
Published as a workshop paper at SCOPE - ICLR 2025

OVERTRAINED LANGUAGE MODELS ARE HARDER TO
FINE-TUNE

Jacob Mitchell Springer∗
CMU

Sachin Goyal
CMU

Kaiyue Wen
Stanford

Tanishq Kumar
Harvard

Xiang Yue
CMU

Sadhika Malladi
Princeton

Graham Neubig
CMU

Aditi Raghunathan
CMU

ABSTRACT

Large language models are pre-trained on ever-growing token budgets under the
assumption that better pre-training performance translates to improved downstream
models. In this work, we challenge this assumption and show that extended
pre-training can make models harder to fine-tune, leading to degraded final per-
formance. We term this phenomenon catastrophic overtraining. For example,
the instruction-tuned OLMo-1B model pre-trained on 3T tokens leads to over 2%
worse performance on multiple standard LLM benchmarks than its 2.3T token
counterpart. Through controlled experiments and theoretical analysis, we show that
catastrophic overtraining arises from a systematic increase in the broad sensitivity
of pre-trained parameters to modifications, including but not limited to fine-tuning.
Our findings call for a critical reassessment of pre-training design that considers
the downstream adaptability of the model.

1 INTRODUCTION

Stage 2: Post-train
(instruction tuning)

Stage 1: Pre-train for
T tokens

LL
M

 b
en

ch
m

ar
k

pe
rf

or
m

an
ce

Pre-training tokens
(Trillion)

Pre-training tokens
(Trillion)

Figure 1: Extensively pre-training models can
exhibit catastrophic overtraining, where the per-
formance after post-training degrades as the pre-
training stage is extended.

Language models have achieved widespread suc-
cess following a two-stage paradigm: (1) pre-
training on a vast corpus of uncurated data, fol-
lowed by (2) post-training on high-quality task-
specific data, often to confer targeted abilities such
as instruction-following, multi-modality, or rea-
soning. Under the maxim “more data is better”,
there have been massive investments in scaling
both pre-training and post-training.

In this paper, we demonstrate that the widely
adopted strategy of scaling up language model
pre-training does not universally translate
to better performance after post-training.
Through both theory and experiments, we uncover
a phenomenon where longer pre-training harms
final model performance after instruction tuning
or other forms of post-training (Figure 1), we describe as follows:

Catastrophic overtraining is the phenomenon where extending pre-training beyond a certain
token budget results in a decrease in the model’s performance after subsequent modifications.

Overall, our findings challenge the prevailing assumption that scaling pre-training data is an unam-
biguous win. We summarize our contributions:

1. Real-world evidence: We demonstrate the prevalence of catastrophic overtraining across ex-
∗Corresponding author: jspringer@cmu.edu

1

Published as a workshop paper at SCOPE - ICLR 2025

Base model Fine-tuned model (IFT or VLM)

50

55
Sc

or
e

ID: AlpacaEval

30

35
OOD: ARC-Challenge

60

65

OOD: ARC-Easy

1 2 3
Pre-training tokens

(Trillion)

72

75

Sc
or

e

OOD: PIQA

1 2 3
Pre-training tokens

(Trillion)

55

60

OOD: HellaSwag

1 2 3
Pre-training tokens

(Trillion)

57

60

OOD: Winogrande

OLMo-1B-Anthropic-HH (instruction fine-tuned)

42

45

Sc
or

e

ID: VLM Score

30

32
OOD: ARC-Challenge

60

65

OOD: ARC-Easy

1 2 3
Pre-training tokens

(Trillion)

74

76

Sc
or

e

OOD: PIQA

1 2 3
Pre-training tokens

(Trillion)

57
60
62

OOD: HellaSwag

1 2 3
Pre-training tokens

(Trillion)

57

60

OOD: Winogrande

OLMo-1B-LLaVA (multimodal fine-tuned)

Figure 2: Extending pre-training can degrade performance after fine-tuning on Anthropic-
HH (left) and LLaVA (right). We consider fine-tuning on various intermediate checkpoints from
OLMo-1B pre-training. While the base model performance (before fine-tuning) improves with
the pre-training token budget (black dashed curve), the performance after fine-tuning drops as we
pre-train on more tokens. In the instruction-tuning setting (left), we observe degradation on the ID
task (green)—AlpacaEval—as well as on OOD benchmarks (blue)—ARC, PIQA, and HellaSwag. In
the multimodal tuning setting, we observe degradation with overtraining on PIQA, and a larger gap
between the fine-tuned and base model for ARC, HellaSwag, and Winogrande. We report average
over three independent fine-tuning runs, plus error bars. Refer to Appendix H for additional models
(OLMo-2-7B, LLM360-Amber) and instruction-tuning datasets (extended results for Anthropic-HH,
TULU).

isting language models and tasks, showing that longer pre-training can degrade performance
after instruction tuning and multimodal fine-tuning (Section 2).

2. Controlled experiments: We identify progressive sensitivity as a key mechanism underlying
catastrophic overtraining, where extended pre-training increases the fragility of model
parameters to subsequent updates (Section 3).

3. Theoretical analysis: We provide a formal characterization of catastrophic overtraining
in a linear transfer learning framework, showing how incremental feature learning leads to
progressive sensitivity and inevitable degradation (Section 4).

2 EXTENDED PRE-TRAINING CAN HURT POST-TRAINING

We study how extended pre-training affects two common post-training setups: instruction tuning and
multimodal fine-tuning with LLaVA (Liu et al., 2023a). Using intermediate checkpoints from OLMo-
1B (Groeneveld et al., 2024a), OLMo-2-7B (OLMo et al., 2024), and LLM360-Amber-7B (Liu et al.,
2023b), we perform post-training with Anthropic-HH (Bai et al., 2022), TULU (Wang et al., 2023),
and LLaVA’s visual instruction tuning framework. For each model, we evaluate both in-domain (ID)
performance on the fine-tuning task and out-of-distribution (OOD) performance on standard LLM
benchmarks. Details are in Appendix E.

Results. Figure 2 compares various OLMo-1B models trained with different pretraining budgets,
revealing two key findings:

1. Extended pre-training always improves base models. Pre-training performance improves
monotonically with more tokens (dashed line in Figure 2).

2. Extended pre-training can hurt post-trained models. After fine-tuning on Anthropic-HH, a
model pre-trained on 3T tokens shows up to 3% lower AlpacaEval score than one pre-trained on
2.3T tokens. Similar drops occur on OOD tasks like ARC-Easy, ARC-Challenge, HellaSwag,
and PIQA. Overall, instruction-tuned models pre-trained on 3T tokens perform worse than those
pre-trained on 2.3T tokens, dropping to the level of models pre-trained with just 1.5T tokens.
Similar trends appear in multimodal fine-tuning (Appendix H).

2

Published as a workshop paper at SCOPE - ICLR 2025

4

6

C
4

pe
rp

le
xi

ty max = 1.0e-03
GSM8K

4

5

6 max = 2.4e-04
SIQA

4

5

max = 3.0e-03
StarCoder-Python

4

6
max = 9.0e-05

MR

4

5

6
max = 9.0e-05

RTE

4

5

6 max = 1.0e-04
TREC

1010 1011

Pre-training tokens

2

3

ID
 p

er
pl

ex
ity

max = 1.0e-03

1010 1011

Pre-training tokens

5

6
max = 2.4e-04

1010 1011

Pre-training tokens

3

4

5 max = 3.0e-03

1010 1011

Pre-training tokens

0.4

0.6

max = 9.0e-05

1010 1011

Pre-training tokens

0.8

1.0 max = 9.0e-05

1010 1011

Pre-training tokens

1

2
max = 1.0e-04

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum fine-tuning learning rate (4e-6) Maximum fine-tuning learning rate (max)

Figure 3: Catastrophic overtraining for fine-tuning with fixed hyperparameters: extending pre-
training can lead to an overall increase in the C4 perplexity (top), and ID perplexity (fine-tuning
task; bottom), when fine-tuning with fixed hyperparameters. OLMo-30M models pre-trained
with varying token budgets are fine-tuned on downstream tasks using fixed hyperparameters: math
(GSM8k), code (Starcoder-Python), QA (SIQA), and classification (MR, RTE, TREC). Lines connect
models sharing hyperparameters, differing only in pre-training tokens. Learning rates range from
4e-06 to the dataset-specific maximum (ηmax). At sufficiently large learning rates (lighter colors),
we observe performance degradation in both ID and pre-training metrics beyond certain pre-training
budgets. (See Appendices F and I for ablations.)

3 CATASTROPHIC OVERTRAINING

Experimental setup. We pre-train models from scratch (15M-90M parameters) on C4 web data (Raf-
fel et al., 2019) with token budgets from 4B to 128B, using cosine learning rate annealing. We focus
on the 30M model here, with results for other sizes in Appendix I.

Fine-tuning with fixed learning rates reveals catastrophic overtraining. Figure 3 shows C4
perplexity (top) and fine-tuning task perplexity (bottom) as functions of pre-training tokens. With
sufficiently large fixed learning rates, models exhibit catastrophic overtraining—performance degrades
despite more pre-training tokens. Even after tuning learning rates, both C4 and ID perplexity can
worsen with extended pre-training (Figure 4).

Progressive sensitivity explains catastrophic overtraining. This degradation stems from what we
call progressive sensitivity: for a fixed update magnitude (approximated by a fixed learning rate,
refer to Appendix F), the perplexity change between pre-trained and fine-tuned models increases
monotonically with pre-training tokens. Appendix B further explores how this insight helps identify
factors influencing the onset of catastrophic overtraining and when hyperparameter tuning can
mitigate this degradation.

4 A THEORETICAL PERSPECTIVE OF OVERTRAINING

The phenomenon of catastrophic overtraining is surprising, as it is contrary to the common belief
that longer pre-training always leads to a higher quality model. Thus, in this section, we examine
how and when catastrophic overtraining arises in a simplified setting of pre-training and fine-tuning
two-layer linear networks. We will study catastrophic overtraining with respect to the pre-training
loss, focusing on identifying the inflection point (Definition 4.2): the point beyond which additional
pre-training degrades the final model performance on the pre-training task. We also study a canonical
fine-tuning task and demonstrate that progressive sensitivity consistently arises as pre-training is
elongated (Theorem 4.4).

We then seek to formalize the phenomenon whereby restricting the magnitude of the updates can
mitigate performance degradation. In the experiments, we had studied this trend by lowering the
learning rate (Section B.5.2), but in this section, we will instead use regularization as a means to
prevent large parameter updates. Without regularization on the fine-tuning objective, the final model
inevitably exhibits catastrophic overtraining with respect to the pre-training loss (Theorem 4.5).

3

Published as a workshop paper at SCOPE - ICLR 2025

5.0

5.5

C
4

pe
rp

le
xi

ty

GSM8K

4.00

4.25

SIQA

5.1
5.2
5.3

StarCoder-Python

4

6

MR

5

10

RTE

4.5
5.0
5.5

TREC

1010 1011

Pre-training tokens

1.3

1.4

ID
 p

er
pl

ex
ity

1010 1011

Pre-training tokens

4.50

4.75

1010 1011

Pre-training tokens

2.5

2.6

1010 1011

Pre-training tokens

0.37

0.40

0.42

1010 1011

Pre-training tokens

0.67

0.68

1010 1011

Pre-training tokens

0.12

0.15

Figure 4: Catastrophic overtraining after hyperparameter tuning: extending pre-training can
lead to eventual degradation of the C4 perplexity (top) and ID perplexity (fine-tuning task;
bottom), even after hyperparameter tuning. OLMo-30M models pre-trained with varying token
budgets are fine-tuned on downstream tasks: math (GSM8k), code (Starcoder-Python), QA (SIQA),
and classification (MR, RTE, TREC). Lower is better. We tune the learning rate to optimize ID
performance. ID perplexity degrades with extensive overtraining (RTE, TREC); C4 perplexity
degrades in GSM8k, Starcoder-Python, MR, and RTE. Results averaged over three fine-tuning runs.
(Additional ablations in Appendices F and I.)

Regularization can mitigate this phenomenon but can also degrade fine-tuning performance by
limiting how well the model can adapt to the task (Theorem 4.5).

4.1 PRE-TRAINING SETTING

We adopt the two-layer linear regression setting proposed by Saxe et al. (2018) as a case where
pre-training performance improves monotonically with training time via incremental feature learning.
Precisely, we consider a regression problem where the data is generated by a full rank linear map
y = Aprex for x,y ∈ Rd, with Apre ∈ Rd×d, and where we sample x ∼ N (0, I). Denote
the SVD of Apre as UΣpreV T , with the diagonal elements of Σpre being strictly positive and
monotonically decreasing. We will call these singular values the pre-training features, and denote
them σpre

1 > · · · > σpre
d . Let Σpre

:i be a diagonal matrix with the first i singular values equal to those
of Σpre and the remaining set to 0.

We learn a two-layer network θ = W1W2 with W1,W2 ∈ Rd×d that minimizes the mean squared
error Lpre on the population of Gaussian inputs.

Lpre(θ(t)) = ∥W1(t)W2(t)−Apre∥2F .

We initialize W1 and W2 with small values and train using gradient flow. Prior work has established
that, as training proceeds in this setting, the model θ incrementally learns the spectrum of Apre (Saxe
et al., 2018; Gidel et al., 2019).

Theorem 4.1 (Informal statement of Saxe et al. (2018); Gidel et al. (2019)). There exists a sequence
of timesteps t1 < . . . < ti < . . . td such that at timestep ti,

θ(ti) ≈ UΣpre
:i V T .

This theorem implies that Σ(t) = U⊤θ(t)V is approximately diagonal, and the vector of its diagonal
entries σ(t) tracks which pre-training features have been learned by time t. In the ideal case, which
we use in the main paper for brevity, we expect the first n elements of σ(tn) are σpre

1 , . . . , σpre
n and

the remaining elements are zero.1 Therefore, studying the evolution of σ over time and its impact on
the fine-tuning procedure allow us to characterize how elongating the pre-training period affects the
pre-training and downstream performance of the final model. We will generally study progressive
sensitivity and catastrophic overtraining by characterizing the model at time steps t1, ..., td. We
focus on studying the inflection point, the time at which catastrophic overtraining with respect to the
pre-training loss emerges.

1Appendix D contains the case when these coordinates are small but not exactly zero.

4

Published as a workshop paper at SCOPE - ICLR 2025

Definition 4.2 (Inflection point). Fix a post-training modification to the model A. The inflection
point with respect to the pre-training loss is defined as the smallest r such that Lpre(A(θ(tr))) <
Lpre(A(θ(tr+1))).

In the following sections, we study the inflection point for fine-tuning on a canonical family of tasks.

4.2 FINE-TUNING

We consider the case where the fine-tuning algorithm A corresponds to learning another linear
feature map with a shared structure. We define the fine-tuning task as learning y = Aftx, where
Aft = UΣftV ⊤. Sharing U and V with Apre permits transfer learning to occur, even though the
spectrum of Aft is not the same as Apre. We define the fine-tuning features σft

1 > · · · > σft
d to be the

singular values of Aft.

Let A(θ(t)) = θ(t; k) denote a model pre-trained for time t and then fine-tuned with a small but
finite learning rate η and a large batch size for k ∈ [0,K] steps. The fine-tuning loss is similar to the
pre-training loss with the new task Aft, but we introduce a regularization term to limit the deviation
from the pre-trained initialization. This regularization term is a standard design in meta learning
literature (Chua et al., 2021; Denevi et al., 2018).

Lft(θ(t; k);λ) = E
[
∥θ(t; k)−Aft∥2F
+ λ∥θ(t; k)− θ(t)∥2F

]
.

(1)

Analogous to the pre-training setting, our analysis proceeds by tracking the vector of the diagonal ele-
ments σft(t; k) of Σ(t; k) = U⊤θ(t; k)V . We define ∆pre(tn) = Lpre(θ(tn;K))−Lpre(θ(tn; 0))
as the change in the pre-training performance over the course of fine-tuning, and we characterize how
∆pre(tn) changes as the pre-training time tn increases. In particular, if ∆pre(tn) is monotonically
increasing, then we can conclude that progressive sensitivity is present.

To begin, we formalize the misalignment between the pre-training and downstream tasks in terms of
their features.

Definition 4.3. The pre-training task Apre and the fine-tuning task Aft are (α, r)-misaligned when
σft
i > ασpre

i for all i > r.

Our first result establishes that our setting exhibits progressive sensitivity when the fine-tuning task is
different from the pre-training one.

Theorem 4.4 (Progressive sensitivity; informal version of Theorem D.24). Assume that Apre and Aft

are (α, 1)-misaligned with α > 1. Then, ∆pre(tn) ≥ 0 and ∆pre(tn) is monotonically increasing
with the number of learned pre-training features n.

Proof sketch. We begin by noting two key dynamical properties in our setting: (1) if σi = 0 at
the end of pre-training, it will remain zero throughout fine-tuning, and (2) each learned fine-tuning
feature σi(t; k) evolves independently of the other fine-tuning features. Recall that, in the previous
section, we showed that elongating pre-training causes the introduction of new learned features. The
independent evolution of these newly acquired features allows us to write ∆pre(tn)−∆pre(tn−1) only
in terms of the nth learned fine-tuned feature. In particular, ∆pre(tn)−∆pre(tn−1) ≈ (σft

n − σpre
n)2.

We arrive at the result by noting that the right hand side is always nonnegative.

Having established the prevalence of progressive sensitivity, we now turn our attention to understand-
ing how and when we observe catastrophic overtraining with respect to the pre-training loss. We
first show that when regularization is not present and the downstream task is sufficiently distinct
from the pre-trained task, then elongating pre-training will cause the pre-training performance of the
model to degrade. Furthermore, we demonstrate that regularization can delay the inflection point at
which pre-training performance starts to degrade (Definition 4.2), albeit at a cost to the downstream
performance.

Theorem 4.5 (Catastrophic overtraining; informal version of Theorem D.25). The following are true
with high probability:

5

Published as a workshop paper at SCOPE - ICLR 2025

1. Catastrophic overtraining is inevitable without regularization. Let λ = 0. There exists an
α0 > 0 such that if Apre and Aft are (α, r)-misaligned, for α > α0, then the pre-training
loss after fine-tuning Lpre(θ(tn;K)) monotonically increases for n ≥ r.

2. Regularization can delay the degradation of pre-training performance at the cost of
downstream performance. For any n, the inflection point r(λ) and the unregularized
fine-tuning loss ∥θn(K)−Aft∥2F increase monotonically with λ.

Proof sketch. We prove the two results separately. For the first result, we extend the reasoning in
Theorem 4.4 and characterize when the performance degrades in terms of α and r. The result identifies
catastrophic overtraining by characterizing when the rate of degradation ∆pre(tn) − ∆pre(tn−1)
exceeds the rate of improvement during pre-training Lpre(tn; 0) − Lpre(tn−1; 0) ≈ −(σpre

n)2. To
prove the second result, we demonstrate that regularization limits the deviation of each feature from
its pre-trained initialization, effectively mitigating the degradation characterized in the first result.
However, regularization simultaneously limits how well the model can adapt to the downstream task
and can thus harm performance.

Our results in this section demonstrate that progressive sensitivity and catastrophic overtraining can
arise in the relatively simple setting of training linear networks, which learn task-related features
incrementally. We characterize the inflection point (Definition 4.2) when fine-tuning on a canonical
task. Our main results demonstrate that elongating the pre-training period will inevitably result in
progressive sensitivity and catastrophic overtraining, and although appropriate regularization can
delay the onset of these phenomena, this may come at the cost of the downstream task performance
(Theorems 4.4 and 4.5).

5 DISCUSSION

In this work, we uncovered a surprising trend: contrary to common belief, longer pre-training
does not always lead to better post-trained models. We have shown that this is a consequence of a
broader underlying phenomenon where models become more sensitive to perturbations as they are
pre-trained on more tokens. Our theoretical analysis implies that this degradation of adaptability is
especially catastrophic when the pre-training and fine-tuning tasks are misaligned, and in such a case
catastrophic overtraining may be inevitable, even if the fine-tuning process is regularized.

Our study identifies and analyzes catastrophic overtraining across various settings, but some open
questions remain. For example, while we demonstrate catastrophic overtraining for multiple pre-
trained models, spanning a range of sizes and architectures, we leave understanding the exact
pre-training settings that influence the severity of catastrophic overtraining, such as the role of the
optimizer, pre-training distribution, and training objective, to future work. Second, we show that
catastrophic overtraining can only sometimes be mitigated by regularization, but there may be other
strategies such as data replay (Rebuffi et al., 2017) or LP-FT (Kumar et al., 2022) that may help retain
pre-training performance. In addition, post-hoc approaches such as WiseFT (Wortsman et al., 2022)
have shown promise in improving robustness to distribution shifts and may be useful in the context of
catastrophic overtraining. Finally, while our work focuses primarily on catastrophic overtraining in
the context of fine-tuning and simple perturbations, the phenomenon may be more broadly applicable
to other settings where language model parameters are perturbed such as model editing (Bau et al.,
2020; Shah et al., 2024; Hewitt et al., 2024) or unlearning (Eldan & Russinovich, 2023; Chen & Yang,
2023; Maini et al., 2024).

Catastrophic overtraining has significant implications for future developments in language modeling.
Efforts to reduce model parameters for efficient deployment (Hu et al., 2024) are likely to amplify
the negative effects of catastrophic overtraining, making models increasingly fragile to parameter
transformations. Moreover, rising inference-time costs associated with recent advances in inference-
time reasoning (DeepSeek-AI et al., 2025), verification methods (Snell et al., 2024), and other
emerging post-training paradigms, we expect that there will be a further drive to improve the
quality of post-trained models without increasing the number of model parameters, thus exacerbating
catastrophic overtraining. In total, our findings call for a renewed focus on model scaling that
considers the entire training pipeline.

6

Published as a workshop paper at SCOPE - ICLR 2025

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE2140739. Any opinion, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors(s) and do not necessarily reflect the views of
the National Science Foundation.

We gratefully acknowledge support from Apple, NSF and the AI2050 program at Schmidt Sciences
(Grant #G2264481).

Xiang Yue was supported in part by a Carnegie Bosch Institute Fellowship.

The authors would like to thank the following individuals for their helpful feedback and discussions:
Christina Baek, Tianyu Gao, Gaurav Ghosal, Suhas Kotha, Vaishnavh Nagarajan, Chen Wu, and
Ziqian Zhong.

REFERENCES

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on Lifelong Learning Agents, pp. 620–636.
PMLR, 2023.

Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup Moon. Uncertainty-based continual learning
with adaptive regularization, 2019. URL https://arxiv.org/abs/1905.11614.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic structure
of word senses, with applications to polysemy, 2018. URL https://arxiv.org/abs/1601.
03764.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in neural
information processing systems, 33:3884–3894, 2020.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
URL https://arxiv.org/abs/2204.05862.

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, and Antonio Torralba. Rewriting a deep
generative model. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16, pp. 351–369. Springer, 2020.

Akshita Bhagia, Jiacheng Liu, Alexander Wettig, David Heineman, Oyvind Tafjord, Ananya Harsh
Jha, Luca Soldaini, Noah A Smith, Dirk Groeneveld, Pang Wei Koh, et al. Establishing task scaling
laws via compute-efficient model ladders. arXiv preprint arXiv:2412.04403, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. arXiv
preprint arXiv:2210.14891, 2022.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem, 2019a. URL https://arxiv.org/abs/1812.00420.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K.
Dokania, Philip H. S. Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning, 2019b. URL https://arxiv.org/abs/1902.10486.

Jiaao Chen and Diyi Yang. Unlearn what you want to forget: Efficient unlearning for llms. arXiv
preprint arXiv:2310.20150, 2023.

7

https://arxiv.org/abs/1905.11614
https://arxiv.org/abs/1601.03764
https://arxiv.org/abs/1601.03764
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/1812.00420
https://arxiv.org/abs/1902.10486

Published as a workshop paper at SCOPE - ICLR 2025

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2829. IEEE, June 2023. doi: 10.1109/cvpr52729.2023.
00276. URL http://dx.doi.org/10.1109/CVPR52729.2023.00276.

Kurtland Chua, Qi Lei, and Jason D. Lee. How fine-tuning allows for effective meta-learning, 2021.
URL https://arxiv.org/abs/2105.02221.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of NAACL-HLT 2019, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence representa-
tions. arXiv preprint arXiv:1803.05449, 2018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine learning challenges workshop, pp. 177–190. Springer, 2005.

Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng Kong, and Dani Yogatama. Episodic mem-
ory in lifelong language learning, 2019. URL https://arxiv.org/abs/1906.01076.

DeepSeek-AI et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning, 2025. URL https://arxiv.org/abs/2501.12948.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn around
a common mean. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/b9a25e422ba96f7572089a00b838c3f8-Paper.pdf.

Fernando Diaz and Michael Madaio. Scaling laws do not scale. In Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, volume 7, pp. 341–357, 2024.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G Bellemare, and Aaron
Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier. In Deep
Reinforcement Learning Workshop NeurIPS 2022, 2022.

Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. arXiv
preprint arXiv:2310.02238, 2023.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128–135, 1999.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models, 2024. URL https://arxiv.org/abs/
2306.13394.

8

http://dx.doi.org/10.1109/CVPR52729.2023.00276
https://arxiv.org/abs/2105.02221
https://arxiv.org/abs/1906.01076
https://arxiv.org/abs/2501.12948
https://proceedings.neurips.cc/paper_files/paper/2018/file/b9a25e422ba96f7572089a00b838c3f8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/b9a25e422ba96f7572089a00b838c3f8-Paper.pdf
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394

Published as a workshop paper at SCOPE - ICLR 2025

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Wortsman,
Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, et al. Language models scale reliably
with over-training and on downstream tasks. arXiv preprint arXiv:2403.08540, 2024.

Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
dynamics in linear neural networks, 2019. URL https://arxiv.org/abs/1904.13262.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scaling
laws for data filtering – data curation cannot be compute agnostic, 2024. URL https://arxiv.
org/abs/2404.07177.

Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/
2407.21783.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson,
Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack
Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep
Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Sol-
daini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of language
models. Preprint, 2024a.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerat-
ing the science of language models. arXiv preprint arXiv:2402.00838, 2024b.

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matt
Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regularization in
deep offline rl. arXiv preprint arXiv:2207.02099, 2022.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer,
2021. URL https://arxiv.org/abs/2102.01293.

John Hewitt, Sarah Chen, Lanruo Lora Xie, Edward Adams, Percy Liang, and Christopher D Manning.
Model editing with canonical examples. arXiv preprint arXiv:2402.06155, 2024.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong learning via
progressive distillation and retrospection. In Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and
Sanmi Koyejo. Scaling laws for downstream task performance of large language models. arXiv
preprint arXiv:2402.04177, 2024.

9

https://arxiv.org/abs/1904.13262
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2102.01293

Published as a workshop paper at SCOPE - ICLR 2025

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
A diagram is worth a dozen images, 2016.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
catastrophic forgetting in neural networks. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis,
Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526, March
2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http://dx.doi.org/10.
1073/pnas.1611835114.

Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. Understanding catastrophic forgetting
in language models via implicit inference. arXiv preprint arXiv:2309.10105, 2023.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution, 2022. URL https://arxiv.
org/abs/2202.10054.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. arXiv preprint arXiv:2010.14498, 2020.

Saurabh Kumar, Henrik Marklund, and Benjamin Van Roy. Maintaining plasticity via regenerative
regularization. arXiv preprint arXiv:2308.11958, 2023.

Alex Lewandowski, Haruto Tanaka, Dale Schuurmans, and Marlos C Machado. Directions of
curvature as an explanation for loss of plasticity. arXiv preprint arXiv:2312.00246, 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023a.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 5 2023b.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models, 2023c. URL https://arxiv.org/
abs/2305.10355.

Emmy Liu, Amanda Bertsch, Lintang Sutawika, Lindia Tjuatja, Patrick Fernandes, Lara Marinov,
Michael Chen, Shreya Singhal, Carolin Lawrence, Aditi Raghunathan, et al. Not-just-scaling laws:
Towards a better understanding of the downstream impact of language model design decisions.
arXiv preprint arXiv:2503.03862, 2025.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023a.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream:
Implicit bias matters for language models, 2022. URL https://arxiv.org/abs/2210.
14199.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger, Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo
Li, Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan, Yi Gu, Victor Miller, Yonghao Zhuang,
Guowei He, Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan, Zhiqiang Shen, Xuguang Ren,
Roberto Iriondo, Cun Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim Baldwin, and Eric P.
Xing. Llm360: Towards fully transparent open-source llms, 2023b.

10

https://arxiv.org/abs/2001.08361
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/2202.10054
https://arxiv.org/abs/2202.10054
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2210.14199
https://arxiv.org/abs/2210.14199

Published as a workshop paper at SCOPE - ICLR 2025

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in
reinforcement learning. arXiv preprint arXiv:2204.09560, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp. 23190–23211. PMLR, 2023.

Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqian Wang, and
Dacheng Tao. Revisiting plasticity in visual reinforcement learning: Data, modules and training
stages. arXiv preprint arXiv:2310.07418, 2023.

Maggie, Phil Culliton, and Wei Chen. Tweet sentiment extraction. https://kaggle.com/
competitions/tweet-sentiment-extraction, 2020. Kaggle.

Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A task of
fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.

Ian McKenzie, Alexander Lyzhov, Alicia Parrish, Ameya Prabhu, Aaron Mueller, Najoung Kim, Sam
Bowman, and Ethan Perez. The inverse scaling prize, 2022. URL https://github.com/
inverse-scaling/prize.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane
Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models,
2023. URL https://arxiv.org/abs/2305.16264.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning, pp.
16828–16847. PMLR, 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and André
Barreto. Deep reinforcement learning with plasticity injection. Advances in Neural Information
Processing Systems, 36, 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,
Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman
Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael
Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious,
2024. URL https://arxiv.org/abs/2501.00656.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. arXiv preprint cs/0409058, 2004.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws, 2024. URL https://arxiv.org/
abs/2401.00448.

11

https://kaggle.com/competitions/tweet-sentiment-extraction
https://kaggle.com/competitions/tweet-sentiment-extraction
https://github.com/inverse-scaling/prize
https://github.com/inverse-scaling/prize
https://arxiv.org/abs/2305.16264
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448

Published as a workshop paper at SCOPE - ICLR 2025

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora. A mathematical exploration of why language
models help solve downstream tasks. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=vVjIW3sEc1s.

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. CoRR, abs/1810.10531, 2018. URL http://arxiv.
org/abs/1810.10531.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36:55565–55581, 2023.

Rylan Schaeffer, Hailey Schoelkopf, Brando Miranda, Gabriel Mukobi, Varun Madan, Adam Ibrahim,
Herbie Bradley, Stella Biderman, and Sanmi Koyejo. Why has predicting downstream capabilities
of frontier ai models with scale remained elusive? arXiv preprint arXiv:2406.04391, 2024.

Gal Shachaf, Alon Brutzkus, and Amir Globerson. A theoretical analysis of fine-tuning with linear
teachers, 2021. URL https://arxiv.org/abs/2107.01641.

Harshay Shah, Andrew Ilyas, and Aleksander Madry. Decomposing and editing predictions by
modeling model computation. arXiv preprint arXiv:2404.11534, 2024.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay, 2017. URL https://arxiv.org/abs/1705.08690.

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8317–8326, 2019.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/abs/
2408.03314.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus, Samira Abnar, Hyung Won Chung, Sharan
Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler. Scale efficiently: Insights from
pre-training and fine-tuning transformers, 2022. URL https://arxiv.org/abs/2109.
10686.

Nilesh Tripuraneni, Michael I. Jordan, and Chi Jin. On the theory of transfer learning: The importance
of task diversity, 2020. URL https://arxiv.org/abs/2006.11650.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceedings of
the 23rd annual international ACM SIGIR conference on Research and development in information
retrieval, pp. 200–207, 2000.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023.

Colin Wei, Sang Michael Xie, and Tengyu Ma. Why do pretrained language models help in
downstream tasks? an analysis of head and prompt tuning. Advances in Neural Information
Processing Systems, 34, 2021.

Jason Wei, Najoung Kim, Yi Tay, and Quoc V Le. Inverse scaling can become u-shaped. arXiv
preprint arXiv:2211.02011, 2022.

Stanley Wei, Sadhika Malladi, Sanjeev Arora, and Amartya Sanyal. Provable unlearning in topic
modeling and downstream tasks. arXiv preprint arXiv:2411.12600, 2024.

12

https://openreview.net/forum?id=vVjIW3sEc1s
http://arxiv.org/abs/1810.10531
http://arxiv.org/abs/1810.10531
https://arxiv.org/abs/2107.01641
https://arxiv.org/abs/1705.08690
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2109.10686
https://arxiv.org/abs/2109.10686
https://arxiv.org/abs/2006.11650

Published as a workshop paper at SCOPE - ICLR 2025

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust
fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 7959–7971, 2022.

Sen Wu, Hongyang R. Zhang, and Christopher Ré. Understanding and improving information transfer
in multi-task learning, 2020. URL https://arxiv.org/abs/2005.00944.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task, 2023. URL https://arxiv.
org/abs/2206.04301.

13

https://arxiv.org/abs/2005.00944
https://arxiv.org/abs/2206.04301
https://arxiv.org/abs/2206.04301

Published as a workshop paper at SCOPE - ICLR 2025

A RELATED WORK

Loss of plasticity. The idea that more training can be harmful to performance has been studied
before in other continual learning settings. Named loss of plasticity, this phenomenon refers to the
degradation of the ability for a model to adapt to a new task. This has mainly been studied in the
context of training on small models with small datasets (Ash & Adams, 2020; Dohare et al., 2021)
or reinforcement learning (Kumar et al., 2020; Lyle et al., 2022; 2023; Ma et al., 2023; Abbas et al.,
2023). Loss of plasticity has been attributed to the loss curvature (Lyle et al., 2023; Lewandowski
et al., 2023), increased weight norm (Nikishin et al., 2022), feature rank (Kumar et al., 2020; Gulcehre
et al., 2022), and feature inactivity (Lyle et al., 2022; Dohare et al., 2021). Multiple remedies have
been proposed, including changes to the neural network architecture (Lyle et al., 2023), resetting
model parameters (Nikishin et al., 2024; D’Oro et al., 2022), and regularization (Kumar et al., 2023;
Ash & Adams, 2020).

While prior work focused on reinforcement learning or small-scale, synthetic setups, our work
considers the large-scale autoregressive language modeling setting. Unlike prior work, where pre-
training is often harmful for the downstream fine-tuning task, we show that overtraining on generic
web data can also degrade fine-tuning performance despite being expected to help. Additionally, we
highlight an increased sensitivity to degradation of the pre-training loss that arises with overtraining,
an aspect largely overlooked in the literature.

Catastrophic forgetting. The phenomenon of catastrophic forgetting—where neural networks
trained sequentially on tasks tend to forget prior tasks–has also been well-documented in the liter-
ature (Kirkpatrick et al., 2017; French, 1999; Goodfellow et al., 2013; Kemker et al., 2018; Kotha
et al., 2023). There have been several proposed mitigation strategies, for example, Ahn et al. (2019);
Hou et al. (2018); Chaudhry et al. (2019a) propose using regularization to mitigate catastrophic
forgetting. Other fixes include generative replay of examples from previous tasks (Shin et al., 2017)
or maintaining a memory buffer of previous tasks (Chaudhry et al., 2019b; de Masson d’Autume et al.,
2019). In this work, we show that catastrophic forgetting can become more severe with overtraining.

Relationship between pre-training loss and downstream performance. In our work, we argue that
the degradation of the pre-training loss and the downstream loss may be related. Several works have
tried to study the relationship between the pre-training loss in language models and their downstream
performance. Liu et al. (2022) analyze the effect of pre-training beyond convergence and suggest
that overtrained models exhibit better transfer to downstream tasks. Our work considers web-scale
pre-training, which rarely converges in practice, so these findings do not contradict ours. Similarly,
Tay et al. (2022); Zhang et al. (2023) highlight the effect of architecture on downstream generalization,
given the same pretraining loss.

Scaling laws for optimal pre-training. In our work, we argue that training for fewer tokens can
be beneficial for downstream performance after fine-tuning. Related to our work, Isik et al. (2024)
proposes scaling laws for certain downstream translation tasks after fine-tuning, but does not observe
degradation with overtraining. In addition, the optimal pre-training token budget has also been
studied in other contexts. Notably, Kaplan et al. (2020); Hoffmann et al. (2022) demonstrate that,
given a fixed compute budget, there exists an optimal token budget for each model size. Subsequent
works have extended scaling laws to broader contexts, including transfer learning, contrastive
training, training under data constraints, and predicting performance from factors other than pre-
training tokens (Hernandez et al., 2021; Cherti et al., 2023; Muennighoff et al., 2023; Goyal et al.,
2024; Liu et al., 2025; Bhagia et al., 2024). However, scaling laws are not always optimal for
predicting performance. Diaz & Madaio (2024) argue that existing scaling laws do not always predict
downstream performance accurately. In addition, multiple works have observed U-shaped trends in
performance as models scale (Caballero et al., 2022; Wei et al., 2022; McKenzie et al., 2022).

To reduce inference cost, practitioners have turned to developing capable small models, which often
requires overtraining beyond the compute-optimal token budget. In fact, Sardana et al. (2024) show
that pre-training loss continues to decrease when trained for up to 10,000 tokens per parameter. Gadre
et al. (2024) validated similar observations and propose scaling laws to predict the model performance
in this overtraining regime.

Transfer learning theory Finally, our theoretical analysis of catastrophic overtraining adopts
a classical transfer learning setup based on deep linear networks (Gidel et al., 2019; Saxe et al.,

14

Published as a workshop paper at SCOPE - ICLR 2025

2018). Wei et al. (2024); Arora et al. (2018) use this setup to study how models learn and store
knowledge. Another group of studies explain how transfer learning can improve performance after
pre-training Saunshi et al. (2021); Wei et al. (2021); Shachaf et al. (2021). Chua et al. (2021); Wu
et al. (2020); Tripuraneni et al. (2020) specifically adopt a similar deep linear network setting to
study feature learning during pre-training, and how these learned features can benefit downstream
tasks. Kumar et al. (2022) explores how fine-tuning can lead to degradation of out-of-distribution
performance.

B CATASTROPHIC OVERTRAINING IN MORE DETAIL

In the main paper, we made a surprising observation where extended pre-training can hurt post-
training, which we call catastrophic overtraining. Here, we present a much more detailed exposition
of catastrophic overtraining and of the underlying phenomenon progressive sensitivity where the
model becomes more sensitive to fixed-norm perturbations throughout pre-training.

B.1 CATASTROPHIC OVERTRAINING

Pre-training is the first stage in modern language model development. Before deployment, these
pre-trained models are typically modified through post-training (fine-tuning on various datasets),
reinforcement learning, quantization, or pruning. While we might expect extended pre-training to
strictly improve performance upon deployment, we argue that this might not be true. Extended
pre-training beyond a point, can in fact hurt the final performance, a phenomenon that we call
catastrophic overtraining.

Catastrophic overtraining is the phenomenon where extending pre-training beyond a certain
token budget results in a decrease in the model’s performance after subsequent modifications.

We call this token budget where performance first begins to degrade the inflection point. Catastrophic
overtraining can refer to a decrease of the pre-training performance or of the performance of other
downstream tasks as pre-training is extended. Note that this performance drop can manifest differently
across various downstream evaluation tasks, even for the same model.

In Section 2, we see catastrophic overtraining when post-training OLMo-1B for instruction tuning or
multimodal fine-tuning and evaluating on standard benchmarks. In the rest of this paper, we aim to
answer two central questions:

1. When and why does catastrophic overtraining occur?

2. What factors influence the inflection point?
In this paper, we focus primarily on modifying the pre-trained model by fine-tuning on different
datasets. To understand catastrophic overtraining, we also study a simple generic modification
of adding independent Gaussian noise to model weights. We leave further modifications such as
reinforcement learning and pruning to future work.

We start with summarizing when we see catastrophic overtraining in real-world settings (Section B.2).
We then systematically study and build an intuitive picture of the effect of overtraining in the
presence of Gaussian perturbations (Section B.4) and then expand to fine-tuning in a controlled setup
(Section B.5).

B.2 CATASTROPHIC OVERTRAINING IN THE REAL-WORLD

Based on our earlier experimental results on the effect of extended pre-training on post-training
performance, we can summarize the following about catastrophic overtraining in practice:

1. Instruction tuning: When instruction tuning on datasets such as Anthropic-HH and TULU,
OLMo-1B models exhibit catastrophic overtraining at token budgets exceeding 2.5T tokens.
This is observed as a decrease in performance on both ID tasks (e.g., a lower response-rate on
AlpacaEval) and OOD tasks (e.g., standard reasoning and question answering).

2. Multimodal fine-tuning: For multimodal fine-tuning, OLMo-1B models also display catastrophic

15

Published as a workshop paper at SCOPE - ICLR 2025

overtraining beyond 2.5T tokens. However, the degradation is task-dependent: while performance
on some OOD tasks (such as standard reasoning and question answering) declines, while the ID
performance (VLM score) shows no degradation at this token threshold.

3. Model scale effects: Under the same fine-tuning and evaluation setups, catastrophic overtraining
is not observed on OLMo-7B models for pre-training token budgets up to 3T tokens (Appendix H).

These observations lead us to the following questions of great practical significance. Would catas-
trophic overtraining emerge in OLMo-7B models at larger pre-training token budgets? Why are
certain downstream tasks more likely to show catastrophic overtraining when fine-tuning on a par-
ticular dataset? Are some fine-tuning datasets more likely to induce catastrophic overtraining? In
order to answer this question, we carefully analyze and build an intuitive story about catastrophic
overtraining by studying a simple setting in the next section.

B.3 CATASTROPHIC OVERTRAINING IN A CONTROLLED SETUP

We documented several instances of catastrophic overtraining in real-world scenarios. To gain a
deeper understanding and explore more extreme degrees of overtraining, we investigate a simpler,
controlled setup described below. Note that our real-world experiments used publicly available
checkpoints from a single training run, which meant that each pre-training budget corresponded to a
different final learning rate due to the annealing schedule. In this section, we remove that confounding
factor.

Pre-training setup. We pre-train models from scratch with sizes ranging from 15M to 90M parame-
ters, spanning token budgets from 4B to 128B, on C4 web data (Raffel et al., 2019). We train with a
cosine annealing schedule that anneals every model to zero. In the main paper, we present results
from the 30M model; see Appendix I for results with 15M and 90M parameter models.

Modifications to the pre-trained model. We fine-tune the pre-trained models above. We fine-tune
each model on various classification and language modeling datasets spanning QA, sentiment analysis,
math, and code. Details on the datasets and hyperparameter choices are provided in Appendix F. We
also consider a simple modification of adding Gaussian perturbations to the pre-trained weights as a
warm-up in Section B.4.

Our intuitive picture views post-training as some modification to the pre-trained model that is
trained on large amounts of broad data. Such modifications are aimed at improving some targeted
performance (such as VLM score). However, as argued in (Kumar et al., 2022), such modifications
can inadvertently distort the pre-trained knowledge, leading to degraded performance on out-of-
distribution or unrelated tasks.

Downstream evaluation. While we evaluate real-world benchmarks in Section 2, we focus here
on measuring the C4 perplexity of the modified downstream model as an indicator of how well
the original pre-trained knowledge is preserved. A decline in C4 perplexity may signal a loss of
this knowledge, potentially resulting in both out-of-distribution performance degradation (due to
forgetting or distortion). We also measure ID performance as perplexity on held-out set from the same
distribution as the fine-tuning data. We use perplexity rather than accuracy because it is a smoother
and less noisy metric, and can often offer a better measure of model quality than accuracy for small
models (Schaeffer et al., 2023; 2024). Although our analysis centers on pre-training perplexity, we
acknowledge that other factors may also contribute to downstream performance losses—a topic we
leave for future work.

B.4 WARMUP: GAUSSIAN PERTURBATIONS

We take base models pre-trained to various token budgets and add Gaussian noise of the following
form. Let θ ∈ Rd denote the base model weights, then we get

θ̃ = θ + ϵ where ϵ ∼ N (0, γ2Σ), (2)

where Σ is the covariance matrix of the initialization distribution of the parameters (prior to pre-
training) and γ controls the magnitude of the perturbation.

First, we plot the change in C4 perplexity due to Gaussian noise, i.e. the difference between the C4

16

Published as a workshop paper at SCOPE - ICLR 2025

101 102

Pre-training tokens

0.0

0.2
 p

er
pl

ex
ity

 Base model Minimum (0.0025) Maximum (0.04)

101 102

Pre-training tokens

3.8

4.0

Pe
rp

le
xi

ty

Figure 5: Progressive sensitivity of Gaussian perturbations (left): extending pre-training progres-
sively increases the degree to which a Gaussian parameter perturbation degrades perplexity.
Catastrophic overtraining (right): eventually, this leads to overall worse pre-training perplexity.
We perturb OLMo-30M models trained on various pre-training token budgets with Gaussian noise
scaled by the factor γ (color). The left plot shows the difference in perplexity between the perturbed
and unperturbed models, while the right plot shows the absolute perplexity of the perturbed models.

perplexity of θ and θ̃ in Figure 5 (left). We observe an interesting trend as we track the change in
perplexity between the base model and the perturbed model as a function of the number of pre-training
tokens:

Progressive sensitivity to noise: For a fixed magnitude of perturbation, the change in perplexity
between the base model and the perturbed model increases monotonically with the number of
pre-training tokens.

Simultaneously, we plot the absolute C4 perplexity of the base model (Figure 5, right, dashed line).
We observe that the base model’s perplexity decreases with the number of pre-training tokens.

In this setting, catastrophic overtraining arises from the interaction between the progressive
sensitivity to noise and the monotonic improvement of the base model as pre-training progresses.
Early in training, the base model improves faster than the rate at which sensitivity increases, leading
to a net decrease in perplexity after Gaussian parameter perturbations. Beyond a certain point, the
rate at which sensitivity increases surpasses the rate at which the base model improves, leading to an
increase in perplexity after the perturbation. This results in a U-shaped trend of the C4 perplexity
after perturbation (Figure 5, right).

Tracking the inflection point. In Figure 5, larger perturbations are associated with a larger and
more quickly increasing degradation of the pre-training loss. Thus, the point at which the degradation
from sensitivity surpasses the improvement in the base model is accelerated for larger perturbations,
leading to an inflection point at a lower token budget.

Intuitive picture. Pre-training on more tokens improves the base model (as expected) but also makes
the base models more sensitive to noise. Progressive sensitivity leads to catastrophic overtraining as
the increase in perplexity due to noise eventually overwhelms improvements in the model. For large
magnitude perturbations, this degradation sets in at lower token budget, while for smaller magnitudes
of perturbations, catastrophic overtraining may not be observed until a large token budget.

17

Published as a workshop paper at SCOPE - ICLR 2025

1010 1011

Pre-training tokens

0

1

2
 p

er
pl

ex
ity

max=5.0e-04
GSM8K

1010 1011

Pre-training tokens

0

1

2 max=1.6e-04
SIQA

1010 1011

Pre-training tokens

0

1

2
max=1.0e-03

StarCoder-Python

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

 Base model Min fine-tuning LR (4e-6) Max fine-tuning LR (max)

Figure 6: Progressive sensitivity of fine-tuning: Extending pre-training progressively increases
the degree to which fine-tuning degrades perplexity. OLMo-30M models trained on various
pre-training token budgets are fine-tuned on downstream tasks using fixed hyperparameters: math
(GSM8k), code (Starcoder-Python), and QA (SIQA). Lines connect models sharing hyperparameters,
differing only in pre-training tokens. Learning rates range from 4e-06 to the dataset-specific maximum
(ηmax). We report the difference in perplexity between the fine-tuned and pre-trained models, as a
function of the number of pre-training tokens.

B.5 FINE-TUNING PRE-TRAINED MODELS

In the previous section, we studied how catastrophic overtraining arises when adding noise to pre-
trained models. While noise can be seen as a canonical modification, it is different from fine-tuning
that might involve more structured updates to the models. However, we see in this section that the
intuitive story above also holds when we fine-tune models on real-world language datasets described
above.

B.5.1 FINE-TUNING WITH FIXED LEARNING RATE

First, analogous to how we quantify performance drop for a fixed magnitude of Gaussian perturbation
(γ), we similarly need to regularize the fine-tuning in some way to ensure a consistent degree of
change across the pre-trained checkpoints. Fixing the learning rate is a simple and effective way to
do so. While we do not provide a formal justification, we discuss our reasoning in Appendix F.

For each learning rate, we plot the change in C4 perplexity from the pre-trained model to the fine-
tuned model in Figure 6. In this plot, we track how the degradation in C4 perplexity evolves with the
number of pre-training tokens. First, larger learning rates distort the model more and thus exhibit a
greater increase in perplexity. Second, we observe a trend over pre-training tokens analogous to the
behavior seen with Gaussian noise, but this time for fine-tuning.

Progressive sensitivity when fine-tuning: For a fixed learning rate, the change in perplexity
increases monotonically with the number of pre-training tokens.

At the inflection point at which sensitivity increases surpasses the rate at which the base model
improves, we observe catastrophic overtraining. This results in a U-shaped trend of the C4 perplexity
after fine-tuning (Figure 3, top).

Tracking the inflection point for fine-tuning. Analogous to the Gaussian setting, since the rate of
increase of degradation is accelerated for larger learning rates, models trained with larger learning
rates exhibit an inflection point at lower token budgets, and the degradation is more pronounced.

18

Published as a workshop paper at SCOPE - ICLR 2025

ID perplexity. While smaller learning rates generally result in less degradation to the C4 perplexity,
the ID perplexity of the fine-tuned models shows a different trend: larger learning rates, up to a point,
result in a lower ID perplexity, though sometimes also exhibit a U-shaped trend in ID perplexity
(Figure 3, bottom). This implies that tuning the learning rate can sometimes mitigate degradation only
at the cost of fine-tuning performance. We explore in Section B.5.2 when tuning the learning rate to
minimize the ID perplexity can mitigate the degradation of C4 perplexity that arises as pre-training is
extended, and when it cannot.

Intuitive picture. The intuition from the Gaussian perturbation setting carries over to fine-tuning
with a fixed learning rate. Pre-training on more tokens will improve the quality of the base model and
at the same time make the model degrade more when fine-tuned. Beyond a certain point, pre-training
on additional tokens will degrade the resulting fine-tuned model’s C4 perplexity, and often the ID
perplexity of the fine-tuning task.

B.5.2 BALANCING FINE-TUNING GAINS WITH DEGRADATION

In Section B.5, we showed that for a fixed learning rate, the sensitivity of pre-trained models increases
with the number of pre-training tokens, leading to catastrophic overtraining. In practice, however,
the learning rate is tuned on a validation set from the in-domain (ID) task. This tuning process may
yield different optimal learning rates across pre-trained checkpoints, which can potentially mitigate
catastrophic overtraining. The degradation depends on both the learning rate as well as the sensitivity.
So if a model pre-trained on more tokens can admit a smaller learning rate when fine-tuning to
achieve good ID performance, it can compensate the increase in sensitivity.

However, this smaller rate does restrict the extent of necessary parameter updates, and might be
insufficient to achieve good ID performance. This presents an interesting trade-off that we investigate
empirically. We tune the learning rate to maximize fine-tuning ID performance. We track the optimal
value as a function of the pre-training token budget, and plot the ID performance and pre-train
perplexity corresponding to this optimal learning rate in Figure 4.

Our findings indicate that the emergence of catastrophic overtraining depends on how the optimal
learning rate evolves. We conceptualize this trade-off between ID performance and pre-train perplexity
degradation into three scenarios, illustrated in Figure 7:

1. Constant optimal learning rate: A constant optimal learning rate across token budgets leads to
degradation in both ID and out-of-domain (OOD) performance for large pre-training budget T
(Figure 7, left).

2. Slowly decreasing optimal learning rate: A slowly decreasing optimal learning rate may improve
ID performance while OOD performance degrades (Figure 7, center).

3. Quickly decreasing optimal learning rate: A quickly decreasing optimal learning rate enables
improvements in both ID and OOD performance as the pre-training budget increases (Figure 7,
right).

Using a non-optimal learning rate to mitigate degradation. In cases where catastrophic over-
training emerges when fine-tuning with the optimal learning rate, using a non-optimal learning rate
can sometimes mitigate the degradation or delay the inflection point. For example, in both cases
where tuning leads to eventual degradation of the OOD loss in Figure 7, choosing to train with the
smallest learning rate would delay the inflection point. However, this would also result in a lower ID
performance.

Regularization beyond the learning rate. For both the Gaussian perturbation and the fine-tuning
settings, we have seen that larger parameter perturbations accelerate and amplify the rate at which
model performance degrades. In the fine-tuning setting, the learning rate effectively controls the
magnitude of the overall parameter updates. However, we expect that explicit forms of regularization
to prevent large parameter updates could also mitigate or delay catastrophic overtraining. We explore
a theoretical instance of regularized fine-tuning in Section 4.

Summary. Overall, our experiments reveal that progressive sensitivity manifests under two types
of modifications: unstructured Gaussian noise and structured fine-tuning, leading us to conjecture

19

Published as a workshop paper at SCOPE - ICLR 2025

Tuned LR is
constant with 𝑇

Tuned LR decreases
slowly with 𝑇

Tuned LR decreases
quickly with 𝑇

Large LR Medium LR Small LR LR tuned on downstream val.

O
O
D

ID

Pre-training tokens Pre-training tokens Pre-training tokens

Degradation

No degradation

No degradation

Degradation
Degradation

No degradation

Figure 7: Schematic to illustrate how the scaling of the optimal learning rate can affect model
evaluations as a function of the pre-training tokens T . The dashed lines indicate the hypothetical
performance of a fixed learning rate, while solid lines indicate the performance when using the
learning rate that optimizes the ID performance. (Left) When the optimal learning rate is constant,
we expect to observe degradation of both ID and OOD performance. (Center) When the optimal
learning rate decreases slowly with T , we may observe a degradation of only the OOD performance.
(Right) When the optimal learning rate decreases quickly, we will not observe degradation of either
metric of performance.

that progressive sensitivity is a universal phenomenon. For a fixed magnitude of perturbation or
a fixed fine-tuning learning rate, progressive sensitivity leads to catastrophic overtraining as the
degradation in performance eventually outweighs the gains from extended pre-training. In practice,
however, the optimal learning rate is tuned on the target in-domain task, and its evolution can result
in degradation either on in-domain performance or on out-of-domain (pre-training) metrics. This
highlights a trade-off in extended pre-training, where how the optimal learning rate evolves ultimately
determines whether catastrophic overtraining occurs when these models are fine-tuned.

C THEORY OF CATASTROPHIC OVERTRAINING: THE GAUSSIAN SETTING

In addition to our theory in the main paper, we provide analysis of catastrophic overtraining in the
setting of Gaussian perturbations, as a warmup.

We set A to be isotropic Gaussian parameter perturbations, mirroring Appendix B.4. Formally, let
A(θ(tn)) = θ̃(tn) = (W1(tn) + Z1)(W2(tn) + Z2) where Z1,Z2 ∼ N (0, γ2Id2×d2), and let

L̃pre(tn) = E
[
Lpre(θ̃(tn))

]
. We characterize how the perturbed model pre-training loss L̃pre(tn)

evolves as pre-training is extended.

Proposition C.1 (Informal version of Lemma D.4). Let t1, . . . , td be defined as in Theorem 4.1.

20

Published as a workshop paper at SCOPE - ICLR 2025

Then,

L̃pre(tn)− L̃pre(tn−1) ≥ (2dγ2 − σpre
n)σpre

n . (3)

The formal proof in Appendix D demonstrates that elongating pre-training introduces a newly non-
zero feature σn introduces a new dimension along which the perturbation degrades loss. The above
proposition allows us to characterize the inflection point (Definition 4.2) in the Gaussian perturbation
setting as the smallest n such that 2dγ2 > σpre

n . As such, smaller or more quickly decaying features
will induce a smaller inflection point.

To establish catastrophic overtraining, we now illustrate that degradation proceeds monotonically
beyond the inflection point. That is, elongating the training budget beyond the inflection point will
increasingly degrade the pre-training performance of the model.
Theorem C.2 (Informal version of Theorem D.3). For some γ > 0, there exists an inflection point
r ∈ [1, d) such that L̃pre(n) increases monotonically for n ≥ r.

Our results establish the inevitability of catastrophic overtraining with respect to the pre-training loss
when the post-training modification consists of randomly perturbing the model parameters.

D OMITTED PROOFS FROM SECTION 4

D.1 FORMAL DEFINITIONS AND ASSUMPTIONS

We provide formal definitions and assumptions underlying the theoretical analysis in Section 4.
Throughout the text, we will use a constant δ to express a small probability.

Model Architecture The model consists of a two-layer linear network parameterized by θ =
W1W2, where W1,W2 ∈ Rd×d. The network maps input x ∈ Rd to output y = W1W2x ∈ Rd.

Pretraining Task The pretraining data follows y = Aprex where Apre ∈ Rd×d is a matrix with
singular value decomposition (SVD) Apre = UΣpreV ⊤. Here, U ,V ∈ Rd×d are orthogonal
matrices, and Σpre ∈ Rd×d is diagonal with positive entries {Σpre

i }di=1 arranged in decreasing order.
Inputs x ∼ N (0, Id) are standard Gaussian.

Pretraining Process The model is trained via gradient flow on the population loss:

Lpre(θ) = Ex

[
∥θx−Aprex∥22

]
= ∥θ −Apre∥2F , (4)

with parameters initialized as W1(0) = W2(0) = exp(−τ)I with a large τ > 0. The gradient flow
dynamics follow:

Ẇ1(t) = −2(θ(t)−Apre)W2(t)
⊤ (5)

Ẇ2(t) = −2W1(t)
⊤(θ(t)−Apre) (6)

where θ(t) = W1(t)W2(t).

This setup is inherited from Gidel et al. (2019), where the authors consider a more general setup
with a rank-R matrix Apre and show that the gradient flow dynamics converge to the optimal rank-r
approximation of Apre sequentially for r = 1, . . . , R.
Theorem D.1 (Theorem 1 of Gidel et al. (2019)). Suppose Apre has rank R. There exists t1, . . . tR
and constant C > 0 depending on Apre, such that for θ(t) following Equations (5) and (6),

∥W1(ti)− U
(
Σpre,i

)1/2 ∥F ≤ exp(−Cτ);

∥W2(ti)−
(
Σpre,i

)1/2
V T ∥F ≤ exp(−Cτ).

where Σpre,i shares the first i diagonal elements as Σpre and the rest diagonal elements are 0.

Finetuning Task The finetuning task follows y = Aftx where Aft = UΣftV ⊤ shares the singular
vectors of Apre but has a spectrum Σft. The input distribution remains x ∼ N (0, Id).

21

Published as a workshop paper at SCOPE - ICLR 2025

Finetuning Process Starting from θn(0) = θ(tn) in Theorem D.1, the model is fine-tuned using
gradient descent with learning rate η, batch size m, and K iterations. We will call θn(0) the real
initialization and denote the following initialization θ̄n(0) as the ideal initialization,

W̄ n
1 (0) = U (Σpre,n)

1/2 (7)

W̄ n
2 (0) = (Σpre,n)

1/2
V T (8)

The population loss is:

Lft(θ) = Ex

[
∥θx−Aftx∥22

]
+ λ∥θ − θn(0)∥2F = ∥θ −Aft∥2F + λ∥θ − θn(0)∥2F (9)

We will estimate Lft using a batch of samples Bk with size m on every step,

Lft(θ;Bk) =
1

m

∑
x∈Bk

[
∥θx−Aftx∥22

]
++λ∥θ − θn(0)∥2F

Denote the covariance of x in batch Bk as

Σ
(x)
k =

1

m

∑
x∈Bk

xxT .

Then,

Lft(θ;Bk) = Tr
(
(θ −Aft)T (θ −Aft)Σ

(x)
k

)
+ λ∥θ − θn(0)∥2F .

The parameter update rule at step k is:

W n
1 (k + 1) = W n

1 (k)− 2η(θn(k)−Aft)Σ
(x)
k (W n

2 (k))
⊤ − 2ηλ(θn(k)− θn(0))(W n

2 (k))
⊤

(10)

W n
2 (k + 1) = W n

2 (k)− 2η(W n
1 (k))

⊤Σ
(x)
k (θn(k)−Aft)− 2ηλ(W n

1 (k))
⊤(θn(k)− θn(0))

(11)

where θn(k) = W n
1 (k)W

n
2 (k).

We will denote the final finetuned loss as Lft(n) = Lft(θ
n(K)).

We will use Γ to denote the upper bound of Σpre and Σft as,

Γ = max

{
Σpre

1,1 ,max
i≤d

Σft
i,i

}
. (12)

D.2 FORMAL STATEMENT AND PROOF OF THEOREM C.2

In this section, we consider perturbations of the weights with isotropic Gaussian noise. For a
parameter θ = W1W2, we will consider perturbations of the form (W1 + α)(W2 + β) where
α, β ∈ Rd×d are independent isotropic Gaussian noise matrices with αij , βij ∼ N (0, γ2) for some
γ > 0. We will define the perturbed pretraining loss as,

˜Lpre(θ) = Eα,β∼N (0,γ2)

[
∥(W1 + α)(W2 + β)−Apre∥2F

]
(13)

Under this definition, assuming pretraining initialization is sufficiently small, we have that the loss
under a Gaussian perturbation is monotonically increasing.
Assumption D.2 (Small Pretraining Initialization). τ satisfies that, for C in Theorem D.1,

exp(−Cτ) ≤ min

{
Σpre

1,1/2, 1/4,
(Σpre

d,d)
2

16dΣpre
1,1

(
2Σpre

1,1 + γ2
)} .

Theorem D.3. Under Assumption D.2, if γ2 > Σpre
d,d/d, there exists some s ∈ N and s < d such that

for all n > s, the loss under a Gaussian perturbation ˜Lpre(θ
n(0)) is monotonically increasing.

22

Published as a workshop paper at SCOPE - ICLR 2025

Proof. Choose s as the minimum number satisfying γ2 > Σpre
s,s /d, for n > s, then s ≤ d − 1,

by Lemma D.4,

˜Lpre(θ̄
n(0))− ˜Lpre(θ̄

n−1(0)) >
(
Σpre

n,n

)2
.

By Lemma D.6,

˜Lpre(θ
n(0))− ˜Lpre(θ̄

n(0)) > −
(
Σpre

n,n

)2
/2.

˜Lpre(θ̄
n−1(0))− ˜Lpre(θ

n−1(0)) > −
(
Σpre

n,n

)2
/2.

Combining the above,
˜Lpre(θ

n(0))− ˜Lpre(θ
n−1(0)) > 0.

The proof is complete.

Lemma D.4. The following inequality holds for any n > 1:

˜Lpre(θ̄
n(0))− ˜Lpre(θ̄

n−1(0)) ≥ (2dγ2 −Σpre
n,n)Σ

pre
n,n (14)

Proof. We first expand the loss,

˜Lpre(θ̄
n(0)) = E

[∥∥(W̄ n
1 + α)(W̄ n

2 + β)−Apre
∥∥2
F

]
= E

[∥∥∥(U (Σpre,n)
1/2

+ α
)(

(Σpre,n)
1/2

V T + β
)
− UΣpreV ⊤

∥∥∥2
F

]
= E

[∥∥∥U ((Σpre,n)
1/2

+ α
)(

(Σpre,n)
1/2

+ β
)
V ⊤ − UΣpreV ⊤

∥∥∥2
F

]
= E

[∥∥∥((Σpre,n)
1/2

+ α
)(

(Σpre,n)
1/2

+ β
)
−Σpre

∥∥∥2
F

]
= E

[∥∥∥(Σpre,n + α (Σpre,n)
1/2

+ (Σpre,n)
1/2

β + αβ −Σpre
)∥∥∥2

F

]
= ∥Σpre,n −Σpre∥2F + E

[∥∥∥α (Σpre,n)
1/2
∥∥∥2
F

]
+ E

[∥∥∥(Σpre,n)
1/2

β
∥∥∥2
F

]
+ E

[
∥αβ∥2F

]
(15)

where the fourth equality arises from the isotropy of the Gaussian noise, and the final equality comes
from the independence and zero mean of the noise distributions.

Lemma D.5. For Gaussian noise matrix α ∈ Rd×d where each entries has variance γ2 and fixed
matrix M , it holds that

E[∥αM∥2F] = dγ2∥M∥2F .

Proof. It holds that

E[∥αM∥2F] = E[Tr(αMMTαT)] = E[Tr(ααT)]∥M∥2F = dγ2∥M∥2F .
The proof is then completed.

By Lemma D.5 and Equation (15),

˜Lpre(θ̄
n) = Lpre(θ̄

n) + 2dγ2∥ (Σpre,n)
1/2 ∥2F + E

[
∥αβ∥2F

]
.

Taking difference with ˜Lpre(θ̄
n−1)

˜Lpre(θ̄
n)− ˜Lpre(θ̄

n−1) =2dγ2Σpre
n,n − (Σpre

n,n)
2.

23

Published as a workshop paper at SCOPE - ICLR 2025

We then proceed to bound the difference between the perturbed loss of the ideal initialization and the
perturbed loss of the real initialization when the pretraining initialization is sufficiently small.
Lemma D.6. Under Assumption D.2, for any n > 0, it holds that∣∣ ˜Lpre(θ

n(0))− ˜Lpre(θ̄
n(0))

∣∣ ≤ (Σpre
d,d)

2/2.

Proof. By the definition of ˜Lpre,

˜Lpre(θ) = Eα,β∼N (0,γ2)

[
∥(W1 + α)(W2 + β)−Apre∥2F

]
= Eα,β∼N (0,γ2)

[
∥(W1 + α)(W2 + β)−Apre∥2F

]
= ∥W1W2 −Apre∥2F + E[∥αβ∥2F] + E[∥W1β∥2F] + E[∥αW2∥2F].

By Lemma D.5,
E[∥W1W2 −Apre∥2F] = ∥W̄1W̄2 −Apre∥2F + dγ2

(
∥W1∥2F + ∥W2∥2F

)
.

Taking the difference between ˜Lpre(θ
n(0)) and ˜Lpre(θ̄

n(0)),∣∣ ˜Lpre(θ
n(0))− ˜Lpre(θ̄

n(0))
∣∣ ≤∣∣∥W1W2 −Apre∥2F − ∥W̄1W̄2 −Apre∥2F

∣∣
+ dγ2

∣∣∥W1∥2F − ∥W̄1∥2F
∣∣

+ dγ2
∣∣∥W2∥2F − ∥W̄2∥2F

∣∣.
By Theorem D.1,

∥W1 − W̄1∥F ≤ exp(−Cτ);

∥W2 − W̄2∥F ≤ exp(−Cτ).

Here exp(−Cτ) ≤ min{Σpre
1,1/2, 1/4}.

Therefore,∣∣∥W1∥2F − ∥W̄1∥2F
∣∣ ≤∣∣2Tr((W̄1)

T (W1 − W̄1))
∣∣+ ∥W1 − W̄1∥2F

≤2 exp(−Cτ)Σpre
1,1 + exp(−2Cτ) ≤ 4 exp(−Cτ)Σpre

1,1 .

Similarly, ∣∣∥W2∥2F − ∥W̄2∥2F
∣∣ ≤∣∣2Tr((W̄2)

T (W2 − W̄2))
∣∣+ ∥W2 − W̄2∥2F

≤2 exp(−Cτ)Σpre
1,1 + exp(−2Cτ) ≤ 4 exp(−Cτ)Σpre

1,1 .

Finally, ∣∣∥W1W2 −Apre∥2F − ∥W̄1W̄2 −Apre∥2F
∣∣

≤∥(W1W2 − W̄1W̄2)∥F ∥W1W2 + W̄1W̄2 − 2Apre∥F .

Here
∥(W1W2 − W̄1W̄2)∥F ≤ ∥W1 − W̄1∥F ∥W2∥F + ∥W1∥F ∥W2 − W̄2∥F + ∥W1 − W̄1∥F ∥W2 − W̄2∥F

≤ 2
√
d exp(−Cτ)Σpre

1,1 + exp(−2Cτ) ≤ 4
√
dΣpre

1,1 exp(−Cτ)

And
∥W1W2 + W̄1W̄2 − 2Apre∥F ≤∥W1W2 − W̄1W̄2)∥F + 2∥W̄1W̄2 −Apre∥F

≤2
√
d exp(−Cτ)Σpre

1,1 + 2 exp(−2Cτ) + 2
√
dΣpre

1,1 ≤ 4
√
dΣpre

1,1 .

Combining the above,∣∣∥W1W2 −Apre∥2F − ∥W̄1W̄2 −Apre∥2F
∣∣ ≤ 16d

(
Σpre

1,1

)2
exp(−Cτ).

Combining all the above, we have∣∣ ˜Lpre(θ
n(0))− ˜Lpre(θ̄

n(0))
∣∣ ≤ exp(−Cτ)8dΣpre

1,1

(
2Σpre

1,1 + γ2
)
≤ (Σpre

d,d)
2/2.

The final inequality follows from Assumption D.2.

24

Published as a workshop paper at SCOPE - ICLR 2025

D.3 DYNAMIC ANALYSIS OF FINETUNING PROCESS

Before we proceed to the main result of finetuning, we will first analyze the dynamic of the finetuning
process in this section.

We will introduce two auxiliary dynamics to help us track the evolution of the finetuning process.

The first auxiliary dynamic θ̄n(t) is named as Ideal initialization dynamic, which is defined as the
dynamic starting from the ideal initialization θ̄n(0) in Equations (7) and (8) with the same update
rule Equations (10) and (11) and data order as the finetuning process.

The second auxiliary dynamic θ̂n(t) is named as Ideal initialization with infinite batch size, which is
defined as the dynamic starting from the ideal initialization θ̄n(0) in Equations (7) and (8) with the
update rule Equations (16) and (17), which corresponds to the case when the batch size is infinite and
Σ

(x)
k converges to the identity matrix.

Ŵ n
1 (k + 1) = Ŵ n

1 (k)− 2η(θ̂n(k)−Aft)(Ŵ n
2 (k))

⊤ − 2ηλ(θ̂n(k)− θn(0))(Ŵ n
2 (k))

⊤ (16)

Ŵ n
2 (k + 1) = Ŵ n

2 (k)− 2η(Ŵ n
1 (k))

⊤(θ̂n(k)−Aft)− 2ηλ(Ŵ n
1 (k))

⊤(θ̂n(k)− θn(0)) (17)

We will show the following results about these three dynamics:

1. Lemma D.7 provides analytical expression for the ideal initialization dynamic with infinite
batch size.

2. Lemma D.17 shows that the ideal initialization dynamic with finite batch size is close to
the ideal initialization dynamic with infinite batch size, with error bound depending on the
batch size.

3. Lemma D.19 shows that the real initialization dynamic is close to the ideal initialization
dynamic, with error bound depending on the scale of pretraining initialization (which then
controls the distance between the real initialization and the ideal initialization by Theo-
rem D.1).

4. We conclude our analysis by providing our assumption for the main result of the paper As-
sumption D.21 and show that the finetuning process tracks the ideal initialization dynamic
with infinite batch size closely and eventually approximately converges to the minimum
(Lemmas D.22 and D.23).

Throughout this subsection, we will call W1 and W2 as well conditioned if ∥W1∥op ≤ 2
√
Γ and

∥W2∥op ≤ 2
√
Γ.

D.3.1 ANALYTICAL EXPRESSION FOR THE IDEAL INITIALIZATION DYNAMIC WITH INFINITE
BATCH SIZE

We will introduce the following function to better track the evolution of weight in the ideal initializa-
tion dynamic with infinite batch size.

f(x; η, λ, σ, σ0) = x+ 2ηx(σ2 − x2) + 2ηλ(σ2
0 − x2). (18)

Lemma D.7. For the ideal initialization dynamic with infinite batch size in Equations (16) and (17),
we have

Ŵ n
1 (k) = U(Σn(k))1/2

Ŵ n
2 (k) = (Σn(k))1/2V

where

(Σn(k))
1/2
i,i = 1(i ≤ n)f (k)(

(
Σpre

i,i

)1/2
; η, λ,

(
Σft

i,i

)1/2
,
(
Σpre

i,i

)1/2
).

Proof. Consider

Σn
1 (k) = UTWn

1 (k)

Σn
2 (k) = Wn

2 (k)V

25

Published as a workshop paper at SCOPE - ICLR 2025

We then have

Σn
1 (k + 1) = Σn

1 (k)− 2η
(
Σn

1 (k)Σ
n
2 (k)−Σft

)
Σn

2 (k)
T − 2ηλ (Σn

1 (k)Σ
n
2 (k)− Σn

1 (0)Σ
n
2 (0))Σ

n
2 (k)

T

Σn
2 (k + 1) = Σn

2 (k)− 2ηΣn
1 (k)

T
(
Σn

1 (k)Σ
n
2 (k)−Σft

)
− 2ηλΣn

1 (k)
T (Σn

1 (k)Σ
n
2 (k)− Σn

1 (0)Σ
n
2 (0)) .

Through induction, we can prove that Σn
1 (k) = Σn

2 (k) are diagonal for all k. This then follows from
the definition of f .

This suggests that Ŵ n
1 (k) and Ŵ n

2 (k) is always well bounded by Γ.

Assumption D.8. We have that learning rate η and regularization parameter λ are upper bounded,

4η(λ+ 2)Γ < 1.

Lemma D.9. Under Assumption D.8, for the ideal initialization dynamic with infinite batch size
in Equations (16) and (17), we have that

∥Ŵ n
1 (k)∥op ≤

√
Γ

∥Ŵ n
2 (k)∥op ≤

√
Γ

with Γ being the upper bound of Σpre and Σft as defined in Equation (12).

Proof. This is a direct consequence of Lemmas D.7 and D.28.

Next, we will show that (UT θ̂n(K)V)i,i will converge to a weighted combination of Σpre
i,i and Σft

i,i
for finites steps K.

Assumption D.10 (Large Enough but Finite Steps). We have that the step size K ≥
1

ηmin{Σpre
i,i ,Σft

i,i}
log 100Γ

ϵ for some constant ϵ > 0.

Lemma D.11. Under Assumption D.8 and Assumption D.10, for the ideal initialization dynamic with
infinite batch size in Equations (16) and (17), we have that for any i ≤ n,∥∥∥(UT θ̂n(K)V)i,i −

Σpre
i,i + λΣft

i,i

1 + λ

∥∥∥
op

≤ ϵ.

Proof. By Lemmas D.7 and D.28, we have that∣∣∣(W n
1 (K))i,i −

Σpre
i,i + λΣft

i,i

1 + λ

∣∣∣ ≤(1− 2ηmin{Σpre
i,i ,Σ

ft
i,i})K

∣∣∣Σpre
i,i −

Σpre
i,i + λΣft

i,i

1 + λ

∣∣∣
This then suggests that once

K ≥ 1

2ηmin{Σpre
i,i ,Σ

ft
i,i}

log
100Γ1/2|Σpre

i,i −Σft
i,i|

ϵ
,

It then follows that ∣∣∣(W n
1 (K))i,i −

Σpre
i,i + λΣft

i,i

1 + λ

∣∣∣ ≤ ϵ

100Γ1/2
.

Similarly, we have the bound for (W n
2 (K))i,i. Combining the two bounds, the proof is complete.

D.3.2 CORRESPONDENCE BETWEEN IDEAL INITIALIZATION DYNAMIC WITH INFINITE BATCH
SIZE AND FINITE BATCH SIZE

We then proceed to bound the difference between the ideal initialization dynamic with infinite batch
size and the ideal initialization dynamic with finite batch size.

26

Published as a workshop paper at SCOPE - ICLR 2025

Lemma D.12 (4.7.3 of Vershynin (2018)). For a fixed k, there exists a constant C1, with probability
1− δ, we have that when batch size m ≥ d+ log(1/δ),

∥Σ(x)
k − Id∥op ≤ C1

√
d+ log(1/δ)

m

Assumption D.13 (Large Batch Size). We have that for constant C1 defined in Lemma D.12 and
ϵ > 0, m ≥ C2

1 (d− log(10Kδ))/ϵ2.

Lemma D.14. Under Assumption D.13, for the ideal initialization dynamic with infinite batch size
in Equations (16) and (17), we have that

∀k ≤ K, ∥Σ(x)
k − Id∥op ≤ ϵ

with probability 1− δ.

Proof. This is a direct consequence of Lemma D.12 and Assumption D.13.

Lemma D.15. When the event defined in Assumption D.13 happens, for any k ≤ K, for the same
well-conditioned parameter θ(k) and θ(0), if applying the update rule Equations (16) and (17) yield
θ̂(k + 1) and applying the update rule Equations (10) and (11) yield θ̄(k + 1), then the difference
between θ̂(k + 1) and θ̄(k + 1) is bounded by

∥Ŵ1(k + 1)− W̄1(k + 1)∥op ≤ 32ηϵΓ3/2

∥Ŵ2(k + 1)− W̄2(k + 1)∥op ≤ 32ηϵΓ3/2

Proof. Taking the difference between the two update rules, we have that

∥Ŵ1(k + 1)− W̄1(k + 1)∥op = 2η∥(θ(k)−Aft)
(
Σ

(x)
k − Id

)
W2(k)

⊤∥op

≤ 2η∥θ(k)−Aft∥op∥Σ(x)
k − Id∥op∥W2(k)∥op

≤ 2η∥θ(k)−Aft∥opϵ∥W2(k)∥op
≤ 32ηϵΓ3/2.

Similarly we can have the bound for ∥Ŵ2(k + 1)− W̄2(k + 1)∥op.

Lemma D.16. When the event defined in Assumption D.13 happens, for the ideal initialization
dynamic with infinite batch size in Equations (16) and (17), consider two different well-conditioned
parameters θ(k) and θ′(k) with the same initialization θ(0), denote ϵk = max{∥W1(k) −
W ′

1(k)∥op, ∥W2(k)−W ′
2(k)∥op}. we have that

ϵk+1 ≤ (1 + 16ηΓ)ϵk.

Proof. Define Atarget = λApre+Aft

1+λ .

Given the update rule, we have that

W1(k + 1)−W ′
1(k + 1) = (W1(k)−W ′

1(k))︸ ︷︷ ︸
prev error

−2η
[
(θ(k)−Atarget)W2(k)

⊤ − (θ′(k)−Atarget)W ′
2(k)

⊤] .
We only need to properly bound the second term,

∥
[
(θ(k)−Atarget)W2(k)

⊤ − (θ′(k)−Atarget)W ′
2(k)

⊤] ∥op
≤∥θ(k)− θ′(k)∥op∥W2(k)∥op + ∥θ(k)−Atarget∥op∥W2(k)−W ′

2(k)∥op

The difference between θ(k) and θ′(k) is bounded by

∥θ(k)− θ′(k)∥op ≤ ∥W1(k)−W ′
1(k)∥op∥W2(k)∥op + ∥W ′

1(k)∥op∥W2(k)−W ′
2(k)∥op ≤ 4

√
Γϵk.

27

Published as a workshop paper at SCOPE - ICLR 2025

Therefore, we have that

∥
[
(θ(k)−Atarget)W2(k)

⊤ − (θ′(k)−Atarget)W ′
2(k)

⊤] ∥op ≤ 16Γϵk.

We then concludes that

ϵk+1 ≤ (1 + 16ηΓ)ϵk.

This then concludes the proof.

Lemma D.17. When the event defined in Lemma D.14 happens for ϵ < 1
4(1+16ηΓ)K

, define the error
between the ideal initialization dynamic with infinite batch size and the ideal initialization dynamic
with finite batch size as εk = max{∥Ŵ1(k)− W̄1(k)∥op, ∥Ŵ2(k)− W̄2(k)∥op}, then we have that

εk ≤ 2(1 + 16ηΓ)kϵΓ1/2 < Γ1/2/2.

Proof. From Lemma D.9, we have that θ̂ is well-conditioned, if θ̄ is well-conditioned, combin-
ing Lemmas D.15 and D.16, we have that

εk+1 ≤ (1 + 16ηΓ)εk + 32ηϵΓ3/2.

Now we can inductively prove that for k ∈ [0,K],

εk ≤
(
(1 + 16ηΓ)k − 1

)
2ϵΓ1/2.

Given that ϵ < 1
2(1+16ηΓ)K

, we have that

εK < Γ1/2/4.

This then concludes the proof.

D.3.3 ERROR INCURS BY DIFFERENT INITIALIZATION

Finally, we will show that the real initialization dynamic is close to the ideal initialization dynamic,
with error bound depending on the scale of pretraining initialization (which then controls the distance
between the real initialization and the ideal initialization by Theorem D.1).
Lemma D.18. When the event defined in Lemma D.14 happens for ϵ < 1

4(1+16ηΓ)K
, for the

ideal initialization dynamic with finite batch size in Equations (10) and (11), consider two dif-
ferent well-conditioned parameters θ(k) and θ′(k) with the same initialization θ(0), denote
ϵk = max{∥W1(k)−W ′

1(k)∥op, ∥W2(k)−W ′
2(k)∥op}. we have that

ϵk+1 ≤ (1 + 32ηΓ)ϵk.

Proof. The proof is similar to Lemma D.16 and is omitted here.

Lemma D.19. When the event defined in Lemma D.14 happens for ϵ < 1
4(1+32ηΓ)K

, consider two
finetuning processes, with θn(t) starts from the real initialization θ(n) in Theorem D.1 and θ̄n(t)
starts from the ideal initialization θ̄(n) in Equations (7) and (8). Then the two processes are close to
each other for all k ≤ K,

∥W n
1 (k)− W̄ n

1 (k)∥op ≤ (1 + 32ηΓ)
k
exp(−Cτ).

∥W n
2 (k)− W̄ n

2 (k)∥op ≤ (1 + 32ηΓ)
k
exp(−Cτ).

Proof. Define ε̃k = max{∥W n
1 (k) − W̄ n

1 (k)∥F , ∥W n
2 (k) − W̄ n

2 (k)∥F }. By Lemma D.17, θ̄ is
well-conditioned, if θ is well-conditioned, combining Lemma D.18, we have that

ε̃k+1 ≤ (1 + 32ηΓ)ε̃k.

This then suggests that

ε̃k ≤ (1 + 32ηΓ)
k
exp(−Cτ).

This then concludes the proof.

28

Published as a workshop paper at SCOPE - ICLR 2025

D.3.4 COMBING TWO APPROXIMATIONS

Lemma D.20. Under Assumption D.8 and Assumption D.13, for ϵ < 1
4(1+16ηΓ)K

, with probability
1− δ, we have that both W n

1 (k) and W n
2 (k) are well-conditioned and

∥W n
1 (k)− Ŵ n

1 (k)∥op ≤ (1 + 32ηΓ)
k
exp(−Cτ) + 2(1 + 16ηΓ)kΓ1/2ϵ.

∥W n
2 (k)− Ŵ n

2 (k)∥op ≤ (1 + 32ηΓ)
k
exp(−Cτ) + 2(1 + 16ηΓ)kΓ1/2ϵ.

Proof. This is a direct consequence of Lemmas D.14, D.17 and D.19.

Given this lemma, we now present our main assumption and corresponding bound under this
assumption.

Technical Assumptions. We will make the following technical assumptions to simplify the analysis.
Assumption D.21. We will make the following assumption to control the regularity of training. For
arbitrary constant λ0, for

ϵ <
1

4000d

minn≤d{|Σpre
n,n −Σft

n,n|2}
(λ0 + 1)2Γ2

,

1. Finite regularization force: 0 ≤ λ < λ0.

2. (Assumption D.8) Finetuning learning rate is bounded:

4η(λ0 + 2)Γ < 1

3. (Assumption D.10) The finite number of step K ≥ 1
min{Σpre

i,i ,Σft
i,i}

log 100Γ
ϵ .

4. (Assumption D.13) Large enough batch size m,

m ≥ C2
1 (d− log(10dKδ))

ϵ2
(1 + 32ηΓ)2K

for C1 defined in Lemma D.12.

5. Small enough initialization error exp(−Cτ) ≤ Γ1/2ϵ/(1 + 32ηΓ)K for C defined in Theo-
rem D.1.

We will first show this important lemma that the distance between the real initialization and the ideal
initialization is bounded under Assumption D.21.
Lemma D.22. Under Assumption D.21, with probability 1− δ, we have that for every n ≤ d and
k ≤ K,

∥θn(k)− θ̂n(k)∥F ≤
mini≤n{|Σpre

i,i −Σft
i,i|2}

1000(λ0 + 1)2Γ
.

Proof. This is a consequence of Lemma D.20. However, to go from the operator norm bound on
W n

1 (k) and W n
2 (k) to the Frobenius norm bound on θn(k), we need the following two inequalities.

The first one provides an operator norm bound on the difference between θn(k) and θ̂n(k),

∥θn − θ̂n∥op ≤ ∥W n
1 (k)− Ŵ n

1 (k)∥op∥Ŵ n
2 (k)∥op + ∥W n

2 (k)− Ŵ n
2 (k)∥op∥Ŵ n

1 (k)∥op
≤ 4Γ1/2(∥W n

1 (k)− Ŵ n
1 (k)∥op + ∥W n

2 (k)− Ŵ n
2 (k)∥op).

The second one uses this operator norm bound to bound the Frobenius norm of the difference between
θn(k) and θ̂n(k),

∥θn(k)− θ̂n(k)∥F ≤ d∥θn(k)− θ̂n(k)∥op.

Combining these two inequalities with Assumption D.21, we get the desired result.

29

Published as a workshop paper at SCOPE - ICLR 2025

We can continue to show that the finetunig process approximately converges to the minimum.

Lemma D.23. Under Assumption D.21, with probability 1− δ, we have that for every n ≤ d,

∥UTθn(K)V −
Σft

:n,:n + λΣpre
:n,:n

1 + λ
∥F ≤

mini≤n{|Σpre
i,i −Σft

i,i|2}
500(λ0 + 1)2Γ

.

Proof. This is a consequence of Lemmas D.11 and D.22.

D.4 FORMAL STATEMENT AND PROOF OF THEOREM 4.4

Theorem D.24. Under Assumption D.21, with probability 1− δ, For ∆pre(n) = Lpre(θ
n(K))−

Lpre(θ
n(0)). ∆pre(n) ≥ 0 and ∆pre(n) does not decrease with n.

Proof. We will first provide a tight bound for ∆pre(n). By Lemma D.22, we have that

∥θn(0)− θ̂n(0)∥F ≤
mini≤d{|Σpre

i,i −Σft
i,i|2}

100(λ0 + 1)2Γ
.

and by Lemma D.23, we have that

∥UTθn(K)V −
Σft

:n,:n + λΣpre
:n,:n

1 + λ
∥F ≤

mini≤n{|Σpre
i,i −Σft

i,i|2}
50(λ0 + 1)2Γ

.

This suggest that∣∣∣Lpre(θ
n(0))− Lpre(θ̂

n(0))
∣∣∣ = ∣∣∣∥θn(0)−Apre∥2F − ∥θ̂n(0)−Apre∥2F

∣∣∣
≤ ∥θn(0)− θ̂n(0)∥F ∥θn(0) + θ̂n(0)− 2Apre∥op
≤ 32Γ∥θn(0)− θ̂n(0)∥F

≤
mini≤d{|Σpre

i,i −Σft
i,i|2}

10(λ0 + 1)2

Similarly, we have that∣∣∣Lpre(θ
n(K))− Lpre(U

Σft
:n,:n + λΣpre

:n,:n

1 + λ
V T)

∣∣∣ ≤ mini≤n{|Σpre
i,i −Σft

i,i|2}
5(λ0 + 1)2

.

Combining these two inequalities, we have that∣∣∣∆n −

(
Lpre(U

Σft
:n,:n + λΣpre

:n,:n

1 + λ
V T)− Lpre(UΣpre

:n,:nV
T)

)∣∣∣ ≤ 3mini≤n{|Σpre
i,i −Σft

i,i|2}
10(λ0 + 1)2

.

Meanwhile, we have that

Lpre(U
Σft

:n,:n + λΣpre
:n,:n

1 + λ
V T)− Lpre(UΣpre

:n,:nV
T) =

n∑
i=1

(Σft
i,i + λΣpre

i,i

1 + λ
−Σpre

i,i

)2
=

n∑
i=1

(Σft
i,i −Σpre

i,i

1 + λ

)2
.

Therefore if we additionally define ∆0 = 0, we have that for 1 ≤ n ≤ d,

∆n −∆n−1 ≥
(Σpre

n,n −Σft
n,n)

2

(1 + λ)2
−

3mini≤n{|Σpre
i,i −Σft

i,i|2}
5(λ0 + 1)2

> 0.

This completes the proof.

30

Published as a workshop paper at SCOPE - ICLR 2025

D.5 FORMAL STATEMENT AND PROOF OF THEOREM 4.5

Theorem D.25. 1. Under Assumption D.21, when λ = 0, with probability 1− δ, if Apre and
Aft are (4, r)-misaligned, then Lpre(θ

n(K))− Lpre(θ
n−1(K)) > 0 for n ≤ r.

2. Define the inflection point rλ as the smallest value of r for which the pre-training loss
Lpre(n) increases monotonically for every n > r. Assume that regularization strength
λ1 > λ2 > 0 yields iterates θ1 and θ2, if Assumption D.21 holds for

ϵ <
1

4000d

minn≤d{|Σpre
n,n −Σft

n,n|2}
Γ2

min
{(1

(1 + λ2)2
− 1

(1 + λ1)2

)
,

(
λ2
1

(1 + λ1)2
− λ2

2

(1 + λ2)2

)}
,

then with probability 1− δ, we have that rλ1
≤ rλ2

and the unregularized finetuning loss
∥θn

1 (K)−Aft∥2F > ∥θn
2 (K)−Aft∥2F for every n.

Proof. This is the combination of Lemmas D.26 and D.27.

Lemma D.26. Under Assumption D.21, if Σft
n,n > 4Σpre

n,n and λ = 0, then Lpre(θ
n(K)) −

Lpre(θ
n−1(K)) > 0.

Proof. With the same argument as in Theorem D.25, we have that

|Lpre(θ
n(K))− Lpre(UΣft

:n,:nV
T)| ≤

mini≤n{|Σpre
i,i −Σft

i,i|2}
5

.

Noted that

Lpre(UΣft
:n,:nV

T)− Lpre(UΣft
:n−1,:n−1V

T) = (Σft
n,n −Σpre

n,n)
2 − (Σpre

n,n)
2

We further have that Σft
n,n −Σpre

n,n > 2Σpre
n,n. Therefore,

Lpre(θ
n(K))− Lpre(θ

n−1(K))

≥Lpre(UΣft
:n,:nV

T)− Lpre(UΣft
:n−1,:n−1V

T)−
2(Σpre

n,n)
2

5
> 0.

This completes the proof.

Lemma D.27. Assume that regularization strength λ1 > λ2 > 0 yields iterates θ1 and θ2, if As-
sumption D.21 holds for

ϵ <
1

4000d

minn≤d{|Σpre
n,n −Σft

n,n|2}
Γ2

min
{(1

(1 + λ2)2
− 1

(1 + λ1)2

)
,

(
λ2
1

(1 + λ1)2
− λ2

2

(1 + λ2)2

)}
,

then with probability 1− δ, we have that rλ1
≤ rλ2

and the unregularized finetuning loss ∥θn
1 (K)−

Aft∥2F > ∥θn
2 (K)−Aft∥2F for every n.

Proof. Following similar proof as in Lemma D.23, we have that with probability 1− δ,

∥θn
1 (K)− U

Σft
:n,:n + λ1Σ

pre
:n,:n

1 + λ1
V T ∥F ≤

mini≤n{|Σpre
i,i −Σft

i,i|2}
500Γ

(
1

(1 + λ2)2
− 1

(1 + λ1)2

)
.

and

∥θn
2 (K)− U

Σft
:n,:n + λ2Σ

pre
:n,:n

1 + λ2
V T ∥F ≤

mini≤n{|Σpre
i,i −Σft

i,i|2}
500Γ

(
1

(1 + λ2)2
− 1

(1 + λ1)2

)
.

This then implies that

|∥θn
1 (K)−Apre∥2F − ∥

Σft
:n,:n + λ1Σ

pre
:n,:n

1 + λ1
−Σpre∥2F | ≤

mini≤n{|Σpre
i,i −Σft

i,i|2}
50

(
1

(1 + λ2)2
− 1

(1 + λ1)2

)
.

31

Published as a workshop paper at SCOPE - ICLR 2025

Similar bound holds for ∥θn
2 (K)−Aft∥2F .

Combining these two inequalities, we have that(
∥θn

2 (K)−Apre∥2F − ∥θn−1
2 (K)−Apre∥2F

)
−
(
∥θn

1 (K)−Apre∥2F − ∥θn−1
1 (K)−Apre∥2F

)
≥

(∣∣∣Σft
n,n + λ2Σ

pre
n,n

1 + λ2
−Σpre

∣∣∣2 − ∣∣∣Σft
n,n + λ1Σ

pre
n,n

1 + λ1
−Σpre

∣∣∣2)−
mini≤n{|Σpre

i,i −Σft
i,i|2}

25

(
1

(1 + λ2)2
− 1

(1 + λ1)2

)

≥
(

1

(1 + λ2)2
− 1

(1 + λ1)2

)(
∥Σpre

n,n −Σft
n,n∥2F −

mini≤n{|Σpre
i,i −Σft

i,i|2}
25

)
> 0.

This then suggests that ∥θn
2 (K) − Apre∥2F > ∥θn−1

2 (K) − Apre∥2F when ∥θn
1 (K) − Apre∥2F >

∥θn−1
1 (K) − Apre∥2F , showing that rλ1

≤ rλ2
. Using similar argument, we can show that the

unregularized finetuning loss ∥θn
1 (K)−Aft∥2F > ∥θn

2 (K)−Aft∥2F for every n.

D.6 TECHNICAL LEMMAS

In this section, we will first prove some of the technical lemmas on function f defined in Equation (18).
Recall that f is defined as,

f(x; η, λ, σ, σ0) = x+ 2ηx(σ2 − x2) + 2ηλx(σ2
0 − x2).

Lemma D.28. ∀σ > 0, k ∈ N, When (λ + 2)η
(
2max{σ2, σ2

0}+ λ+ λσ0

σ

)
< 1, define σ∗ =√

σ2
0+λσ2

1+λ , it holds that f (k)(σ0; η, λ, σ, σ0) in [min{σ, σ0},max{σ, σ0}], and

|f (k)(σ0; η, λ, σ, σ0)− σ∗| ≤ (1− 2ηmin{σ2, σ2
0})k|σ0 − σ∗|

Proof. Let g(x;σ, σ0, λ) = x(x2 − σ2) + λx(x2 − σ0). Then g(σ∗;σ, σ0, λ) = 0.

We have that

f(x; η, λ, σ, σ0) = x− 2ηg(x;σ, σ0, λ).

For any x ∈ [min{σ, σ0},max{σ, σ0}]. As

g(x;σ, σ0, λ) = x(x2 − σ2) + λx(x2 − σ2
0) = x(x− σ∗)(x+ (λ+ 1)σ∗).

f(x; η, λ, σ, σ0)− σ∗ = x− σ∗ − 2ηg(x;σ, σ0, λ) + 2ηg(σ∗;σ, σ0, λ)

= (x− σ∗)(1− 2ηx(x+ (λ+ 1)σ∗)).

When x ∈ [min{σ, σ0},max{σ, σ0}], x(x+ (λ+ 1)σ∗) ≥ min{σ2, σ2
0}. On the other hand

x(x+ (λ+ 1)σ∗) ≤ (λ+ 2)max{σ2, σ2
0}.

This suggest that
1− 2ηx(x+ (λ+ 1)σ∗) > 0.

Therefore,

|f(x; η, λ, σ, σ0)− σ∗| ≤ |x− σ∗|(1− 2ηmin{σ2, σ2
0}).

Also f(x; η, λ, σ, σ0)− σ∗ has the same sign as x− σ∗. This concludes the proof.

E EXPERIMENTAL DETAILS FROM SECTION 2: LARGE MODEL EXPERIMENTS

In this section, we present all of the omitted experimental details from Section 2 that are necessarily
for replication.

32

Published as a workshop paper at SCOPE - ICLR 2025

Model HuggingFace ID Revision Step Token Budget

OLMo-1B allenai/OLMo-1B-hf step10000-tokens41B 10k 0.04T
step117850-tokens494B 118k 0.5T
step358000-tokens1501B 358k 1.5T
step447000-tokens1874B 447k 1.9T
step561250-tokens2353B 561k 2.4T
step738000-tokens3094B 738k 3.1T

OLMo-2-7B allenai/OLMo-2-1124-7B stage1-step19000-tokens80B 19k 0.08T
stage1-step120000-tokens504B 120k 0.5T
stage1-step441000-tokens1850B 441k 1.9T
stage1-step584000-tokens2450B 584k 2.5T
stage1-step727000-tokens3050B 727k 3.1T
stage1-step928646-tokens3896B 929k 3.9T

LLM360-Amber (7B) LLM360/Amber ckpt 040 40 0.12T
ckpt 102 102 0.31T
ckpt 244 244 0.75T
ckpt 306 306 0.94T
ckpt 358 358 1.1T
ckpt 410 410 1.3T

Table 1: Pre-trained models used in our experiments in Section 2.

E.1 PRE-TRAINED MODELS.

For our pre-trained models, we use checkpoints from three base models: OLMo-1B (Groeneveld
et al., 2024b), OLMo-2-7B (OLMo et al., 2024), and LLM360-Amber (Liu et al., 2023b). We choose
checkpoints that have been released on each of the model’s HuggingFace pages, given by Table 1.

E.2 FINE-TUNING SETUP.

We fine-tune with two different common post-training paradigms: instruction tuning and multimodal
tuning. For instruction tuning, we use the following datasets.

Anthropic-HH (Bai et al., 2022). While Anthropic-HH is typically a dataset designed for preference
tuning—the dataset includes both a “chosen” and a “rejected” response for each instruction—it can
also be used as a standard instruction tuning dataset by treating the “chosen” response as the target.
Anthropic-HH contains 180k instructions and responses.

TULU (Wang et al., 2023). We use the version 1.0 of the TULU SFT mixture, which contains 490k
instructions and responses. However, for compute efficiency, we only use a randomly selected 200k
subset.

LLaVA (Liu et al., 2023a). We use the LLaVA visual instruction tuning framework to train multimodel
models. The LLaVA framework involves two stages: first, fine-tuning an adapter between a vision
model and a pre-trained language model, and then fine-tuning the entire model to follow instructions
in the presence of images.

When fine-tuning for instruction tuning, we use the standard SFT training algorithm with the following
hyperparameters, as shown in Table 2. In this table, we also present the hyperparameters we use with
the LLaVA framework, using the defaults for all non-specified hyperparameters.

E.3 EVALUATIONS

We evaluate the fine-tuned models in two settings: downstream evaluations—tasks that is represen-
tative of the goal of fine-tuning—and generalist evaluations—tasks that are representative of the
model’s overall language understanding and inference capabilities. For downstream evaluations, we
use the following datasets.

AlpacaEval (Li et al., 2023b). To evaluate the downstream performance of instruction-tuned models,
we use AlpacaEval, a benchmark for evaluating the quality of a model’s response to an instruction.

33

Published as a workshop paper at SCOPE - ICLR 2025

Dataset Batch
size

Learning rates Learning
rate sched-
ule

Warmup
steps

Optimizer Weight
decay

Anthropic-
HH

256 1e-6, 5e-6, 1e-5,
5e-5, 8e-5, 1e-4,
2e-4

Cosine 20 AdamW 0

Alpaca 256 1e-6, 5e-6, 1e-5,
5e-5, 8e-5, 1e-4,
2e-4

Cosine 20 AdamW 0

TULU 256 1e-6, 5e-6, 1e-5,
5e-5, 8e-5, 1e-4,
2e-4

Cosine 20 AdamW 0

Visual
(LLaVa)
Stage 1
(Projector
training)

256 1e-3 Cosine 50 AdamW 0

Visual
(LLaVa)
Stage 2 (Inst.
tuning)

256 8e-6, 1e-5, 2e-5,
4e-5, 1e-4

Cosine 40 AdamW 0

Table 2: Hyperparameters used for instruction tuning and LLaVA.

The AlpacaEval benchmark contains 20k instructions, and measures the win-rate of the fine-tuned
model against a reference model. By default, AlpacaEval reports win-rate vs GPT-4 responses.
However, we evaluate models that are weak by comparison to GPT-4. If we compare against GPT-4,
the win rate is so low that it is difficult to see the differences between models. Thus, we compare
against a weaker model. In particular, for each of our models, we use a reference model of the same
architecture that was also fine-tuned on the same dataset. More specifically, we use the model trained
with seed 0 with learning rate 10−5. This means that the AlpacaEval scores are not comparable across
different graphs, as the reference generations are different for each model and dataset. Additionally,
the AlpacaEval score of the model trained with seed 0 and learning rate 10−5 is 50% by definition.
Overall, we adopt these choices to ensure that the reference generations are comparable to each model
output. We use LLaMA-3-70B-Instruct (Grattafiori et al., 2024) as an evaluator to determine the win
rate.

VLM Score. To evaluate the downstream performance of our LLaVA models, we use an average of
the following five standard vision-language benchmarks: MME (Fu et al., 2024), GQA (Hudson &
Manning, 2019), AI2D (Kembhavi et al., 2016), POPE (Li et al., 2023c), and TextVQA (Singh et al.,
2019). We report the average as the “VLM score”.

Generalist evaluations. To evaluate each language model for generalist capabilities, we consider a
suite of ten commonly used LLM evaluation benchmarks. These tasks assess performance beyond the
fine-tuning task. These tasks cover reasoning (ARC Challenge and ARC Easy (Clark et al., 2018)),
commonsense (PIQA (Bisk et al., 2020), Winogrande (Sakaguchi et al., 2021)), natural language
inference (BoolQ (Clark et al., 2019), COPA, SCIQ) and sentence completion (HellaSwag). For all
of our evaluations, we report 5-shot performance.

F EXPERIMENTAL DETAILS FROM SECTION 3: CONTROLLED EXPERIMENTS

In this section, we provide additional experimental details for the controlled experiments presented
in Section 3.

34

Published as a workshop paper at SCOPE - ICLR 2025

F.1 PRE-TRAINING AND FINE-TUNING SETUP.

For our controlled experiments, we pre-train models using the OLMo codebase (Groeneveld et al.,
2024b). We use muP parameterization for all of our experiments (Yang et al., 2022).

Pre-training. We train three different model classes: OLMo-15M, OLMo-30M, and OLMo-90M with
15M, 30M and 90M non-embedding parameters, respectively. We use the following hyperparameters
for pre-training, as shown in Table 3. For each model, we train for tokens in the range 4B, 8B, 16B,
32B, 64B, 128B using the pre-tokenized C4 “high quality” web data distributed by OLMo (OLMo
et al., 2024). We train with 8xA100 GPUs.

Hyperparameters OLMo-15M OLMo-30M OLMo-90M

Layers 3 6 9
Heads 3 6 9
Number of unique tokens 50304 50304 50304
Hidden dimensions 192 384 576
Inner MLP dimensions 768 1536 2304
Max context length 1024 1024 1024
Activation type SwiGLU SwiGLU SwiGLU
Attention dropout 0.1 0.1 0.1
Residual dropout 0.1 0.1 0.1
Embedding dropout 0.1 0.1 0.1
Optimizer AdamW AdamW AdamW
Learning rate 0.0003 0.0003 0.0003
Beta1 0.9 0.9 0.9
Beta2 0.95 0.95 0.95
Learning rate scheduler Cosine Cosine Cosine
Warmup steps 10% of training 10% of training 10% of training
Weight decay 0.1 0.1 0.1
Batch size 256 256 256

Table 3: Pre-training hyperparameters used in our controlled experiments.

For each model, we anneal the learning rate to zero over the course of training, at the rate specified
by the cosine learning rate scheduler.

Fine-tuning. For each of our controlled experiments, we fine-tune the pre-trained models on a
series of downstream tasks of two types: classification and language modeling. These ten datasets
are: classification—SUBJ (Pang & Lee, 2004), BoolQ (Clark et al., 2019), MR (Conneau & Kiela,
2018), CR (Conneau & Kiela, 2018), RTE (Dagan et al., 2005), TREC (Voorhees & Tice, 2000),
English Tweet sentiment (Maggie et al., 2020), SIQA (Sap et al., 2019), and language modeling—
GSM8k (Cobbe et al., 2021), Starcoder-Python (Li et al., 2023a). For Starcoder-Python, we use a 5k
example subset. To avoid confusion, note that despite the fact that GSM8k is often evaluated as a
math reasoning benchmark, we treat it as a language modeling task to evaluate how well the models
can learn math-style text. We use the following hyperparameters for fine-tuning, as shown in Table 4.

Evaluation. For tuning, we use a heldout validation set from each dataset, but report scores on a
separate heldout test set. In order to compute the perplexity for classification tasks, we compute a
score for each class by measuring the length-normalized likelihood of the class, and then report the
perplexity over the classes. For generative tasks, we use the standard language modeling loss. As a
measure of generalist capability, we report the perplexity on a heldout C4 web data set.

Appropriate learning rate ranges for Figure 3. For visualization purposes, we choose to plot a
subset of the learning rates which we evaluate in Figure 3. In particular, we plot learning rates where
the maximum pre-training perplexity, over all token budgets, is less than 6. This ensures that the
learning rates we plot are in a range where the model is still retaining pre-training capability, and has
not degenerated to a high perplexity which may not represent the more general case.

Using learning rate as a proxy for a fixed perturbation size. We report the distance between the
pre-trained and fine-tuned model as a function of the learning rate for different token budgets in
Figure 8. Recall, from Section 3, that we specified that the learning rate is an approximate proxy for
the size of the perturbation applied to the model. We observe that the distance between the pre-trained

35

Published as a workshop paper at SCOPE - ICLR 2025

Hyperparameters Values

Learning rate 4e-6, 8e-6, 1e-5, 2e-5, 4e-5, 5e-5, 6e-5, 7e-5, 8e-5, 9e-5, 1e-4, 1.1e-4, 1.2e-4,
1.4e-4, 1.6e-4, 1.8e-4, 2e-4, 2.4e-4, 4e-4, 5e-4, 6e-4, 8e-4, 1e-3, 2e-3, 3e-3,
4e-3, 6e-3

Batch size 32, 64*, 256
Learning rate sched-
uler

Cosine*, Constant

Optimizer AdamW
Weight decay 0.0
Warmup steps 10% of training
Epochs 4

Table 4: Fine-tuning hyperparameters used in our controlled experiments. We tune over all specified
learning rates. For the other hyperparameters, when multiple are specified, the asterisks (*) indicates
the default value which is used unless a different hyperparameter is specified. We perform early
stopping over the number of epochs.

1.20e-046 × 10 5

Learning rate

100

2 × 100

3 × 100

4 × 100

Di
st

an
ce

 (L
2

no
rm

)

subj

1.20e-046 × 10 5

Learning rate

101

6 × 100

2 × 101

3 × 101

Di
st

an
ce

 (L
2

no
rm

)

siqa

1.20e-046 × 10 5

Learning rate

101

3 × 100
4 × 100

6 × 100

Di
st

an
ce

 (L
2

no
rm

)

gsm8k

1.20e-046 × 10 5

Learning rate

101

3 × 100
4 × 100

6 × 100

Di
st

an
ce

 (L
2

no
rm

)

starcoder-python-5k
Pre-training tokens

4B
8B
16B
32B
64B
128B

Figure 8: Distance, as measured by L2 norm, between the pre-trained and fine-tuned model as
a function of learning rate for OLMo-30M. More specifically, if θpre and θft are the parameters
of the pre-trained and fine-tuned models, respectively, we plot ∥θpre − θft∥2 as a function of the
learning rate. We observe that the distance between the pre-trained and fine-tuned model is not
exactly, but approximately, directly proportional to the learning rate and independent of the amount
of pre-training.

and fine-tuned model is not exactly, but approximately, directly proportional to the learning rate and
independent of the amount of pre-training.

F.2 GAUSSIAN PERTURBATIONS.

In this subsection, we outline the details concerning Gaussian perturbations applied during our
experiments. In particular, we perturb each parameter by a random value sampled from a mean-zero
Gaussian distribution and evaluate the degradation of pre-training perplexity in Section 3. Using an
isotropic Gaussian perturbation, i.e., perturbing each parameter by the same amount, would discount
differences in parameter magnitude across different layers. To account for this, we choose to scale
the perturbation to each layer to be approximately proportional to the magnitude of the parameter in
that layer—however, we want the magnitude to be constant for different pre-training token budgets.
Thus, we choose to normalize the magnitude of each perturbation to the same magnitude as the layer
at initialization prior to pre-training.

G CONNECTION BETWEEN PROGRESSIVE SENSITIVITY AND SHARPNESS

In this section, we discuss the connection between our progressive sensitivity conjecture and the
phenomenon known as progressive sharpening (Cohen et al., 2021) in greater detail.

Progressive sharpening. This phenomenon refers to the empirical observation that over training
with a fixed learning rate, the spectral norm ∥∇2L(θ)∥2 of the Hessian of the loss function L at the
parameters θ increases over time, at least early in training. In the case of of (full batch) gradient
descent with a fixed learning rate η, ∥∇2L(θ)∥2 specifically increases until it reaches 2/η, which
is discussed in detail in Cohen et al. (2021). In addition to the spectral norm, other norms of the

36

Published as a workshop paper at SCOPE - ICLR 2025

0.00 0.02 0.04 0.06 0.08 0.10
Perturbation strength ()

3.64

3.66

3.68

3.70

3.72

3.74

Pr
e-

tra
in

in
g

pe
rp

le
xi

ty

32B
64B
128B

32B hessian approx
64B hessian approx
128B hessian approx

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Perturbation strength ()

3.6

3.8

4.0

4.2

4.4

4.6

Pr
e-

tra
in

in
g

pe
rp

le
xi

ty

32B
64B
128B

32B hessian approx
64B hessian approx
128B hessian approx

Figure 9: Hessian approximation of the pre-training loss under a single interpolated Gaussian
parameter perturbation. We randomly draw a Gaussian perturbation ε, and then compute the loss
L(θ + λε), where λ is the scaling factor, for many different λ (extremely close to zero on the left,
and with a wider range on the right). We then compute Hessian, and use it to render the quadratic
approximation of the loss.

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Fine-tuning perturbation ratio

3.66

3.68

3.70

3.72

3.74

Pr
e-

tra
in

in
g

pe
rp

le
xi

ty

0.0 0.2 0.4 0.6 0.8 1.0
Fine-tuning perturbation ratio

4

5

6

7

8

9

10
Pr

e-
tra

in
in

g
pe

rp
le

xi
ty

32B
64B
128B

32B-hessian-approx
64B-hessian-approx
128B-hessian-approx

Figure 10: Hessian approximation of the pre-training loss under an interpolated fine-tuning
perturbation. We fine-tune each model on ag news yielding a fine-tuning perturbation ε, and then
compute the loss L(θ + λε), where λ is the scaling factor, for many different λ (extremely close to
zero on the left, and with a wider range on the right). We then compute Hessian, and use it to render
the quadratic approximation of the loss.

Hessian, such as the trace norm, also exhibit a similar behavior.

Relationship between progressive sensitivity and progressive sharpening when loss is quadratic.
As it turns out, progressive sensitivity and progressive sharpening are closely related specifically in
the quadratic setting. In particular, consider a quadratic loss function L(θ) = 1

2θ
⊤Hθ + g⊤θ + c,

where θ ∈ Rd, H ∈ Rd×d is a symmetric matrix, g ∈ Rd, and c ∈ R. We will look specifically at the
sensitivity to a Gaussian perturbation ∆(θ, λ) = E [L(θ + λε)− L(θ)], where ε ∼ N (0, I) is a unit
Gaussian vector.
Proposition G.1. The sensitivity of L to a Gaussian perturbation is given by ∆(θ, λ) = 1

2λ
2 TrH .

Proof. We have,

E [L(θ)− L(θ + λε)] = E
[
1

2

(
(θ + λε)⊤H(θ + λε) + g⊤(θ + λε) + c

)
− 1

2
(θ⊤Hθ + g⊤θ + c)

]
(19)

= E
[
1

2
λ2ε⊤Hε

]
=

1

2
λ2 TrH, (20)

37

Published as a workshop paper at SCOPE - ICLR 2025

where the second equality follows from the linearity of expectation and the fact that E[ε] = 0.

This proposition establishes that the sensitivity under a Gaussian perturbation is exactly related to
the Hessian when the loss function is quadratic. This connection will hold, in general, when the loss
function is well-approximated by its second-order Taylor expansion, such as when λ is small. In this
instance, progressive sharpening and progressive sensitivity are closely related.

Progressive sharpness is not sufficient to explain degradation when λ is large. We plot the
empirical loss of three different OLMo-30B models (trained on 32B, 64B, and 128B tokens) under a
Gaussian perturbation with perturbation strength λ, as well as the second-order Taylor approximation
in Figure 9. In particular, we draw the perturbation ε with the distribution described in Appendix F.2.
We observe that while the loss is well-approximated by the Hessian when λ is small (left), the
approximation breaks down when λ is large (right), and the actual loss is substantially higher than
the quadratic approximation.

Progressive sharpness is not a sufficient explanation for fine-tuning sensitivity. Similar to the
Gaussian case, we consider the loss of three OLMo-30B models as they are interpolated between the
base model and the model fine-tuned on ag news in Figure 10. In this example, a perturbation strength
of λ = 0 corresponds to the base model, while a perturbation strength of λ = 1 corresponds to the fine-
tuned model. Similar to the Gaussian case, we observe that the loss is not well-approximated by the
Hessian when λ is large, and the actual loss is substantially higher than the quadratic approximation
(right).

Progressive sensitivity as a generalization of progressive sharpness. Our results highlight that in
addition to progressive sharpness, which specifically refers to a progressive increase in the eigenvalues
of the Hessian of the loss function with training, there is a more global phenomenon where the loss
becomes even more sensitive to perturbations than the quadratic approximation predicts.

H OMITTED FIGURES FROM SECTION 2: LARGE MODEL EXPERIMENTS

In this section, we provide the omitted figures from Section 2 that show the results of the extended
experiments with large models.

The following Table 5 lists the table of contents for the omitted figures.

Dataset (Variant) OLMo-1B OLMo-2-7B LLM360-7B

Anthropic-HH (tuned learning rate) Figure 11 Figure 13 Figure 15
Anthropic-HH (all learning rates) Figure 12 Figure 14 Figure 16

TULU (tuned learning rate) Figure 17 Figure 19 Figure 21
TULU (all learning rates) Figure 18 Figure 20 Figure 22

VLM (tuned learning rate) Figure 23 Figure 25 Figure 27
VLM (all learning rates) Figure 24 Figure 26 Figure 28

Table 5: Figure references for each dataset (Alpaca, Anthropic-HH, TULU, VLM) and model (OLMo-
1B, OLMo-2-7B, LLM360-7B), separated by learning rate tuning variant.

38

Published as a workshop paper at SCOPE - ICLR 2025

50

55
Sc

or
e

AlpacaEval

30

35
arc_challenge

60.0

62.5

65.0

arc_easy

74

75

76

piqa

1 2 3
PT tokens (trillion)

50

60

Sc
or

e

boolq

1 2 3
PT tokens (trillion)

58

60

winogrande

1 2 3
PT tokens (trillion)

57.5

60.0

62.5

hellaswag

1 2 3
PT tokens (trillion)

90

92

sciq

 Base model Fine-tuned model

Figure 11: Evaluation OLMo-1B post-trained on Anthropic-HH as a function of the number
of pre-trained tokens, with tuned learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (AlpacaEval). This figure
is analogous to Figure 2.

40

50

Sc
or

e

AlpacaEval

25

30

35

arc_challenge

40

50

60

arc_easy

65

70

75

piqa

1 2 3
PT tokens (trillion)

50

60

Sc
or

e

boolq

1 2 3
PT tokens (trillion)

55

60
winogrande

1 2 3
PT tokens (trillion)

40

50

60

hellaswag

1 2 3
PT tokens (trillion)

70

80

90

sciq

 Base model Minimum learning rate Maximum learning rate

Figure 12: Evaluation OLMo-1B post-trained on Anthropic-HH as a function of the number
of pre-trained tokens, for all learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
also compare to the base model (dashed line). This figure is similar to Figure 11, except we plot every
learning rate, with a line representing a fixed learning rate.

39

Published as a workshop paper at SCOPE - ICLR 2025

66

67

68
Sc

or
e

AlpacaEval

52.5

55.0

57.5

arc_challenge

82

84

arc_easy

80

81

piqa

2 3
PT tokens (trillion)

80

82

Sc
or

e

boolq

2 3
PT tokens (trillion)

74

76
winogrande

2 3
PT tokens (trillion)

76

78

80

hellaswag

2 3
PT tokens (trillion)

96.75

97.00

97.25
sciq

 Base model Fine-tuned model

Figure 13: Evaluation OLMo-2-7B post-trained on Anthropic-HH as a function of the number
of pre-trained tokens, with tuned learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (AlpacaEval). This figure
is analogous to Figure 2.

40

60

Sc
or

e

AlpacaEval

50

55

arc_challenge

80

85
arc_easy

78

80

piqa

2 3
PT tokens (trillion)

80

82

Sc
or

e

boolq

2 3
PT tokens (trillion)

72

74

76
winogrande

2 3
PT tokens (trillion)

75

80
hellaswag

2 3
PT tokens (trillion)

96

97

sciq

 Base model Minimum learning rate Maximum learning rate

Figure 14: Evaluation OLMo-2-7B post-trained on Anthropic-HH as a function of the number
of pre-trained tokens, for all learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
also compare to the base model (dashed line). This figure is similar to Figure 13, except we plot every
learning rate, with a line representing a fixed learning rate.

40

Published as a workshop paper at SCOPE - ICLR 2025

52.5

55.0

57.5
Sc

or
e

AlpacaEval

37.5

40.0

42.5

arc_challenge

70

72

74

arc_easy

78

79

80
piqa

0.5 1.0
PT tokens (trillion)

67.5

70.0

72.5

Sc
or

e

boolq

0.5 1.0
PT tokens (trillion)

62.5

65.0

67.5

winogrande

0.5 1.0
PT tokens (trillion)

67.5

70.0

72.5

hellaswag

0.5 1.0
PT tokens (trillion)

94.5

95.0

95.5
sciq

 Base model Fine-tuned model

Figure 15: Evaluation LLM360-7B post-trained on Anthropic-HH as a function of the number
of pre-trained tokens, with tuned learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (AlpacaEval). This figure
is analogous to Figure 2.

30
40
50

Sc
or

e

AlpacaEval

37

40

42

arc_challenge

70

72

75
arc_easy

78

80

piqa

0 1
PT tokens (trillion)

60

70

Sc
or

e

boolq

0 1
PT tokens (trillion)

62

65

67

winogrande

0 1
PT tokens (trillion)

67
70
72

hellaswag

0 1
PT tokens (trillion)

94

95

sciq

 Base model Minimum learning rate Maximum learning rate

Figure 16: Evaluation LLM360-7B post-trained on Anthropic-HH as a function of the number
of pre-trained tokens, for all learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
also compare to the base model (dashed line). This figure is similar to Figure 15, except we plot every
learning rate, with a line representing a fixed learning rate.

41

Published as a workshop paper at SCOPE - ICLR 2025

45

50
Sc

or
e

AlpacaEval

28

30

32

arc_challenge

60.0

62.5

65.0

arc_easy

74

76

piqa

1 2 3
PT tokens (trillion)

50

60

Sc
or

e

boolq

1 2 3
PT tokens (trillion)

58

60

winogrande

1 2 3
PT tokens (trillion)

55

60

hellaswag

1 2 3
PT tokens (trillion)

92

93

sciq

 Base model Fine-tuned model

Figure 17: Evaluation OLMo-1B post-trained on TULU as a function of the number of pre-
trained tokens, with tuned learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (AlpacaEval). This figure
is analogous to Figure 2.

30

40

50

Sc
or

e

AlpacaEval

25

30

arc_challenge

40

60

arc_easy

60

70

piqa

1 2 3
PT tokens (trillion)

40

50

60

Sc
or

e

boolq

1 2 3
PT tokens (trillion)

50

55

60
winogrande

1 2 3
PT tokens (trillion)

40

60

hellaswag

1 2 3
PT tokens (trillion)

50

75

sciq

 Base model Minimum learning rate Maximum learning rate

Figure 18: Evaluation OLMo-1B post-trained on TULU as a function of the number of pre-
trained tokens, for all learning rates. We report the scores on eight different datasets: AlpacaEval
is considered to be the main evaluation of interest (corresponding with the downstream performance),
and the other datasets are considered out-of-distribution (corresponding with the generalist perfor-
mance). We use the intermediate checkpoints from Table 1 for the evaluation. We also compare to
the base model (dashed line). This figure is similar to Figure 17, except we plot every learning rate,
with a line representing a fixed learning rate.

42

Published as a workshop paper at SCOPE - ICLR 2025

52.0

52.5

Sc
or

e
AlpacaEval

55.0

57.5

60.0

arc_challenge

82

84

86
arc_easy

80

81

82
piqa

2 3
PT tokens (trillion)

82.5

85.0

Sc
or

e

boolq

2 3
PT tokens (trillion)

74

75

76

winogrande

2 3
PT tokens (trillion)

78

79

80

hellaswag

2 3
PT tokens (trillion)

97.0

97.5
sciq

 Base model Fine-tuned model

Figure 19: Evaluation OLMo-2-7B post-trained on TULU as a function of the number of
pre-trained tokens, with tuned learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (AlpacaEval). This figure
is analogous to Figure 2.

30

40

50

Sc
or

e

AlpacaEval

55

60

arc_challenge

82

84

86
arc_easy

80

81

82
piqa

2 3
PT tokens (trillion)

82

85

Sc
or

e

boolq

2 3
PT tokens (trillion)

74

76

winogrande

2 3
PT tokens (trillion)

76

78

80

hellaswag

2 3
PT tokens (trillion)

97

97
sciq

 Base model Minimum learning rate Maximum learning rate

Figure 20: Evaluation OLMo-2-7B post-trained on TULU as a function of the number of pre-
trained tokens, for all learning rates. We report the scores on eight different datasets: AlpacaEval
is considered to be the main evaluation of interest (corresponding with the downstream performance),
and the other datasets are considered out-of-distribution (corresponding with the generalist perfor-
mance). We use the intermediate checkpoints from Table 1 for the evaluation. We also compare to
the base model (dashed line). This figure is similar to Figure 19, except we plot every learning rate,
with a line representing a fixed learning rate.

43

Published as a workshop paper at SCOPE - ICLR 2025

60

65

70
Sc

or
e

AlpacaEval

37.5

40.0

42.5
arc_challenge

70

72

74

arc_easy

78

79

80
piqa

0.5 1.0
PT tokens (trillion)

70

75

Sc
or

e

boolq

0.5 1.0
PT tokens (trillion)

62.5

65.0

67.5

winogrande

0.5 1.0
PT tokens (trillion)

67.5

70.0

72.5

hellaswag

0.5 1.0
PT tokens (trillion)

95

96

sciq

 Base model Fine-tuned model

Figure 21: Evaluation LLM360-7B post-trained on TULU as a function of the number of
pre-trained tokens, with tuned learning rates. We report the scores on eight different datasets:
AlpacaEval is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (AlpacaEval). This figure
is analogous to Figure 2.

20

40

60

Sc
or

e

AlpacaEval

37

40

42
arc_challenge

70

72

75
arc_easy

78

80

piqa

0 1
PT tokens (trillion)

70

75

Sc
or

e

boolq

0 1
PT tokens (trillion)

62

65

67

winogrande

0 1
PT tokens (trillion)

67

70

72

hellaswag

0 1
PT tokens (trillion)

95

96

sciq

 Base model Minimum learning rate Maximum learning rate

Figure 22: Evaluation LLM360-7B post-trained on TULU as a function of the number of pre-
trained tokens, for all learning rates. We report the scores on eight different datasets: AlpacaEval
is considered to be the main evaluation of interest (corresponding with the downstream performance),
and the other datasets are considered out-of-distribution (corresponding with the generalist perfor-
mance). We use the intermediate checkpoints from Table 1 for the evaluation. We also compare to
the base model (dashed line). This figure is similar to Figure 21, except we plot every learning rate,
with a line representing a fixed learning rate.

44

Published as a workshop paper at SCOPE - ICLR 2025

46

48
Sc

or
e

VLM Score

30

35
arc_challenge

60.0

62.5

65.0

arc_easy

74

75

76

piqa

1 2 3
PT tokens (trillion)

50

60

Sc
or

e

boolq

1 2 3
PT tokens (trillion)

58

60

winogrande

1 2 3
PT tokens (trillion)

55

60

hellaswag

1 2 3
PT tokens (trillion)

91

92

93

sciq

 Base model Fine-tuned model

Figure 23: Evaluation OLMo-1B post-trained on VLM as a function of the number of pre-
trained tokens, with tuned learning rates. We report the scores on eight different datasets: VLM
Score is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (VLM Score). This figure
is analogous to Figure 2.

40

45

Sc
or

e

VLM Score

30

35
arc_challenge

60

65

arc_easy

72

74

76

piqa

1 2 3
PT tokens (trillion)

50

60

Sc
or

e

boolq

1 2 3
PT tokens (trillion)

57

60

winogrande

1 2 3
PT tokens (trillion)

50

60

hellaswag

1 2 3
PT tokens (trillion)

90

92

sciq

 Base model Minimum learning rate Maximum learning rate

Figure 24: Evaluation OLMo-1B post-trained on VLM as a function of the number of pre-
trained tokens, for all learning rates. We report the scores on eight different datasets: VLM
Score is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
also compare to the base model (dashed line). This figure is similar to Figure 23, except we plot every
learning rate, with a line representing a fixed learning rate.

45

Published as a workshop paper at SCOPE - ICLR 2025

55

56
Sc

or
e

VLM Score

56

58

arc_challenge

82

84

arc_easy

80

81

82
piqa

2 3
PT tokens (trillion)

80.0

82.5

85.0

Sc
or

e

boolq

2 3
PT tokens (trillion)

74

75

76

winogrande

2 3
PT tokens (trillion)

78

80

hellaswag

2 3
PT tokens (trillion)

96.75

97.00

97.25
sciq

 Base model Fine-tuned model

Figure 25: Evaluation OLMo-2-7B post-trained on VLM as a function of the number of pre-
trained tokens, with tuned learning rates. We report the scores on eight different datasets: VLM
Score is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (VLM Score). This figure
is analogous to Figure 2.

45

50

55

Sc
or

e

VLM Score

55

60

arc_challenge

80

85

arc_easy

80

82
piqa

2 3
PT tokens (trillion)

80

85

Sc
or

e

boolq

2 3
PT tokens (trillion)

74

76

winogrande

2 3
PT tokens (trillion)

78

80

hellaswag

2 3
PT tokens (trillion)

95

96

97

sciq

 Base model Minimum learning rate Maximum learning rate

Figure 26: Evaluation OLMo-2-7B post-trained on VLM as a function of the number of pre-
trained tokens, for all learning rates. We report the scores on eight different datasets: VLM
Score is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
also compare to the base model (dashed line). This figure is similar to Figure 25, except we plot every
learning rate, with a line representing a fixed learning rate.

46

Published as a workshop paper at SCOPE - ICLR 2025

50

55
Sc

or
e

VLM Score

38

40

42

arc_challenge

70

72

arc_easy

78

79

piqa

0.5 1.0
PT tokens (trillion)

67.5

70.0

72.5

Sc
or

e

boolq

0.5 1.0
PT tokens (trillion)

62.5

65.0

67.5

winogrande

0.5 1.0
PT tokens (trillion)

67.5

70.0

72.5

hellaswag

0.5 1.0
PT tokens (trillion)

94.5

95.0

95.5

sciq

 Base model Fine-tuned model

Figure 27: Evaluation LLM360-7B post-trained on VLM as a function of the number of
pre-trained tokens, with tuned learning rates. We report the scores on eight different datasets:
VLM Score is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
tune the learning rate for each checkpoint to maximize the main evaluation (VLM Score). This figure
is analogous to Figure 2.

40

50

Sc
or

e

VLM Score

37

40

42

arc_challenge

70

72

arc_easy

78

79

piqa

0 1
PT tokens (trillion)

70

75

Sc
or

e

boolq

0 1
PT tokens (trillion)

62

65

67

winogrande

0 1
PT tokens (trillion)

67

70

72

hellaswag

0 1
PT tokens (trillion)

95

96
sciq

 Base model Minimum learning rate Maximum learning rate

Figure 28: Evaluation LLM360-7B post-trained on VLM as a function of the number of pre-
trained tokens, for all learning rates. We report the scores on eight different datasets: VLM
Score is considered to be the main evaluation of interest (corresponding with the downstream
performance), and the other datasets are considered out-of-distribution (corresponding with the
generalist performance). We use the intermediate checkpoints from Table 1 for the evaluation. We
also compare to the base model (dashed line). This figure is similar to Figure 27, except we plot every
learning rate, with a line representing a fixed learning rate.

47

Published as a workshop paper at SCOPE - ICLR 2025

I OMITTED FIGURES FROM SECTION 3: CONTROLLED EXPERIMENTS

In this section, we provide the omitted figures from Section 3 that show the results of the extended
controlled experiments.

I.1 SENSITIVITY

1010 1011

Pre-training tokens

0

1

2

 p
er

pl
ex

ity

max_lr=5.0e-04
GSM8K

1010 1011

Pre-training tokens

0

1

2 max_lr=1.6e-04
SIQA

1010 1011

Pre-training tokens

0

1

2 max_lr=1.0e-03
StarCoder-Python

1010 1011

Pre-training tokens

0

2

max_lr=9.0e-05
MR

1010 1011

Pre-training tokens

0

1

2 max_lr=8.0e-05
RTE

1010 1011

Pre-training tokens

0

1

2
max_lr=9.0e-05

TREC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

 Base model Minimum fine-tuning learning rate (4e-6) Maximum fine-tuning learning rate (max)

Figure 29: Sensitivity of fine-tuned models with fixed learning rate in our controlled setup. This
figure is analogous to Figure 3 from the main paper, but plots the difference in perplexity between the
fine-tuned model and the base model for OLMo-30M. This figure illustrates that sensitivity increases
progressively throughout training.

To supplement Figure 4 from the main paper, we plot the sensitivity of fine-tuned models with fixed
learning rate in our controlled setup as a function of the number of pre-training tokens in Figure 29.
We find, across all datasets, that sensitivity progressively increases throughout training. Since this
figure is sufficiently similar to Figure 4, we omit the corresponding sensitivity figures for the other
settings we consider.

I.2 EXTENDED FINE-TUNING EXPERIMENTS.

We now plot the extended fine-tuning experiments. We ablate the batch size, learning rate scheduler,
and model size. Table 6 provides a reference to the figures that show the results of the extended
controlled experiments.

Setting Pre-training Fine-tuning Tuned pre-training Tuned fine-tuning Optimal LR
perplexity perplexity perplexity perplexity

Batch size: 256 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34
Batch size: 32 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39
LR schedule: Constant Figure 40 Figure 41 Figure 42 Figure 43 Figure 44
LR schedule: constant with warmup Figure 45 Figure 46 Figure 47 Figure 48 Figure 49
OLMo-15M Figure 50 Figure 51 Figure 52 Figure 53 Figure 54
OLMo-30M (extended) Figure 55 Figure 56 Figure 57 Figure 58 Figure 59
OLMo-90M Figure 60 Figure 61 Figure 62 Figure 63 Figure 64

Table 6: Table of contents for extended experimental settings. This table provides a reference to
the figures that show the results of the extended controlled experiments.

48

Published as a workshop paper at SCOPE - ICLR 2025

5

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.4e-04
subj

2.5

5.0

7.5

10.0
max_lr=9.0e-05

boolq

4

6

8
max_lr=1.1e-04

mr

5

10

15
max_lr=6.0e-03

cr

5.0

7.5

10.0

12.5 max_lr=1.4e-04
rte

1010 1011

Pre-training tokens

5

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.8e-04
trec

1010 1011

Pre-training tokens

5

10

max_lr=1.4e-04
tweet_sentiment_en

1010 1011

Pre-training tokens

4

6

8 max_lr=6.0e-03
siqa

1010 1011

Pre-training tokens

5.0

7.5

10.0
max_lr=6.0e-03

gsm8k

1010 1011

Pre-training tokens

4

5

6
max_lr=6.0e-03

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 30: Pre-training perplexity after fine-tuning as a function of the pre-training budget
using the configuration specified in Table 3 but with batch size 256 for the OLMo-30M model.
Each connected line reflects a series of models trained with fixed hyperparameters.

0.2

0.4

0.6

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.4e-04
subj

0.8

1.0
max_lr=9.0e-05

boolq

0.4

0.5

0.6

max_lr=1.1e-04
mr

0.4

0.6

max_lr=6.0e-03
cr

0.7

0.8

0.9

max_lr=1.4e-04
rte

1010 1011

Pre-training tokens

1

2

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.8e-04
trec

1010 1011

Pre-training tokens

0.6

0.8

max_lr=1.4e-04
tweet_sentiment_en

1010 1011

Pre-training tokens

2

3

4
max_lr=6.0e-03

gsm8k

1010 1011

Pre-training tokens

5

6

7 max_lr=6.0e-03
siqa

1010 1011

Pre-training tokens

3

4

5

max_lr=6.0e-03
starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 31: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget using
the configuration specified in Table 3 but with batch size 256 for the OLMo-30M model. Each
connected line reflects a series of models trained with fixed hyperparameters.

49

Published as a workshop paper at SCOPE - ICLR 2025

4

6

8

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

subj

10

15

20
boolq

5

10

mr

5

10

cr

5

10

15

rte

1010 1011

Pre-training tokens

5.0

7.5

10.0

12.5

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

5.0

7.5

10.0

tweet_sentiment_en

1010 1011

Pre-training tokens

4.75

5.00

5.25

gsm8k

1010 1011

Pre-training tokens

4.0

4.2

siqa

1010 1011

Pre-training tokens

4.4

4.6

4.8

starcoder-python-5k

Figure 32: Pre-training perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified in
Table 3 but with batch size 256 for the OLMo-30M model. Similar to the untuned version but with
the fine-tuning-optimal learning rate.

0.14

0.15

0.16

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

subj

0.64

0.66

boolq

0.38

0.40

0.42

mr

0.30

0.35

cr

0.675

0.680

0.685

0.690
rte

1010 1011

Pre-training tokens

0.16

0.18

0.20

0.22

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

0.54

0.55

0.56
tweet_sentiment_en

1010 1011

Pre-training tokens

1.40

1.45

1.50

gsm8k

1010 1011

Pre-training tokens

4.4

4.6

siqa

1010 1011

Pre-training tokens

2.8

2.9

3.0
starcoder-python-5k

Figure 33: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified in
Table 3 but with batch size 256 for the OLMo-30M model. Similar to the untuned version but with
the fine-tuning-optimal learning rate.

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

subj boolq mr cr rte

1010 1011

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

trec

1010 1011

Pre-training tokens

tweet_sentiment_en

1010 1011

Pre-training tokens

gsm8k

1010 1011

Pre-training tokens

siqa

1010 1011

Pre-training tokens

starcoder-python-5k

Figure 34: The optimal learning rate for best fine-tuning performance as a function of the
pre-training budget using the configuration specified in Table 3 but with batch size 256 for the
OLMo-30M model. The learning rate shown corresponds with those chosen in Figures 32 and 33.

50

Published as a workshop paper at SCOPE - ICLR 2025

5.0

7.5

10.0

12.5

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.1e-04
subj

5.0

7.5

10.0

12.5 max_lr=7.0e-05
boolq

4

6

8

10 max_lr=9.0e-05
mr

5.0

7.5

10.0

12.5 max_lr=1.1e-04
cr

5

10

15
max_lr=1.4e-04

rte

1010 1011

Pre-training tokens

5.0

7.5

10.0

12.5

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.1e-04
trec

1010 1011

Pre-training tokens

5

10

max_lr=7.0e-05
tweet_sentiment_en

1010 1011

Pre-training tokens

4

6

8

max_lr=6.0e-03
siqa

1010 1011

Pre-training tokens

5.0

7.5

10.0
max_lr=6.0e-03

gsm8k

1010 1011

Pre-training tokens

4

6

8 max_lr=6.0e-03
starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 35: Pre-training perplexity after fine-tuning as a function of the pre-training budget
using the configuration specified in Table 3 but with batch size 32 for the OLMo-30M model.
Each connected line reflects a series of models trained with fixed hyperparameters.

0.2

0.3

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.1e-04
subj

0.7

0.8

0.9
max_lr=7.0e-05

boolq

0.40

0.45

0.50

0.55 max_lr=9.0e-05
mr

0.3

0.4

0.5 max_lr=1.1e-04
cr

0.7

0.8

0.9 max_lr=1.4e-04
rte

1010 1011

Pre-training tokens

0.25

0.50

0.75

1.00

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.1e-04
trec

1010 1011

Pre-training tokens

0.6

0.7

0.8 max_lr=7.0e-05
tweet_sentiment_en

1010 1011

Pre-training tokens

2

3

max_lr=6.0e-03
gsm8k

1010 1011

Pre-training tokens

5

6

7
max_lr=6.0e-03

siqa

1010 1011

Pre-training tokens

3

4

max_lr=6.0e-03
starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 36: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget using
the configuration specified in Table 3 but with batch size 32 for the OLMo-30M model. Each
connected line reflects a series of models trained with fixed hyperparameters.

5.0

7.5

10.0

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

subj

5

10

15

boolq

4

6

mr

4

6

8

cr

4

6

8

rte

1010 1011

Pre-training tokens

4

6

8

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

5

10

15
tweet_sentiment_en

1010 1011

Pre-training tokens

5.0

5.5

6.0
gsm8k

1010 1011

Pre-training tokens

4.0

4.2

siqa

1010 1011

Pre-training tokens

5.3

5.4

5.5
starcoder-python-5k

Figure 37: Pre-training perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified in
Table 3 but with batch size 32 for the OLMo-30M model. Similar to the untuned version but with
the fine-tuning-optimal learning rate.

51

Published as a workshop paper at SCOPE - ICLR 2025

0.14

0.15

0.16
Fi

ne
-t

un
in

g
ta

sk
pe

rp
le

xi
ty

subj

0.62

0.64

0.66

0.68

boolq

0.40

0.42

0.44
mr

0.275

0.300

0.325

0.350

cr

0.67

0.68

0.69
rte

1010 1011

Pre-training tokens

0.14

0.16

0.18

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

0.54

0.56

0.58

tweet_sentiment_en

1010 1011

Pre-training tokens

1.30

1.35

1.40

gsm8k

1010 1011

Pre-training tokens

4.4

4.5

4.6

4.7

siqa

1010 1011

Pre-training tokens

2.45

2.50

2.55
starcoder-python-5k

Figure 38: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified in
Table 3 but with batch size 32 for the OLMo-30M model. Similar to the untuned version but with
the fine-tuning-optimal learning rate.

10 5

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

subj boolq mr cr rte

1010 1011

10 5

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

trec

1010 1011

Pre-training tokens

tweet_sentiment_en

1010 1011

Pre-training tokens

gsm8k

1010 1011

Pre-training tokens

siqa

1010 1011

Pre-training tokens

starcoder-python-5k

Figure 39: The optimal learning rate for best fine-tuning performance as a function of the
pre-training budget using the configuration specified in Table 3 but with batch size 32 for the
OLMo-30M model. The learning rate shown corresponds with those chosen in Figures 37 and 38.

5.0

7.5

10.0

12.5

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=9.0e-05
subj

5

10

max_lr=7.0e-05
boolq

4

6

max_lr=7.0e-05
mr

4

6

8

max_lr=6.0e-03
cr

5

10

15 max_lr=1.1e-04
rte

1010 1011

Pre-training tokens

4

6

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=9.0e-05
trec

1010 1011

Pre-training tokens

4

6

8 max_lr=5.0e-05
tweet_sentiment_en

1010 1011

Pre-training tokens

4

6

8

10 max_lr=6.0e-03
siqa

1010 1011

Pre-training tokens

4

6

8

10
max_lr=6.0e-03

gsm8k

1010 1011

Pre-training tokens

4

6

8
max_lr=6.0e-03

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 40: Pre-training perplexity after fine-tuning as a function of the pre-training budget
using a constant learning rate scheduler (instead of Cosine) with the configuration specified in
Table 3 for the OLMo-30M model. Each connected line reflects a series of models trained with
fixed hyperparameters.

52

Published as a workshop paper at SCOPE - ICLR 2025

0.15

0.20

0.25

0.30

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=9.0e-05
subj

0.6

0.7

0.8

0.9 max_lr=7.0e-05
boolq

0.40

0.45

0.50

max_lr=7.0e-05
mr

0.4

0.6
max_lr=6.0e-03

cr

0.70

0.75

0.80
max_lr=1.1e-04

rte

1010 1011

Pre-training tokens

0.2

0.4

0.6

0.8

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=9.0e-05
trec

1010 1011

Pre-training tokens

0.6

0.7

max_lr=5.0e-05
tweet_sentiment_en

1010 1011

Pre-training tokens

2

3

4
max_lr=6.0e-03

gsm8k

1010 1011

Pre-training tokens

5

6

7
max_lr=6.0e-03

siqa

1010 1011

Pre-training tokens

3

4

5

max_lr=6.0e-03
starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 41: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget
using a constant learning rate scheduler (instead of Cosine) with the configuration specified in
Table 3 for the OLMo-30M model. Each connected line reflects a series of models trained with
fixed hyperparameters.

4

5

6

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

subj

10

15

boolq

4

6

8

mr

4

6

8
cr

5

10

rte

1010 1011

Pre-training tokens

4

6

8

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

5.0

7.5

10.0

12.5
tweet_sentiment_en

1010 1011

Pre-training tokens

4.5

5.0

gsm8k

1010 1011

Pre-training tokens

4.0

4.2

siqa

1010 1011

Pre-training tokens

4.6

4.8

5.0

5.2

starcoder-python-5k

Figure 42: Pre-training perplexity after fine-tuning as a function of the pre-training budget
with a tuned learning rate to optimize fine-tuning performance using a constant learning rate
scheduler for the OLMo-30M model. Similar to the untuned version but showing the performance
with the fine-tuning-optimal learning rate.

53

Published as a workshop paper at SCOPE - ICLR 2025

0.14

0.15

0.16
Fi

ne
-t

un
in

g
ta

sk
pe

rp
le

xi
ty

subj

0.62

0.64

0.66

boolq

0.38

0.40

0.42

0.44
mr

0.275

0.300

0.325

0.350

cr

0.66

0.67

0.68

0.69
rte

1010 1011

Pre-training tokens

0.14

0.16

0.18

0.20

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

0.54

0.56

tweet_sentiment_en

1010 1011

Pre-training tokens

1.35

1.40

1.45

1.50

gsm8k

1010 1011

Pre-training tokens

4.4

4.6

siqa

1010 1011

Pre-training tokens

2.55

2.60

2.65

starcoder-python-5k

Figure 43: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget
with a tuned learning rate to optimize fine-tuning performance using a constant learning rate
scheduler for the OLMo-30M model. Similar to the untuned version but showing the performance
with the fine-tuning-optimal learning rate.

10 5

10 4

B
es

t l
ea

rn
in

g
ra

te

subj boolq mr cr rte

1010 1011

10 5

10 4

B
es

t l
ea

rn
in

g
ra

te

trec

1010 1011

Pre-training tokens

tweet_sentiment_en

1010 1011

Pre-training tokens

gsm8k

1010 1011

Pre-training tokens

siqa

1010 1011

Pre-training tokens

starcoder-python-5k

Figure 44: The optimal learning rate for best fine-tuning performance as a function of the
pre-training budget using a constant learning rate scheduler for the OLMo-30M model. The
learning rate shown corresponds with those chosen in Figures 42 and 43.

5.0

7.5

10.0

12.5

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.1e-04
subj

5.0

7.5

10.0
max_lr=7.0e-05

boolq

5.0

7.5

10.0

max_lr=1.1e-04
mr

5

10

15
max_lr=6.0e-03

cr

5

10

max_lr=1.4e-04
rte

1010 1011

Pre-training tokens

4

6

8

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.1e-04
trec

1010 1011

Pre-training tokens

4

6

8

10 max_lr=7.0e-05
tweet_sentiment_en

1010 1011

Pre-training tokens

4

6

8

max_lr=6.0e-03
siqa

1010 1011

Pre-training tokens

5.0

7.5

10.0
max_lr=6.0e-03

gsm8k

1010 1011

Pre-training tokens

4

6

8
max_lr=6.0e-03

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 45: Pre-training perplexity after fine-tuning as a function of the pre-training budget
using a constant learning rate scheduler with warmup with the configuration specified in
Table 3 for the OLMo-30M model. Each connected line reflects a series of models trained with
fixed hyperparameters.

54

Published as a workshop paper at SCOPE - ICLR 2025

0.15

0.20

0.25

0.30

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.1e-04
subj

0.7

0.8

0.9 max_lr=7.0e-05
boolq

0.40

0.45

0.50

0.55 max_lr=1.1e-04
mr

0.4

0.6

0.8 max_lr=6.0e-03
cr

0.7

0.8

0.9 max_lr=1.4e-04
rte

1010 1011

Pre-training tokens

0.2

0.4

0.6

0.8

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.1e-04
trec

1010 1011

Pre-training tokens

0.6

0.7

max_lr=7.0e-05
tweet_sentiment_en

1010 1011

Pre-training tokens

2

3

4 max_lr=6.0e-03
gsm8k

1010 1011

Pre-training tokens

5

6

7
max_lr=6.0e-03

siqa

1010 1011

Pre-training tokens

3

4

5
max_lr=6.0e-03

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 46: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget using
a constant learning rate scheduler with warmup with the configuration specified in Table 3
for the OLMo-30M model. Each connected line reflects a series of models trained with fixed
hyperparameters.

4

5

6

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

subj

10

15

boolq

4

5

mr

4

5

6

cr

5

10

15

rte

1010 1011

Pre-training tokens

4

6

8

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

4

6

tweet_sentiment_en

1010 1011

Pre-training tokens

4.5

5.0

gsm8k

1010 1011

Pre-training tokens

4.0

4.2

siqa

1010 1011

Pre-training tokens

5.0

5.2

5.4

starcoder-python-5k

Figure 47: Pre-training perplexity after fine-tuning as a function of the pre-training budget
with a tuned learning rate to optimize fine-tuning performance using a constant learning rate
scheduler with warmup for the OLMo-30M model. Similar to the untuned version but showing
the performance with the fine-tuning-optimal learning rate.

55

Published as a workshop paper at SCOPE - ICLR 2025

0.14

0.16
Fi

ne
-t

un
in

g
ta

sk
pe

rp
le

xi
ty

subj

0.62

0.64

0.66

0.68
boolq

0.38

0.40

0.42

0.44
mr

0.275

0.300

0.325

0.350
cr

0.67

0.68

rte

1010 1011

Pre-training tokens

0.14

0.16

0.18

0.20

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

0.54

0.55

0.56

0.57
tweet_sentiment_en

1010 1011

Pre-training tokens

1.35

1.40

1.45

1.50

gsm8k

1010 1011

Pre-training tokens

4.4

4.6

siqa

1010 1011

Pre-training tokens

2.50

2.55

2.60

starcoder-python-5k

Figure 48: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget
with a tuned learning rate to optimize fine-tuning performance using a constant learning rate
scheduler with warmup for the OLMo-30M model. Similar to the untuned version but showing
the performance with the fine-tuning-optimal learning rate.

10 5

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

subj boolq mr cr rte

1010 1011

10 5

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

trec

1010 1011

Pre-training tokens

tweet_sentiment_en

1010 1011

Pre-training tokens

gsm8k

1010 1011

Pre-training tokens

siqa

1010 1011

Pre-training tokens

starcoder-python-5k

Figure 49: The optimal learning rate for best fine-tuning performance as a function of the
pre-training budget using a constant learning rate scheduler with warmup for the OLMo-30M
model. The learning rate shown corresponds with those chosen in Figures 47 and 48.

5

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=2.0e-04
subj

5

10

max_lr=1.8e-04
boolq

5.0

7.5

10.0

12.5 max_lr=2.4e-04
mr

4

6

8

10
max_lr=2.0e-04

cr

5.0

7.5

10.0

12.5 max_lr=2.4e-04
rte

1010 1011

Pre-training tokens

5.0

7.5

10.0

12.5

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=2.4e-04
trec

1010 1011

Pre-training tokens

5.0

7.5

10.0

12.5
max_lr=1.6e-04

tweet_sentiment_en

1010 1011

Pre-training tokens

4

6

8

10
max_lr=2.0e-03

siqa

1010 1011

Pre-training tokens

6

8

10
max_lr=1.0e-02

gsm8k

1010 1011

Pre-training tokens

6

8
max_lr=1.0e-02

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 50: Pre-training perplexity after fine-tuning as a function of the pre-training budget
using the configuration specified in Table 3 for OLMo-15M. Each connected line reflects a series
of models trained with fixed hyperparameters. Analogous to Figure 3 (top) from the main paper.

56

Published as a workshop paper at SCOPE - ICLR 2025

0.175

0.200

0.225

0.250

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=2.0e-04
subj

0.8

1.0 max_lr=1.8e-04
boolq

0.45

0.50

0.55
max_lr=2.4e-04

mr

0.35

0.40

0.45

0.50 max_lr=2.0e-04
cr

0.7

0.8

0.9
max_lr=2.4e-04

rte

1010 1011

Pre-training tokens

0.2

0.4

0.6

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=2.4e-04
trec

1010 1011

Pre-training tokens

0.60

0.65

0.70
max_lr=1.6e-04

tweet_sentiment_en

1010 1011

Pre-training tokens

2.0

2.5

max_lr=1.0e-02
gsm8k

1010 1011

Pre-training tokens

5

6

7

max_lr=2.0e-03
siqa

1010 1011

Pre-training tokens

3

4

5 max_lr=1.0e-02
starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 51: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget using
the configuration specified in Table 3 for OLMo-15M. Each connected line reflects a series of
models trained with fixed hyperparameters. Analogous to Figure 3 (bottom) from the main paper.

5.0

7.5

10.0

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

subj

10

15

boolq

5

10

mr

5

10

15

cr

5

6

7

rte

1010 1011

Pre-training tokens

6

8

10

12

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

6

8

10

12
tweet_sentiment_en

1010 1011

Pre-training tokens

6.2

6.4
gsm8k

1010 1011

Pre-training tokens

4.7

4.8

4.9

siqa

1010 1011

Pre-training tokens

5.65

5.70

5.75

5.80

starcoder-python-5k

Figure 52: Pre-training perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified in
Table 3 for OLMo-15M. Similar to the untuned version but showing the performance obtained with
the fine-tuning-optimal learning rate, analogous to Figure 4 (bottom) from the main paper.

0.165

0.170

0.175

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

subj

0.65

0.70

0.75
boolq

0.42

0.43

0.44

0.45

mr

0.34

0.36

0.38
cr

0.675

0.680

0.685

rte

1010 1011

Pre-training tokens

0.20

0.25

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

0.56

0.57

0.58

0.59
tweet_sentiment_en

1010 1011

Pre-training tokens

1.60

1.65

gsm8k

1010 1011

Pre-training tokens

5.0

5.1

5.2

siqa

1010 1011

Pre-training tokens

2.75

2.80

2.85

starcoder-python-5k

Figure 53: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified in
Table 3 for OLMo-15M. Similar to the untuned version but showing the performance obtained with
the fine-tuning-optimal learning rate, analogous to Figure 4 (top) from the main paper.

57

Published as a workshop paper at SCOPE - ICLR 2025

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

subj boolq mr cr rte

1010 1011

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

trec

1010 1011

Pre-training tokens

tweet_sentiment_en

1010 1011

Pre-training tokens

gsm8k

1010 1011

Pre-training tokens

siqa

1010 1011

Pre-training tokens

starcoder-python-5k

Figure 54: The optimal learning rate for best fine-tuning performance as a function of the
pre-training budget using the configuration specified in Table 3 for OLMo-15M. The learning
rate shown corresponds with those chosen in Figures 52 and 53.

5

10

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.4e-04
subj

5

10

15 max_lr=1.0e-04
boolq

5

10

max_lr=1.4e-04
mr

5

10

max_lr=1.4e-04
cr

5

10

max_lr=1.4e-04
rte

1010 1011

Pre-training tokens

5

10

15

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=1.4e-04
trec

1010 1011

Pre-training tokens

5

10

max_lr=9.0e-05
tweet_sentiment_en

1010 1011

Pre-training tokens

4

6

8

max_lr=1.0e-03
siqa

1010 1011

Pre-training tokens

4

6

8

10
max_lr=6.0e-03

gsm8k

1010 1011

Pre-training tokens

4

6

8
max_lr=6.0e-03

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 55: Pre-training perplexity after fine-tuning as a function of the pre-training budget
using the configuration specified in Table 3 for OLMo-30M. Each connected line reflects a series
of models trained with fixed hyperparameters. Extended version of Figure 3 (top) from the main
paper.

0.2

0.3

0.4

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.4e-04
subj

0.7

0.8

0.9
max_lr=1.0e-04

boolq

0.4

0.5

max_lr=1.4e-04
mr

0.3

0.4

0.5
max_lr=1.4e-04

cr

0.7

0.8

0.9 max_lr=1.4e-04
rte

1010 1011

Pre-training tokens

0.5

1.0

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=1.4e-04
trec

1010 1011

Pre-training tokens

0.6

0.7

0.8
max_lr=9.0e-05

tweet_sentiment_en

1010 1011

Pre-training tokens

2

3

max_lr=6.0e-03
gsm8k

1010 1011

Pre-training tokens

5

6

7
max_lr=1.0e-03

siqa

1010 1011

Pre-training tokens

3

4

5
max_lr=6.0e-03

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 56: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget using
the configuration specified in Table 3 for OLMo-30M. Each connected line reflects a series of
models trained with fixed hyperparameters. Extended version of Figure 3 (bottom) from the main
paper.

58

Published as a workshop paper at SCOPE - ICLR 2025

4

6

8

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

subj

5

10

15

boolq

4

5

6

mr

5

10

cr

2.5

5.0

7.5

10.0

rte

1010 1011

Pre-training tokens

4.5

5.0

5.5

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

4

6

8

tweet_sentiment_en

1010 1011

Pre-training tokens

5.0

5.5

gsm8k

1010 1011

Pre-training tokens

4.0

4.2

siqa

1010 1011

Pre-training tokens

5.1

5.2

5.3

starcoder-python-5k

Figure 57: Pre-training perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified
in Table 3 for OLMo-30M. Similar to the untuned version but showing the performance with the
fine-tuning-optimal learning rate, analogous to Figure 4 (bottom) from the main paper. Extended
version of Figure 55 from the main paper.

0.13

0.14

0.15

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

subj

0.62

0.64

0.66
boolq

0.38

0.40

0.42

mr

0.275

0.300

0.325

cr

0.67

0.68

rte

1010 1011

Pre-training tokens

0.13

0.14

0.15

0.16

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

0.54

0.56

tweet_sentiment_en

1010 1011

Pre-training tokens

1.30

1.35

1.40

gsm8k

1010 1011

Pre-training tokens

4.4

4.6

siqa

1010 1011

Pre-training tokens

2.45

2.50

2.55

2.60
starcoder-python-5k

Figure 58: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified
in Table 3 for OLMo-30M. Similar to the untuned version but showing the performance with the
fine-tuning-optimal learning rate, analogous to Figure 4 (top) from the main paper. Extended version
of Figure 56 from the main paper.

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

subj boolq mr cr rte

1010 1011

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

trec

1010 1011

Pre-training tokens

tweet_sentiment_en

1010 1011

Pre-training tokens

gsm8k

1010 1011

Pre-training tokens

siqa

1010 1011

Pre-training tokens

starcoder-python-5k

Figure 59: The optimal learning rate for best fine-tuning performance as a function of the
pre-training budget using the configuration specified in Table 3 for OLMo-30M. The learning
rate shown corresponds with those chosen in Figures 57 and 58.

59

Published as a workshop paper at SCOPE - ICLR 2025

4

6

8

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=2.4e-04
subj

5

10

15 max_lr=2.0e-04
boolq

4

5

max_lr=2.4e-04
mr

4

5

6

7 max_lr=2.4e-04
cr

5

10

max_lr=2.4e-04
rte

1010 1011

Pre-training tokens

4

5

6

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

max_lr=2.4e-04
trec

1010 1011

Pre-training tokens

5

10

max_lr=2.4e-04
tweet_sentiment_en

1010 1011

Pre-training tokens

4

6

8
max_lr=2.0e-03

siqa

1010 1011

Pre-training tokens

5

10
max_lr=1.0e-02

gsm8k

1010 1011

Pre-training tokens

4

6

8
max_lr=1.0e-02

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 60: Pre-training perplexity after fine-tuning as a function of the pre-training budget
using the configuration specified in Table 3 for OLMo-90M. Each connected line reflects a series
of models trained with fixed hyperparameters. Analogous to Figure 3 (top) from the main paper.

0.1

0.2

0.3

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=2.4e-04
subj

0.6

0.8

1.0

max_lr=2.0e-04
boolq

0.35

0.40

0.45

0.50 max_lr=2.4e-04
mr

0.3

0.4
max_lr=2.4e-04

cr

0.7

0.8
max_lr=2.4e-04

rte

1010 1011

Pre-training tokens

0.5

1.0

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

max_lr=2.4e-04
trec

1010 1011

Pre-training tokens

0.5

0.6

0.7
max_lr=2.4e-04

tweet_sentiment_en

1010 1011

Pre-training tokens

1

2

3

4
max_lr=1.0e-02

gsm8k

1010 1011

Pre-training tokens

4

5

6

7 max_lr=2.0e-03
siqa

1010 1011

Pre-training tokens

3

4

5
max_lr=1.0e-02

starcoder-python-5k

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 Base model Minimum learning rate (4e-6) Maximum learning rate (max_lr)

Figure 61: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget using
the configuration specified in Table 3 for OLMo-90M. Each connected line reflects a series of
models trained with fixed hyperparameters. Analogous to Figure 3 (bottom) from the main paper.

60

Published as a workshop paper at SCOPE - ICLR 2025

3.5

3.6

3.7

3.8
Pr

e-
tr

ai
ni

ng
 (C

4)
pe

rp
le

xi
ty

subj

5

10

15

boolq

3.5

3.6

3.7
mr

3.5

3.6

3.7

cr

3.6

3.8

4.0
rte

1010 1011

Pre-training tokens

3.6

3.8

4.0

Pr
e-

tr
ai

ni
ng

 (C
4)

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

3.6

3.8

4.0

4.2

tweet_sentiment_en

1010 1011

Pre-training tokens

4.2

4.4

gsm8k

1010 1011

Pre-training tokens

3.6

3.7

siqa

1010 1011

Pre-training tokens

4.4

4.5

4.6
starcoder-python-5k

Figure 62: Pre-training perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified
in Table 3 for OLMo-90M. Similar to the untuned version but showing the performance with the
fine-tuning-optimal learning rate, analogous to Figure 4 (bottom) from the main paper.

0.12

0.14

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

subj

0.60

0.61

0.62

boolq

0.34

0.36

0.38

mr

0.22

0.24

0.26

0.28

cr

0.64

0.66

rte

1010 1011

Pre-training tokens

0.11

0.12

0.13

0.14

Fi
ne

-t
un

in
g

ta
sk

pe
rp

le
xi

ty

trec

1010 1011

Pre-training tokens

0.51

0.52

0.53

tweet_sentiment_en

1010 1011

Pre-training tokens

1.15

1.20

gsm8k

1010 1011

Pre-training tokens

4.1

4.2

4.3
siqa

1010 1011

Pre-training tokens

2.20

2.25

2.30

2.35
starcoder-python-5k

Figure 63: Fine-tuning perplexity after fine-tuning as a function of the pre-training budget with
a tuned learning rate to optimize fine-tuning performance using the configuration specified
in Table 3 for OLMo-90M. Similar to the untuned version but showing the performance with the
fine-tuning-optimal learning rate, analogous to Figure 4 (top) from the main paper.

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

subj boolq mr cr rte

1010 1011

10 4

10 3

B
es

t l
ea

rn
in

g
ra

te

trec

1010 1011

Pre-training tokens

tweet_sentiment_en

1010 1011

Pre-training tokens

gsm8k

1010 1011

Pre-training tokens

siqa

1010 1011

Pre-training tokens

starcoder-python-5k

Figure 64: The optimal learning rate for best fine-tuning performance as a function of the
pre-training budget using the configuration specified in Table 3 for OLMo-90M. The learning
rate shown corresponds with those chosen in Figures 62 and 63.

61

Published as a workshop paper at SCOPE - ICLR 2025

101 102

Pre-training tokens (B)

4.5

5.0

5.5

6.0

6.5

Pe
rp

le
xi

ty

OLMo-15M
Perturbation ()

 Base 0.05 0.08 0.1

101 102

Pre-training tokens (B)

3.8

4.0

4.2

4.4
OLMo-30M
Perturbation ()

 Base 0.05 0.08 0.1

101 102

Pre-training tokens (B)

3.4

3.6

3.8

4.0

4.2

4.4

OLMo-90M
Perturbation ()

 Base 0.05 0.08 0.1

102 103

Pre-training tokens (B)

2.8

3.0

3.2

3.4
OLMo-1B

Perturbation ()
 Base 0.05 0.08 0.1

2 × 103 3 × 103 4 × 103

Pre-training tokens (B)

3.0

3.5

4.0

4.5
OLMo-2-7B
Perturbation ()

 Base 0.033 0.04 0.045

103

Pre-training tokens (B)

5

10

15

20

25

LLM360 (7B)
Perturbation ()

 Base 0.3 0.5 0.8

Figure 65: Pre-training perplexity of models with parameters perturbed by Gaussian noise,
as a function of the number of pre-training tokens. We report the C4 web data perplexity of
different models where each parameter is perturbed by Gaussian noise scaled by the factor λ (color).
This figures is an extension of Figure 5 to additional models: OLMo-15M, OLMo-90M, OLMo-1B,
OLMo-2-7B, and LLM360-Amber (7B).

I.3 EXTENDED GAUSSIAN PERTURBATIONS EXPERIMENTS.

Here, we present extended experiments with Gaussian perturbations on additional models: OLMo-
15M, OLMo-90M, OLMo-1B, OLMo-2-7B, and LLM360-Amber (7B). We perturb each parameter
by Gaussian noise scaled by the factor λ. Figure 65 shows the pre-training perplexity of models with
parameters perturbed by Gaussian noise as a function of the number of pre-training tokens. Refer to
Appendix F for more details on the experimental setup.

62

	Introduction
	Extended pre-training can hurt post-training
	Catastrophic overtraining
	A theoretical perspective of overtraining
	Pre-training setting
	Fine-tuning

	Discussion
	Related Work
	Catastrophic overtraining in more detail
	Catastrophic overtraining
	Catastrophic overtraining in the real-world
	Catastrophic overtraining in a controlled setup
	Warmup: Gaussian perturbations
	Fine-tuning pre-trained models
	Fine-tuning with fixed learning rate
	Balancing fine-tuning gains with degradation

	Theory of catastrophic overtraining: the Gaussian setting
	Omitted Proofs from sec:theory
	Formal Definitions and Assumptions
	Formal Statement and Proof of thm:gaussian
	Dynamic Analysis of Finetuning Process
	Analytical Expression for the Ideal Initialization Dynamic with Infinite Batch Size
	Correspondence between Ideal Initialization Dynamic with Infinite Batch Size and Finite Batch Size
	Error Incurs by Different Initialization
	Combing Two Approximations

	Formal Statement and Proof of thm:progsensitivity
	Formal Statement and Proof of thm:sensitivityovertraining
	Technical Lemmas

	Experimental Details from sec:experiments: Large Model Experiments
	Pre-trained models.
	Fine-tuning setup.
	Evaluations

	Experimental Details from sec:experimentscontrolled: Controlled Experiments
	Pre-training and fine-tuning setup.
	Gaussian perturbations.

	Connection Between Progressive Sensitivity and Sharpness
	Omitted Figures from Section 2: Large Model Experiments
	Omitted Figures from Section 3: Controlled Experiments
	Sensitivity
	Extended fine-tuning experiments.
	Extended Gaussian perturbations experiments.

