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Abstract

As machine learning algorithms are deployed on
sensitive data in critical decision making processes,
it is becoming increasingly important that they are
also private and fair. In this paper, we show that,
when the data has a long-tailed structure, it is not
possible to build accurate learning algorithms that
are both private and results in higher accuracy on
minority subpopulations. We further show that re-
laxing overall accuracy can lead to good fairness
even with strict privacy requirements. To corrobor-
ate our theoretical results in practice, we provide an
extensive set of experimental results using a vari-
ety of synthetic, vision (CIFAR-10 and CelebA),
and tabular (Law School) datasets and learning
algorithms.

1 INTRODUCTION

In recent years, reliability of machine learning algorithms
have become ever more important due to their widespread
use in daily life. Fairness and privacy are two instances
of such reliability traits that are desirable but often absent
in modern machine learning algorithms [10, 14, 39]As a
result, there has been a flurry of recent works that aim to
improve these properties in commonly used learning al-
gorithms. However, most of these works discuss these two
properties individually with relatively less attention paid to
how they affect each other.

There is a multitude of definitions for privacy and fairness in
their respective literatures. Perhaps the most widespread stat-
istical notion of privacy is that of Differential Privacy [16]
and its slightly relaxed variant, Approximate Differential
Privacy [17]. Despite its marginally weaker privacy guaran-
tees, Approximate Differential Privacy enjoys better theoret-
ical guarantees in terms of statistical complexity for learn-
ing [7, 22]. It is also more widely used in practice [1, 49].

Thus, we always use approximate differential privacy in this
paper and for the sake of brevity, refer to it as differential
privacy (DP). Intuitively, DP limits the amount of influence
any single data point has on the output of the DP algorithm.
This ensures that DP algorithms do not leak information
about whether any particular data point was given as input
to the algorithm. While DP was initially popular as a the-
oretical construct, it has recently been put to practical use
by large companies [20, 41] and governments [32] alike.
Its popularity is largely due to its strong privacy guaran-
tees, ease of implementation, and the quantitative nature of
differential privacy.

There are many notions of fairness in machine learn-
ing [18, 26, 27]. Minority or worst group accuracy [15, 29]
and its difference from the overall accuracy is a common
notion of fairness used in recent works. We define this
difference as accuracy discrepancy and use it to measure
the degree of unfairness in this paper. However, we expect
our results to translate to other related fairness metrics as
well. Sagawa* et al. [37] observed that robust optimisation
methods (under appropriate regularisations) obtain higher
minority group accuracy but at the cost of a lower overall
accuracy compared to vanilla training. Several other works
have also observed this behavior in practice thereby suggest-
ing a possible trade-off between overall accuracy and fair-
ness metrics. Subsequent works including Goel et al. [25]
and Menon et al. [34] have tried to minimise this trade-off.

While there have been a large body of works that aim to
minimising the trade-off between accuracy and fairness [15,
25, 37] and between accuracy and privacy [17, 24], there
is relatively few works that investigate the intersection of
privacy, fairness, and accuracy. In this paper, we provide
theoretical and experimental results to show that private and
accurate algorithms are necessarily unfair. We further show
that achieving privacy and fairness simultaneously leads to
inaccurate algorithms.

Contributions Our main contributions can be stated as —

• In Theorem 1 and 2, we provide asymptotic lower
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bounds for unfairness (accuracy discrepancy) of DP
algorithms, that are accurate, showing that privacy and
accuracy comes at the cost of fairness.

• In Theorem 3, we show that in a very strict privacy
regime, fairness can be achieved at the cost of accuracy.

• In Section 3, we conduct experiments using multiple ar-
chitectures on synthetic and real world datasets (CelebA,
CIFAR-10, and Law School) to validate our theory.

Related works

It is now well understood that by imposing these additional
conditions of DP more data are required to achieve high ac-
curacy. A string of theoretical works [5, 9, 22] have shown
that the sample complexity of learning certain concept
classes privately and accurately can be arbitrarily larger
than learning the same classes non-privately (i.e. with high
accuracy but without privacy). On the other hand, it is easy
to guarantee any arbitrary level of differential privacy if
high accuracy is not desired. This can be achieved by simply
composing the output of an accurate classifier with a prop-
erly calibrated randomised response mechanism [45]. This
allows for a tradeoff between differential privacy and accur-
acy.

One of the most popular notions of fairness is group fair-
ness that compares the performance of the algorithm on a
minority group with other groups in the data. A popular
instantiation of this, especially for deep learning algorithms,
is comparing the accuracy on the minority group against
the entire population [15, 25, 29, 37]. In the fairness liter-
ature, Buolamwini and Gebru [10], Raz et al. [36] shows
extensively that this discrepancy is large between different
groups of people for popular facial recognition systems.

DP-SGD [1] is widely used algorithm for implementing dif-
ferentially private deep learning models. Bagdasaryan et al.
[4] provides some experimental evidence that DP-SGD can
have disparate impact on accuracy. Conversely, Chang and
Shokri [11] shows, experimentally, that fairness aware ma-
chine learning algorithms suffer from less privacy. However,
unlike these works, we provide theoretical results that are
model agnostic and that discuss the dependance of the trade-
off on the subpopulation sizes and frequencies.

Cummings et al. [13] and Agarwal [2] were one of the first to
consider the impact of privacy on fairness theoretically. They
construct a distribution where any algorithm that is always
fair and private will necessarily output a trivial constant
classifier, thereby suggesting a tradeoff between fairness
and privacy. However, there are multiple drawbacks with
their work. First, their work only discusses pure differential
privacy which is not only theoretically more restrictive than
approximate differential privacy [6, 7, 22] but also rarely
used in practice. Second, their proof heavily relies on it be-
ing pure differential privacy and the algorithm being always
fair; and their proofs are not amenable to relaxations of

these assumptions. Further, they do not provide experiments
to corroborate their theory perhaps due to the unrealistic
requirements of pure DP. On the other hand, we look at
approximate DP (which is a stronger result than pure DP),
construct bounds for both fairness and error, and provide
experimental results to support our theory. Perhaps, most
closely related to our work is that of Feldman [21], who
studies, mainly, the impact of memorisation on test accuracy
for long-tailed distributions. However, neither does their
work foray into differential privacy nor into fairness.

2 THEORETICAL RESULTS

The main contribution of our work is to provide a qualit-
ative explanation for why and when differentially private
algorithms cannot be simultaneously accurate and fair. Real
world data distributions often contain a large number of
subpopulations with very few examples in each of them and
a few subpopulations with a large number of examples.

For example, Figure 1 (left) depicts the distribution of subpu-
poluations in CelebA. Using the 40 attributes of the CelebA
dataset [31], we partition the training set (of sizem = 160k)
into 240 subpopulation bins. The blue shaded area shows
the group of the subpopulations with large number of ex-
amples (probability mass greater than 1

m ) and the red shaded
area corresponds to subpopulations which contain just one
example in them. We refer to the subpopulations in the
red area as minority subpopulations and the subpopula-
tions in the blue area as majority subpopulations. This long-
tailed structure over subpopulations have also been observed
in Zhu et al. [51] in other vision datasets like the SUN [48]
and PASCAL [19] datasets. Babbar and Schölkopf [3] ob-
serves this structure in extreme multilabel classification data-
sets like Amazon-670K [33] and Wikipedia-31k [8] data-
sets. Various other works [12, 30, 42, 44] have shown this
structure in a range of datasets including eBird [40], Visual
Genome [30], Pasadena trees [46], and iNaturalist [43].

2.1 PROBLEM SETUP

Mathematically, the large number of small subpopulations
discussed above constitute the long tail of the distribution.
We use this structure of data distributions to illustrate the
tension between accuracy and fairness of private algorithms.
For our theoretical results, we view each subpopulation as
an element of a discrete setX without any intrinsic structure
such as distance. This distribution is inspired by the use of
a similar distribution in Feldman [21].Next, we define a
distribution over the subpopulations in X that reflect the
long-tailed structure.

Definition 1 ((p,N, k)-long-tailed distribution on X).
Given p ∈ (0, 1) , N ∈ N, and 1 < k � N , define two
groups (i) the group of majority subpopulations X1 ⊂ X
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Figure 1: (Left) Illustration of the distribution of majority
and minority subpopulations of CelebA. Here m = 160k is
the total size of the training set of CelebA. (Right) Illustra-
tion of Πp,N,k.

where |X1| = (1− p) k and (ii) the group of minority sub-
populations X2 ⊂ X \X1, where |X2| = N . 1 Now, define
the distribution Πp,N,k as

Πp,N,k(x) =

{
1
k x ∈ X1
p
N x ∈ X2.

(1)

We use the terms group of majority subpopulations and
majority group interchangeably to denote X1 and the terms
group of minority subpopulations and minority group to
refer to X2 respectively.

We provide an illustration of the distribution in Fig-
ure 1 (left). Here, p denotes the total probability mass of
the group of minority subpopulations under Πp,N,k and N
denotes the number of minority subpopulations. We let N
go to∞ and treat k as a constant. Thus, for the sake of sim-
plicity, we remove k from the notation of the distribution.
Note that each minority subpopulation i.e. each element in
X2 has a probability mass of the order of O

(
1
N

)
which is

much smaller than 1
k = Ω (1), i.e. the probability mass of

each element in X1.

Note that in the distribution for CelebA (Figure 1 (left))
the probability masses of the majority subpopulations not
exactly equal to 1

k as in the distribution of Definition 1.
However, all our results hold true even if different majority
subpopulations have different probability masses as long
as they satisfy Πp,N (x) = Ω

(
1
k

)
for some k = O (1) and

all x ∈ X1. We set them to 1
k only for simplicity of the

theoretical results.

As we deal with a multiclass classification setup, we also
define a label space Y and a function space F of labelling
functions. We also use F to represent a distribution on the
function space F and refer to this distribution as the label
prior. Our results do not restrict the size of Y and hence,
cover both binary and multi-class classification settings.

1WLOG we will assume that k is such that (1− p) k is an
integer and if not, replace k with the closest number such that
(1− p) k is an integer.

Finally, to generate a dataset of size m from a (p,N)-
long-tailed distribution Πp,N on X , first sample an
unlabelled dataset S = {x1, · · · , xm} of size m
from Πp,N . Then, generate the labelled dataset Sf =
{(x1, f (x1)) , . . . , (xm, f (xm))} using a labelling func-
tion f ∼ F . In all our theoretical results, we consider an
asymptotic regime where N

m → c as N,m → ∞. This is
common in high-dimensional statistics where the number
of dimensions often grows to∞ along with the sample size.
Intuitively, c quantifies the hardness of the learning problem
as it is invsersely proportional to the number of data points
observed per minority subpopulation.

Next, we define the error and fairness measure of an al-
gorithm on the distribution defined above. Consider a do-
main X , a label space Y , a set of labelling functions F , a
label prior F , and a distribution Πp,N on X .

2.2 PRIVACY, ERROR, AND FAIRNESS

In the context of this paper, a differentially private (ran-
domised) learning algorithm generates similar distributions
over classifiers when trained on neighbouring datasets. Two
datasets are neighbouring when they differ in one entry
.Formally,

Definition 2 (Approximate Differential Privacy [16, 17]).
Given any two neighbouring datasets S, S′, ε > 0, and
δ ∈ (0, 1) an algorithm A is called (ε, δ)-differentially
private if for all sets of outputs Z , the following holds

P [A (S) ∈ Z] ≤ eεP [A (S′) ∈ Z] + δ.

Next, we define the error of an algorithm in our problem
setup. For a randomised learning algorithm A, a distribu-
tion Πp,N , a label prior F , we can define the error of the
algorithm as follows

Definition 3 (Error measure on Πp,N ). The error of the
algorithm A trained on a dataset of size m from the distri-
bution Πp,N with respect to a label prior F is

errm (A,Πp,N ,F) = E [I {h (x) 6= f (x)}] (2)

where I {·} is the indicator function and the expectation is
over S ∼ Πm

p,N , f ∼ F , h ∼ A (Sf ), and x ∼ Πp,N .

Note that the error metric with an expectation over F , was
previously used in Feldman [21]. In fact, for the purpose
of lower bounds on fairness, this is a stronger notion than
the worst case f ∈ F as, here, the lower bound is on the
expectation which is stronger than a lower bound on the
worst case. Next, we define the accuracy discrepancy of an
algorithm, represented by Γ over the distribution Πp,N . For
this purpose, for any Πp,N , define the marginal distribution
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on the group of minority subpopulations X2 as

Π2
p,N (x) =


Πp,N (x)∑

x∈X2
Πp,N (x)

=
Πp,N (x)

p
x ∈ X2

0 x 6∈ X2

(3)

Definition 4 (Accuracy discrepancy on Πp,N ). For
X,F ,Πp,N , and Π2

p,N as defined above, the accuracy dis-
crepancy of the algorithm A trained on a dataset of size m
on the distribution Πp,N , with respect to the label prior F ,
is

Γm (A,Πp,N ,F) = errm
(
A,Π2

p,N ,F
)
−errm (A,Πp,N ,F) .

(4)
where errm (·) is as defined in Definition 3.

This notion of group fairness is similar to the notion of
subgroup performance gap used in Goel et al. [25] and
has also been implicitly used in multiple works Du et al.
[15], Koh et al. [29], Sagawa* et al. [37] as discussed before.
It has also been used in works related to the privacy [4, 11]
and fairness literature [10, 36].

2.3 PRIVACY AND ACCURACY AT THE COST OF
FAIRNESS

The theoretical results below use the definitions and nota-
tions described above and summarised in Table 1 in the
supplementary. First, in Theorem 1, we show that there
are distributions (within the family of distributions defined
in Definition 1) where any accurate and approximately
differentially private algorithm (with additional assump-
tions) is necessarily unfair. In Theorem 2, we relax some
of the stronger assumptions and present a more general
result. As discussed above, the dataset size m and the
number of minority subpopulations N both simultaneously
go to ∞ and the ratio N

m is asymptotically equal to
N
m ∼ c. Throughout this section, we also use the nota-
tion err (A,Πp,N ,F) = limm,N→∞ err (A,Πp,N ,F) and
Γ (A,Πp,N ,F) = limm,N→∞ Γ (A,Πp,N ,F) to denote
the asymptotic limit for the error and the accuracy discrep-
ancy metrics as m,N →∞.

Theorem 1. For ε ∈ (0, 1) and δ ∈ (0, 0.01), consider
any (ε, δ)-DP algorithm A that does not make mistakes on
subpopulations occurring more than once in the dataset.
Then, there exists a family of label priors F where for any
α ∈ (0, 1), there exists p ∈ (0, 1/2) , c > 0 such that,

err (A,Πp,N ,F) ≤ α and Γ (A,Πp,N ,F) ≥ 0.5.

where N
m → c as N,m→∞.

A detailed version along with its full proof is presented
in Appendix A.1. An immediate consequence of unfair-
ness Γm being greater than 0.5, coupled with the very small

error α, is that the algorithm essentially behaves worse than
random chance on the minority subpopulations thereby ren-
dering the algorithm useless for these subpopulations.

Proof sketch Here we present a proof sketch and discuss
the results. By Definition 1, the probability mass of each ma-
jority subpopulation is Ω (1) whereas the probability mass
of each minority subpopulation is O

(
1
m

)
. Thus, for a large

enough dataset (i.e. large m), we show that almost all major-
ity subpopulations appear more than once and consequently,
the algorithm in Theorem 1 makes very less mistakes on the
majority subpopulations. As a result, the error and the accur-
acy discrepancy are both caused by mistakes, majorly, on the
minority subpopulations. We, then, count the number of sub-
populations that do not appear or appear just once among the
minority subpopulations and use that to provide the upper
bounds for error and lower bound for unfairness (accuracy
discrepancy). As these bounds are expressed in terms of p
and c, the proof then follows by showing the existence of
p, c that satisfy the inequalities in the theorem.

While Theorem 1 shows the existence of distributions under
which private and accurate algorithms are necessarily unfair,
in Theorem 2, we provide a quantitative lower bound for
unfairness of private algorithms. In addition, we also gener-
alise Theorem 1 to include a much broader set of algorithms.
For this, we state two assumptions below. For any ` ∈ N,
define S` to denote the set of examples that appear exactly `
times in S. Given s0 ∈ N and p1, p2 ∈ (0, 1), we state that
the algorithm A satisfies the assumptions A1 and A2 if the
following conditions are satisfied by theA for all datasets S.

Assumption on algorithm

• (Accuracy) For all ` > s0 and x ∈ S`,

Pf∼F,h∼A(Sf )[h(x) 6= f(x)] ≤ p1 (A1)

• (Privacy) For all ` ≤ s0 and x ∈ S`,

Pf∼F,h∼A(Sf )[h(x) 6= f(x)] > 1− p2 (A2)

Assumption A1 essentially requires the algorithm to have
small overall train error. Note that since our domain is dis-
crete, high training accuracy translates to high test accuracy
in particular as the sample size approaches infinity. When p1
is small, algorithm A obtains low training (and hence test)
error on frequently occurring or typical data (i.e. ` ≥ s0) On
the other hand, Assumption A2 implies that the algorithm
is incorrect on subpopulations that are rare in the training
set, ` ≤ s0, with a probability of at least ≥ 1 − p2. We
refer to this assumption as the privacy assumption because
for (ε, δ)-DP algorithms, it holds true for certain s0, p2 that
depend on ε, δ, as discussed later in Lemma 1.

We note that the assumption in Theorem 1, that the algorithm
does not make mistakes on subpopulations that appear more
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than once is an instantiation of assumption A1 and A2 with
the parameters s0 = 1, p1 = 0, and p2 = 1. In the next
result, we present a detailed result showing how unfairness
of a DP algorithm varies with respect to any instantiations
of the assumptions A1 and A2, privacy parameters, and
distributional parameters. For easier interpretation, we show
a simplified version in Theorem 2 and highlight the key
takeaways, and provide a detailed version in Appendix A.2.
Consider X,F as defined in Section 2.1.

Theorem 2. For any p ∈ (0, 1/2), c > 0 such that p/c ≤ 1,
consider the distribution Πp,N where N

m → c as N,m
goes to ∞. Also, for any ε, δ > 0, consider an (ε, δ)-DP
algorithmA that satisfies assumptions A1 and A2 with s0 =
o (m) and p1, p2 ∈ (0, 1). Then, the accuracy discrepancy
is lower bounded as follows

Γ (A,Πp,N ,F) ≥ (1− p)γ0

where γ0 is some constant depending on c, s0, p, p2, ε, δ,
and F . Further, the error of the algorithm is upper-bounded
as err (A,Πp,N ,F) ≤ (1−p1)pα0+p1 and α0 depends on
c, s0 and p. If s0 →∞ as m→∞, then in the asymptotic
limit c,m→∞, γ0 increases as 1−O

(
e−cs0

s0
√
c

)
. As p→ 0,

α0 increases as 1−O
(√
pe−1/p

)
The detailed expressions of c0, α0, and γ0 (including its
dependance on ε, δ, p1, and p2) can be found in Theorem 5
in Appendix A.2. We now briefly discuss how the theorem
characterizes the effect of privacy and accuracy (via s0) of
the algorithm and the distribution and number of of subpop-
ulations (via p, c respectively) on the accuracy discrepancy.
First note that when the ratio c of the number of minor-
ity subpopulations with respect to the sample size is large,
more minority subpopulations appear infrequently in the
observed dataset and when s0 is relatively large (but still
o (m)) most infrequent subpopulations are misclassified. In-
deed, theorem 2 indicates that as c, s0 increase, γ0 and hence
unfairness increases, while the average error decreases. In-
tuitively, this is because minority subpopulations appear
infrequently and the algorithm is less likely to memorise in-
frequent subpopulations. Therefore, the lower bound on un-
fairness increases with c and s0, and in the asymptotic limit
of m→∞, accuracy discrepancy Γ approaches (1− p). 2

Remark 1. We note that one can omit Assump-
tion A2 in Theorem 2 at the cost of restricting
s0 < 1

2

(
min

{
1, 1ε
}
·min

{
log 1

2δ , log 1
2‖F‖∞

})
where

||F||∞ = maxx∈X,y∈Y Pf∼F [f(x) = y]. This follows
from simple algebra on Equation (16) in the proof of The-
orem 2 and Lemma 1 below. When the algorithm is private
enough, i.e. ε, δ are small enough, or when the label prior

2While the discussion here assumes the asymptotic limit for
c, s0, and p as m→∞, our results in Appendix A.2 shows non-
asymptotic dependence on these terms.

has a high entropy, s0 can be large and hence leading to a
larger lower bound on the accuracy discrepancy via The-
orem 2.

Further, recall that p quantifies the total probability mass
of the group of minority subpopulations (see Figure 1).
Hence, for a small p, error on minority subpopulations
do not contribute significantly to the overall error despite
causing a disproportionate increase to the marginal error
of the minority group. As a result, as p decreases, The-
orem 3 states that the lower bound on unfairness increases
as 1 − p − O

(√
pe−1/p

)
while the upper bound for error

decreases as O
(
p− p3/2e−1/p

)
= O (p).

Discussion of the assumptions We now discuss how the
privacy parameters ε, δ of the DP algorithm lead to feasible
parameters s0, p2 that appear in Assumptions A1 and A2
used in Theorem 2. We also provide an example of an
algorithm that satisfies these assumptions. First, Lemma 1
shows that for all values of ε, δ, and s0, there exists a value
of p2 that satisfies Assumption A2.

Lemma 1. Let F be the uniform prior over all labelling
functions and S be any dataset. For any (ε, δ)-differentially
private algorithm A, for all s0 ∈ N, and for all subpopula-
tions x ∈ X that appear fewer than s0 times in the dataset
S, we have that

Pf∼F,h∼A(Sf ) [h (x) 6= f (x)] > 1− p2

for p2 = 1
2

(
1 + 1+s0e

−εδ
1+e−s0ε

)
.

Please see Lemma 3 in the Appendix for a detailed version
of Lemma 1. Lemma 3 also suggests how to extend this
result (albeit with a different probability bound) to other
label priors. Intuitively, the parameter s0 in Lemma 1 (and
assumption A2) represents the smallest frequency (in the
observed data) of a subpopulation that is, with probability
greater than 1 − p2, correctly classified by the algorithm
A. Lemma 1 proves that, for any choice of ε, p2 and suffi-
ciently small δ, there exists an s0 such that any (ε, δ)-DP
algorithm satisfies Assumption A2 with the parameters s0
and p2. In particular, for a fixed p2, asε decays, the prob-
ability lower bound is satisfied larger s0 thereby showing
that there is an inverse relationship between s0 and ε. We,
thus, view s0 as a “proxy” for the privacy of the algorithm
in Theorem 2 and 3.

We now provide a differentially private algorithm that
satisfies Assumptions A1 and A2. In particular, consider
an algorithm Aη that accepts an m-sized dataset Sf ∈
(X × Y)

m and a noise rate η ∈
(
0, 12
)

as input and out-
puts a dictionary matching every subpopulation in X to a
label of Y . The algorithm first creates a dictionary where
the set X is the set of keys. In order to assign values to
every key, it first randomly flips the label of every element
in Sf with probability η, then for every unique key in Sf ,
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Figure 2: Each figure plots the accuracy discrepancy (Γ; higher is less fair) in green dashed line, the accuracy of the minority
group with red, and the overall accuracy with blue on the y-axis and the parameter c in the X-axis. The left most (ε = 1)
achieves the strictest level of privacy and the right most (ε =∞) is vanilla training without any privacy constraints. The two
figures in between achieve intermediate levels of privacy. Here p = 0.2. Experiment for p = 0.5 is in Appendix B.1

the algorithm computes the majority label of that key in the
flipped dataset and assigns that majority label to the corres-
ponding key. For elements in X not present in Sf , it assigns
a random element from Y . Lemma 2 provides privacy and
accuracy guarantees for this algorithm.

Lemma 2. The algorithm Aη is
(
O
(

log
(

1
η

))
, 0
)

-DP as
η → 0. Further for any dataset Sf and s0 ∈ N,

• if a subpopulation x appears more than s0 times in S,
Ph∼Aη(Sf ) [h(x) 6= f(x)] ≤ e−s0(1−2η)2/8(1−η) and

• if a subpopulation x appears less than s0 times in S,
Ph∼Aη(Sf ) [h(x) 6= f(x)] ≥ (4η (1− η))

s0/2e−s0 .

Equivalently, algorithm Aη satisfies Assumption A1 with
p1 = e−s0(1−2η)2/8(1−η) and Assumption A2 with p2 = 1−
(4η (1− η))

s0/2e−s0 .

Lemma 1 and 2 are proved in Appendix A.2. Lemma 2
shows that for all ε > 0, we can find an η = O (e−ε)
such that Aη is (ε, 0)-differentially private. Further, this
algorithm is more accurate on frequently occurring sub-
populaitons and inaccurate on rare subpopulations, which
aligns with Lemma 1. Hence, for any ε > 0, there is
an η = O (e−ε) such that the algorithm Aη is (ε, 0)-
differentially private and is accurate on points appearing
more than ` times with probability 1−O

(
e−(1−2η)`

)
.

2.4 PRIVACY AND FAIRNESS AT THE COST OF
ACCURACY

So far we have shown that under strict privacy and high
average accuracy requirements on the algorithm, fairness

necessarily suffers. A natural question to ask is whether it
is possible to sacrifice accuracy for fairness. As discussed
in Section 2.3, increasing s0 leads to higher error – in par-
ticular, we consider s0 = Ω (m).

We present a simplified theorem statement here for easier
interpretation and prove a more precise version in Ap-
pendix A.3 along with a discussion. In words, the theorem
states that for very strict privacy parameters, fairness can be
achieved at the cost of accuracy.

Theorem 3. For any p ∈ (0, 1/2), c > 0 such that p/c ≤
1, consider the distribution Πp,N where N is the number
of minority subpopulations. For any ε, δ, α > 0, consider
an (ε, δ)-DP algorithm A that satisfies assumptions (A1)
and (A2) with s0 =

(
2−p

2k(1−p)

)
m+ α

√
m and some p2 ∈

(0, 1) where N
m → c as both m,N →∞. Then, ,

err (A,Πp,N ,F) ≥ c1p+(1− p2) (1− p)
(

1− e−
4(1−p)α2

(2−p)2

)

Γ (A,Πp,N ,F) ≤ (1− p) (1− p2) e
− 4(1−p)α2

(2−p)2 + p2

where c1 is a constant depending on ε, δ, and F .

The detailed expression of c1 and the full proof can be found
in Theorem 6 in Appendix A.3. We now briefly discuss how
the theorem characterises the effect of privacy and accur-
acy (via α) on fairness. When α is small, the algorithm is
incorrect only on minority subpopulations. Thus, α, essen-
tially, characterises what fraction of majority subpopulations
the algorithm is incorrect on. Theorem 3 shows that when α
is large, the error increases and the unfairness decreases. In-
tuitively, this is because, with increasing α, the algorithm is
incorrect, not only on minority subpopulations, but also on
majority subpopulations (due to Assumption A2). Thus, as
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Figure 3: Left: Accuracy discrepancy (green) where the
box plots reflect the variance when run several times. Right:
Overall (blue boxes) and minority (red boxes) accuracies
for varying ε. The horizontal dashed line of different colors
show the respective metrics for vanilla training without
privacy constraints. The gray vertical dashed line marks the
privacy parameter for which significant (≥ 80%) overall
test accuracy is achieved.

subpopulations of larger frequency gets misclassified due to
increasing α, the overall accuracy as well as the unfairness
decreases.

3 EXPERIMENTAL RESULTS

In this section, we conduct experiments to support our theor-
etical results from Section 2. We note that our theoretical res-
ults are model-agnostic and to demonstrate the universality
of our result, we conduct a broad set of experiments on both
synthetic (in Section 3.1), and real world datasets (in Sec-
tion 3.2 and 3.3), using multiple machine learning models
including deep neural networks and random forests.

3.1 SYNTHETIC EXPERIMENTS

First, we look at a synthetic data distribution that closely
emulates the data distribution we use in our theoretical res-
ults in Theorem 1 and 2. Given N, k ∈ N, c ∈ R+, and
p ∈ (0, 0.5), we construct a continuous version of the long-
tailed distribution Πp,N,k (Definition 1) on a domain X .
First of all, since the domain X is discrete, we can place
each element on a vertex of a O (log (N))-dimensional hy-
percube. The continuous distribution we use in our exper-
iments is a mixture of Gaussians where each Gaussian is
centered around the vertices of the hypercube. In the experi-
ments, we choose k = 64,m = 104, vary the ratio c from
0.01 to 0.2, set the number of minority subpopulations to
N = mc, and choose p ∈ {0.2, 0.5}. We train a five-layer
fully connected neural network with ReLU activations using
DP-SGD [1] for varying levels of ε while setting δ = 10−3.
We refer to Appendix B for a more detailed description of
the data distribution and the training algorithm.

Unfairness aggravates with increasing number of minor-
ity subpopulations As discussed in Section 2.1, increasing

the number of subpopulations compared to the number of
samples via c decreases accuracy on the minority subpopu-
lations while the majority subpopulations remain unaffected.
Figure 2 shows how increasing c hurts fairness since the
accuracy discrepancy (green dashed line) increases, most
pronounced for small values ε (i.e. more private algorithms).
This corroborates our theoretical results from Theorem 2
regarding the dependence of accuracy discrepancy on c. We
further observe that the increase in unfairness is almost en-
tirely due to the drop in the minority accuracy (red solid)
whereas the overall accuracy (blue) stays relatively constant.
This highlights our claim that, in the presence of strong
privacy, fairness can be poor even when overall error is low.

Privacy constraints hurt fairness for accurate models
In this section, we analyse the dependence of fairness on
the privacy parameter ε for a fixed c. In Figure 3 (left), we
plot the disparate accuracies Γ for varying privacy para-
meter ε and Figure 3 (right) depicts the minority and overall
accuracy as a function of ε.

There are two distinct phases in the development of the
accuracy discrepancy with increasing ε separated by the
gray dashed line: For a very small ε, the learned classifier is
essentially a trivial classifier as evidenced by the very low
overall accuracy (≈ 60%). This is a trivial way of achiev-
ing fairness without learning an accurate classifier and is
explained by Theorem 3 in our theoretical section. As the
privacy restrictions are relaxed, the classifier becomes more
accurate and less fair in the first phase.

The interesting regime is when classifier obtains decent over-
all accuracy (≈ 80%) and is marked by the vertical gray
dashed line. In the region to the right of the vertical dashed
line, assumption m = o (m) is fulfilled and Figure 3 (left)
reflects the behavior as predicted in Theorem 2: loosen-
ing privacy increases fairness or smaller ε implies larger
accuracy discrepancy.

3.2 EXPERIMENTS ON VISION DATASETS

In this section, we show that our claims resulting from The-
orem 2 and 3 do not only hold in synthetic settings but can
also be observed in real-world computer vision datasets. In
particular, we conduct experiments on two popular com-
puter vision datasets — CelebA and CIFAR-10. CelebA
is a dataset of approximately 160k training images of di-
mension 178× 218 and another 20k of the same dimension
for testing. CIFAR-10 is a 10-class classification dataset
where there are 50k training images and 10k test images of
dimension 3× 32× 32. For CIFAR-10, we use a ResNet-18
and for CelebA, we use a ResNet-50 architecture.

3.2.1 Minority and majority subpopulations

In practice, datasets like CelebA and CIFAR-10 often do
not come with a label of what constitutes a subpopulation.
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Figure 4: CelebA: Left: Accuracy discrepancy (green)
where the box plots reflect the variance when run several
times. Right: Overall (blue boxes) and minority (red boxes)
accuracies for varying ε. The horizontal dashed line of dif-
ferent colors show the respective metrics for vanilla training
without privacy constraints.

In this section, we describe how we define the minority and
majority subpopulations for CIFAR-10 and CelebA.

CelebA The CelebA dataset provides 40 attributes for each
image including characteristics like gender, hair color, fa-
cial hair etc. We create a binary classification problem
by using the gender attribute as the target label. In ad-
dition, we use 11 of the remaining 39 binary attributes
to create 211 subpopulations and categorise each example
into one of these 211 subpopulations. Then, we create vari-
ous groups of minority subpopulations by aggregating the
samples of all the unique subpopulations that appear less
than s ∈ {5, 10, 20, 40, 60, 80, 100} times in the test set.
The remaining examples constitute the majority group. In
this section, we run experiments using s = 40. We report
results for the other values of s in Appendix B.2.

CIFAR-10 Unlike the synthetic distribution and CelebA
as described above, CIFAR-10 cannot be readily grouped
into subpopulations using explicit attributes. However, re-
cent works [38, 50] have shown the presence of subpopu-
lations in CIFAR-10 in the context of influence functions
and adversarial training respectively. We use the influence
score estimates from Zhang and Feldman [50] to create the
minority and majority subpopulations. Intuitively, we treat
examples that are atypical i.e. unlike any other examples
in the dataset as minority examples belonging to minority
subpopulations; and examples that are typical i.e. similar
to a significant number of other examples in the dataset as
examples belonging to majority subpopulations.

To define these subpopulations, first, we sort the examples
in the training set according to their self-influence [50]. We
define all of those that surpass a threshold ρ as minority
populations. In order to find the samples belonging to each
subpopulation x in the test set, we search for images that
are heavily influenced (influence score is greater than the
threshold) by at least one of the samples in x in the training
set. In this section, we report results with ρ = 0.1. Other

Figure 5: CIFAR-10 Left: Accuracy discrepancy (green)
where the box plots reflect the variance when run several
times. Right: Overall (blue boxes) and minority (red boxes)
accuracies for varying ε. The horizontal dashed line of dif-
ferent colors show the respective metrics for vanilla training
without privacy constraints. The vertical dashed line marks
the ε for which significant (≥ 75%) overall test accuracy is
achieved.

values of ρ show a similar trend and we plot results using
ρ = 0.01 in Appendix B.3.

3.2.2 Privacy leads to worse fairness for accurate
models

In this section, we use the above definitions of minority
and majority groups to measure the impact of privacy on
fairness (using Definition 4). Like Section 3.1, we measure
both the accuracy discrepancy and the individual minority
and overall accuracies.

CelebA Figure 4 plots the change in accuracy discrepancy,
with respect to the ε parameter of differential privacy (smal-
ler ε indicates stricter privacy). Figure 4 (left) shows that
smaller ε, with high accuracy (see Figure 4 (right)) implies a
larger accuracy discrepancy. This aligns with our theoretical
results from Section 2. Note that unlike Figure 3 (left), the
accuracy discrepancy here monotonically decreases with
increasing ε without exhibiting a two-phase behavior. Fig-
ure 4 (right) shows that, the reason why we do not observe
the two-phase behavior is that throughout the range of ob-
served ε, we are in the regime of high accuracy.

CIFAR-10 Figure 5 (left) plots the change of accuracy dis-
crepancy Γ with respect to the privacy parameter ε. Interest-
ingly, the results here exactly mimic those from the synthetic
experiments in Figure 3, which are based on our theoretical
setting. This indicates that our theoretical setting is indeed
relevant for real world observations. Similar to the synthetic
experiments, we observe two distinct phases in how the
accuracy discrepancy changes with ε.

For small values of ε, Figure 5 (right) shows that the learned
classifier is highly inaccurate. As discussed in Theorem 3,
this is a trivial way to achieve fairness and this is reflected
in Figure 5 (left). However, if we restrict ourselves to classi-
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Figure 6: Law School—Left: Accuracy discrepancy (green)
where the box plots reflect the variance when run several
times. Right: Overall (blue boxes) and minority (red boxes)
accuracies for varying ε. The horizontal dashed line show
the respective metrics for vanilla training without privacy
constraints. The vertical dashed line marks the ε for which
the test accuracy is largr (≥ 80%).

fiers with high average accuracy, marked by the area to the
right of the vertical gray dashed line, Figure 5 (left) shows
that accuracy discrepancy increases with decreasing ε. This
corresponds to the s0 = o (m) assumption in Theorem 2.

3.3 EXPERIMENTS ON TABULAR DATA

To show that our observations hold across a wider range of
publicly used datasets, we next conduct similar experiments
using tabular data. We run our experiments on the the Law
school dataset [47] that has previously been used in fairness-
awareness studies like Quy et al. [35]. It is a binary classific-
ation dataset with 21k data points and 12 dimensional fea-
tures. Out of the 12 attributes, two binary attributes are used
to obtain the minority group as defined in Quy et al. [35].

In contrast to previous experiments, we use random forest
model from Fletcher and Islam [23] instead of neural net-
works as in Section 3.1 and 3.2. For our implementation, we
use the publicly available code in Holohan et al. [28] with
10 trees and of a maximum depth 50. The results are plotted
in Figure 6 and they show a similar two phase behavior as
in our previous experiments with CIFAR-10.

Thus, all our experiments provide empirical evidence in
support of the theoretical arguments in Section 2. The beha-
vior is consistent across multiple kinds of datasets, machine
learning models, and learning algorithms.

4 FUTURE WORK

The experimental results on CelebA in Section 3.2 shows
that when the minority group is composed of small sized
subpopulations, differential privacy requirements hurt the
fairness of the algorithm. Here, we highlight that not all
small-sized subpopulations are hurt equally in this pro-
cess. Figure 7 shows that a different partition of CelebA

Figure 7: Left Both sets of attributes induces a similar dis-
tribution over sizes of subpopulations on CelebA. Right Set
A has high accuracy discrepancy for small sized subpopula-
tions whereas Set B does not.

composed of similar sized populations do not show similar
behaviours in terms of how accuracy discrepancy changes
with sizes of subpopulations. We refer to the 11 attributes
we chose to partition the testset for our experiments so far as
Set A and, here, we choose another set of 11 attributes and
refer to them as Set B. Figure 7 (left) shows that both Set
A and Set B induces a very similar distribution over sizes
of subpopulations on the test set. However, Figure 7 (right)
shows that while the group of minority subpopulations in-
duced by Set A suffers very high accuracy discrepancy from
private training compared to vanilla training, Set B does
not (see Appendix B.2 for more details on Set A and Set
B). This indicates that, irrespective of sizes, private training
hurts fairness disproportionately more for certain subpop-
ulations compared to others. In particular, an interesting
direction of further research is to investigate where these
minority subpopulations that are worse-affected by private
training intersects with the subpopulations that are relevant
for the specific domain. While most past works [4, 11] have
also used sizes of subpopulations to differentiate between
disparately impacted subpopulations, this suggests that that
is not always the case.

In this paper, we have shown theoretically that when the
minority group in the data is composed of multiple sub-
populations, a DP algorithm can achieve very low error but
necessarily incurs worse fairness. Further, we corroborated
our theoretical results with experimental evidence on syn-
thetic and real world computer vision datasets. However,
our model-agnostic results, that shed a rather pessimistic
light on algorithmic fairness and differential privacy, only
apply under certain distributional assumptions. It is possible
that in some real-world datasets there are fair and private
algorithms that achieve a more optimistic trade-off. This
begs further research to develop fair and private algorithms
that are closer to the pareto optimal frontier.
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