontrastive(t, v; τ = 0.05)

Lcontrastive(x, y; τ) = − log
exp(sim(x, y)/τ)∑B

j=1 exp(sim(x, yj)/τ)

where sim denotes cosine similarity and B is the batch size.

4.5.4 COMPLETE OPTIMIZATION OBJECTIVE

The total training objective is computed as:

Ltotal = LCE +

(
0.3 ·

Lintra-text + Lintra-image

2
+ 0.7 · Lcross

)
where intra-modal losses use temperature τ = 0.07, cross-modal loss uses τ = 0.05, and the
combined contrastive loss is added directly to the cross-entropy classification loss.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

We conduct comprehensive evaluations on two established medical visual question answering
benchmarks.

VQA-RAD Dataset: This benchmark comprises 3,515 clinically relevant question–answer pairs de-
rived from radiology images spanning multiple imaging modalities, including X-rays, Computed To-
mography (CT), and Magnetic Resonance Imaging (MRI). The dataset includes both binary (yes/no)
and open-ended questions authored by medical experts.

PathVQA Dataset: To evaluate generalization capabilities beyond radiology domains, we include
PathVQA, which contains 32,799 question–answer pairs from 4,998 pathology images. This dataset
provides a larger-scale evaluation and tests domain adaptation performance when models are ap-
plied to different medical specialties. For cross-dataset experiments, we employ zero-shot transfer

7
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learning, where models trained on VQA-RAD are directly evaluated on PathVQA without additional
fine-tuning.

Data Preprocessing: All medical images are resized to 224×224 pixels and normalized using Im-
ageNet statistics. Clinical questions are tokenized using a medical-domain vocabulary and trun-
cated/padded to a maximum length of 50 tokens. We apply standard data augmentation techniques
including random horizontal flipping and color jittering to improve robustness.

Implementation Details: The model was implemented in PyTorch using Adam optimization with
learning rate 5×10−5 and L2 regularization weight 10−5. Training employed 5-fold cross-validation
with batch size 32 for 50 epochs maximum, using step-based learning rate decay (factor 0.98 every
5 epochs) and early stopping patience of 10 epochs. The frequency processor used K = 4 filter
banks, and quantum retrieval retrieved K = 3 knowledge passages per query using direct similarity
computation. To prevent information leakage, all questions for a given image are kept in the same
fold, ensuring strict patient-level separation between training and validation/test splits.

6 BASELINE METHODS

We compare Q-FSRU with five types of existing methods: general-purpose VQA models (MCAN,
LXMERT), medical-specific vision-language models (LLaVA-Med, STLLaVA-Med), knowledge-
augmented methods (LaPA), frequency-domain approaches (FSRU), and ablation versions of our
model. On the VQA-RAD dataset, Q-FSRU performs the best across all metrics, improving accu-
racy, F1-score, precision, recall, and AUC by 2.9–3.0 points compared to the strongest baseline.
These improvements are statistically significant (p-value < 0.01).

7 RESULTS AND ANALYSIS

7.1 MAIN RESULTS ON VQA-RAD

Table 1: Performance comparison on VQA-RAD dataset. Q-FSRU achieves statistically significant
improvements across all metrics.

Method Accuracy F1-Score Precision Recall AUC Params (M)
MCAN (Yu et al., 2019) 78.3 ± 1.2 72.1 ± 1.5 75.8 ± 1.3 69.4 ± 1.8 0.842 ± 0.02 45.2
LXMERT (Tan & Bansal, 2019) 81.5 ± 1.1 75.3 ± 1.4 78.9 ± 1.2 72.8 ± 1.6 0.867 ± 0.01 183.4
LLaVA-Med (Li et al., 2023) 84.2 ± 0.9 78.6 ± 1.1 82.1 ± 0.8 76.3 ± 1.3 0.891 ± 0.01 7000
STLLaVA-Med (Sun et al., 2024a) 85.7 ± 0.8 80.2 ± 1.0 83.9 ± 0.7 78.1 ± 1.2 0.903 ± 0.01 7000
LaPA (Gu et al., 2024) 86.3 ± 0.7 81.5 ± 0.9 84.7 ± 0.6 79.2 ± 1.1 0.912 ± 0.01 245.3
FSRU (Lao et al., 2024) 87.1 ± 0.6 82.3 ± 0.8 85.4 ± 0.5 80.1 ± 1.0 0.921 ± 0.01 89.7
Q-FSRU (Ours) 90.0 ± 0.5 85.2 ± 0.6 88.3 ± 0.4 83.1 ± 0.8 0.954 ± 0.01 92.4
Improvement +2.9 +2.9 +2.9 +3.0 +0.033 -
p-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 -

Q-FSRU demonstrates superior performance, achieving 90.0% accuracy with a 2.9% absolute im-
provement over the strongest baseline (FSRU). The consistent gains across all metrics (F1-score:
+2.9%, AUC: +0.033) indicate robust multimodal understanding. Statistical significance testing
confirms these improvements are not due to random variation (p ¡ 0.01).

7.1.1 CROSS-DATASET GENERALIZATION

Q-FSRU exhibits strong generalization, outperforming baselines by 3.3-3.4% in cross-dataset eval-
uations. This suggests that the frequency-domain representations and quantum retrieval mechanism
learn transferable features that are not overfitted to specific dataset characteristics.

8
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Table 2: Cross-dataset generalization performance (accuracy). Q-FSRU shows better domain
adaptation capabilities.

Method VQA-RAD → PathVQA PathVQA → VQA-RAD
LLaVA-Med (Li et al., 2023) 72.3 ± 1.5 70.8 ± 1.6
STLLaVA-Med (Sun et al., 2024a) 75.1 ± 1.3 73.9 ± 1.4
LaPA (Gu et al., 2024) 76.8 ± 1.2 75.2 ± 1.3
FSRU (Lao et al., 2024) 78.4 ± 1.1 76.9 ± 1.2
Q-FSRU (Ours) 81.7 ± 0.9 80.3 ± 1.0
Improvement +3.3 +3.4

7.2 ABLATION STUDIES

Table 3: Component ablation studies. Frequency processing contributes most significantly to
overall performance.

Model Variant Accuracy F1-Score ∆ Acc. p-value
Q-FSRU (Full) 90.0 ± 0.5 85.2 ± 0.6 – –
w/o Frequency Processing 85.1 ± 0.7 79.3 ± 0.8 −4.9 <0.001
w/o Quantum Retrieval 86.8 ± 0.6 81.7 ± 0.7 −3.2 <0.01
w/o Contrastive Learning 87.3 ± 0.6 82.1 ± 0.7 −2.7 <0.01
Spatial-only Fusion 84.2 ± 0.8 78.5 ± 0.9 −5.8 <0.001
Cosine Similarity 88.1 ± 0.5 83.2 ± 0.6 −1.9 <0.05
w/o Cross-Modal Co-selection 88.5 ± 0.5 83.8 ± 0.6 −1.5 <0.05

Key observations from the ablation study are as follows:

• Frequency Processing Contribution: Removing FFT transformation causes the largest
performance drop (−4.9% accuracy, p < 0.001), demonstrating that spectral representa-
tions capture clinically relevant patterns missed by spatial approaches.

• Quantum Retrieval Impact: The quantum similarity measure provides a statistically sig-
nificant advantage over cosine similarity (+1.9% accuracy, p < 0.05), validating its ability
to capture nuanced medical relationships.

• Contrastive Learning Value: The dual contrastive objective contributes +2.7% accuracy
(p < 0.01), indicating improved feature alignment between modalities.

7.2.1 QUALITATIVE ANALYSIS

Illustrative cases demonstrate where Q-FSRU’s components provide distinct advantages. In scenar-
ios requiring subtle pattern recognition (e.g., early-stage pathology), the frequency processing en-
ables detection of global contextual cues. The quantum retrieval mechanism successfully retrieves
clinically relevant knowledge for ambiguous cases, providing explanatory evidence for predictions.

8 CONCLUSION

We presented Q-FSRU, a framework for medical visual question answering that combines
frequency-domain feature processing with quantum-inspired knowledge retrieval. Transforming
image and text features into the frequency domain allows the model to capture global contextual
patterns often missed by spatial-domain approaches. The quantum retrieval component enhances
reasoning by incorporating external medical knowledge. Experiments on VQA-RAD show that
Q-FSRU outperforms state-of-the-art models on accuracy, F1-score, and AUC, while cross-dataset
evaluations demonstrate robust generalization. Ablation studies confirm the importance of frequency
processing, quantum retrieval, and contrastive learning, with frequency transformation contributing
most to performance. Q-FSRU offers a promising approach for clinically relevant AI systems, with
future work aiming to scale to larger datasets, include more imaging modalities, and refine the re-
trieval mechanism for improved grounding.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY CHECKLIST

The following checklist summarizes the information provided in this paper to ensure reproducibility:

1. Datasets
• All datasets used are publicly available (VQA-RAD, PathVQA).
• Dataset statistics (number of samples, modalities, question types) are described in

Section 6.
• Preprocessing steps (resizing to 224× 224, normalization, tokenization, truncation to

50 tokens, data augmentation) are detailed in Section 6.1.

2. Code and Implementation Details
• The model was implemented in PyTorch.
• Hyperparameters (learning rate 5×10−5, L2 weight decay 10−5, batch size 32, epochs
50, early stopping patience 10) are provided in Section 6.1.

• Training strategies (5-fold cross-validation, learning rate decay schedule) are reported
in Section 6.1.

• Model components (FFT frequency processing, filter banks K = 4, quantum retrieval
with K = 3 passages) are described in Section 5.

3. Evaluation
• Evaluation protocols (in-domain and cross-dataset transfer from VQA-RAD to

PathVQA) are described in Section 6.
• Performance metrics are reported in Section 7.
• Comparisons against baseline methods are included in Section 7.

4. Compute Resources
• All experiments were run on 2× NVIDIA Tesla T4 GPUs (16GB each).
• Approximate training time per fold: 3 hours.
• Peak GPU memory usage: 12GB.

5. Reproducibility Resources
• Random seed and initialization procedures will be provided in the released code.
• Code, pretrained model and configuration files will be made available upon accep-

tance.
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A DATASET LINKS

For reproducibility, we provide the dataset download links used in our experiments:

• VQA-RAD: https://www.kaggle.com/datasets/shashankshekhar1205/
vqa-rad-visual-question-answering-radiology

• PathVQA: https://www.kaggle.com/datasets/samsrithajalukuri/
pathvqa-dataset?select=train

Figure 2: Frequency spectrograms of input medical image and text features. The spectra highlight
the main frequency components that are later processed with learnable filter banks.
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