
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLOITING DISTRIBUTION CONSTRAINTS FOR
SCALABLE AND EFFICIENT IMAGE RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

Image retrieval is crucial in robotics and computer vision, with downstream ap-
plications in robot place recognition and vision-based product recommendations.
Modern retrieval systems face two key challenges: scalability and efficiency.
State-of-the-art image retrieval systems train specific neural networks for each
dataset, an approach that lacks scalability. Furthermore, since retrieval speed is di-
rectly proportional to embedding size, existing systems that use large embeddings
lack efficiency. To tackle scalability, recent works propose using off-the-shelf
foundation models. However, these models, though applicable across datasets,
fall short in achieving performance comparable to that of dataset-specific models.
Our key observation is that, while foundation models capture necessary subtleties
for effective retrieval, the underlying distribution of their embedding space can
negatively impact cosine similarity searches. We introduce Autoencoders with
Strong Variance Constraints (AE-SVC), which, when used for projection, signif-
icantly improves the performance of foundation models. We provide an in-depth
theoretical analysis of AE-SVC. Addressing efficiency, we introduce Single-shot
Similarity Space Distillation ((SS)2D), a novel approach to learn embeddings
with adaptive sizes that offers a better trade-off between size and performance.
We conducted extensive experiments on four retrieval datasets, including Stan-
ford Online Products (SoP) and Pittsburgh30k, using four different off-the-shelf
foundation models, including DinoV2 and CLIP. AE-SVC demonstrates up to a
16% improvement in retrieval performance, while (SS)2D shows a further 10%
improvement for smaller embedding sizes.

1 INTRODUCTION

Image retrieval involves finding the closest match of a given image (query) in a vast database of
images (often called the reference set). It has numerous applications, from product recommendations
in e-commerce to place recognition in robotics. In general, state-of-the-art (SOTA) image retrieval
systems are dataset-specific. They are trained in a contrastive manner on a training split of the data,
typically hand-labeled for positive and negative pairs for each query. Imagine a scenario where a
server has a vast reference database of fashion clothing images and receives query images from users
to find the closest matches in the reference set. Creating a separate split and hand-labeling positive
and negative pairs to train a dataset-specific model is infeasible. A more scalable solution is to use
off-the-shelf feature extractors like Dino (Caron et al., 2021), DinoV2 (Oquab et al., 2024), CLIP
(Radford et al., 2021), and ViT (Dosovitskiy et al., 2021). However, the performance of off-the-shelf
feature extractors is generally lower compared to dataset-specific models. Q1 (Scalability): Is there
a way to enhance the performance of these off-the-shelf models in a completely unsupervised
way by using just the reference set?

Another key problem in retrieval is that the retrieval speed is directly proportional to the size of the
embeddings. For an embedding of size d and a reference set with N image vectors, the retrieval
speed for a single query is O(d×N). This retrieval time becomes significant as the size of the refer-
ence set (N ) increases, with modern retrieval systems containing millions of images. Additionally,
the embedding size directly affects the storage space required for the reference set and the com-
munication bandwidth needed to send the query vector to the server in distributed image retrieval
systems, which are common in product recommendations and robotic place recognition. Standard
dimensionality reduction techniques, such as Principal Component Analysis (PCA), aim to preserve
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Figure 1: Two-step pipeline for the proposed approach. (A) AE-SVC (discussed in Sec. 3.1) trains an
autoencoder with our constraints to improve foundation model embeddings. (B) (SS)2D (discussed in Sec.
3.2) uses the improved embeddings from AE-SVC to learn adaptive embeddings for improved retrieval at any
embedding size. (C) Once trained, (SS)2D can be directly applied to foundation model embeddings to generate
adaptive embeddings for improved retrieval. (D) AE-SVC (orange) boosts performance significantly, while
(SS)2D (green) further enhances results with smaller embeddings. Dino (blue) achieves optimal performance
at 9 GLOPs, whereas (SS)2D on top of AE-SVC achieves similar performance at only 2.5 GLOPs.

information, while Autoencoders (AEs) (Hinton & Salakhutdinov, 2006) and Variational Autoen-
coders (VAEs) (Kingma & Welling, 2013) focus on reconstruction quality. However, these methods
are not optimized for retrieval tasks. Additionally, learning-based approaches like AEs and VAEs re-
quire separate training for each embedding size, which is impractical given varying compute, space,
and communication constraints. Q2 (Efficiency): Is there an effective unsupervised dimension-
ality reduction method that strongly preserves the similarity structure of the full embeddings,
and is adaptive, i.e., does not need to be trained for each dimension separately?

Contributions: To address Q1 (Scalability), we propose Autoencoders with Strong Variance Con-
straints (AE-SVC). Our primary idea is that, while foundation models capture the necessary details
for effective retrieval, the underlying distribution of their embeddings can negatively impact cosine
similarity searches. AE-SVC trains an autoencoder while enforcing three constraints on the latent
space: an orthogonality constraint, a mean centering constraint, and a unit variance constraint. We
empirically show and mathematically prove that these constraints cause a shift in the cosine simi-
larity distribution, making it more discriminative. These constraints not only lead to more effective
dimensionality reduction but also outperform the complete embeddings of foundation models.
We discuss the motivation and technical details of AE-SVC in section 3.1. We also provide an in-
depth mathematical analysis of AE-SVC in section 4. To address Q2 (Efficiency), we propose Single
Shot Similarity Space Distillation ((SS)2D). (SS)2D aims at reducing embeddings to smaller ones
while preserving their similarity relationships. The embedding learned with (SS)2D is adaptive,
i.e., smaller segments of the output embedding also perform well in retrieval tasks. In summary, our
approach consists of two steps (as shown in Fig. 1): first, we use AE-SVC to enhance the baseline
performance of foundation models. Then, we leverage the improved embeddings as a teacher for
efficient dimensionality reduction through (SS)2D.

Fig. 1(D) also shows the retrieval performance versus retrieval speed in giga-FLOPs (floating oper-
ations) on the Pittsburgh30K dataset (Torii et al., 2013) using the Dino model (Caron et al., 2021).
Note that retrieval speed is a function of the dimension d and the reference set size N , O(d × N),
with N = 17, 000 for Pittsburgh30K. The performance of PCA (blue) represents the default off-
the-shelf Dino model. We can see that AE-SVC (orange) significantly enhances the performance
of the off-the-shelf Dino model (blue). Notice that it outperforms the complete Dino embedding.
Applying (SS)2D on top of AE-SVC further improves retrieval performance at smaller embedding
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sizes (green). Section 5 experimentally shows the advantages of the proposed approaches in detail
on four different datasets using different foundation models.

2 RELATED WORK

Deep Metric Learning: Image retrieval is modeled as a Deep Metric Learning (DML) problem
(Wang et al., 2017). DML focuses on learning latent representations where similar items are close
and dissimilar items are far apart. Various techniques have been proposed (Oh Song et al., 2016;
Schroff et al., 2015; Ustinova & Lempitsky, 2016; Sohn, 2016; Wang et al., 2019) to learn mean-
ingful latent representations for effective retrieval, including contrastive loss (Hadsell et al., 2006)
and triplet loss (Schroff et al., 2015). More recent works use advanced N-pair loss (Sohn, 2016) or
multi-similarity loss (Wang et al., 2019). Analogous to image retrieval, Visual Place Recognition
(VPR) is also modeled as a DML problem (Garg et al., 2021). Various training objectives have
been proposed for VPR (Ge et al., 2020; Xiao et al., 2023; Leyva-Vallina et al., 2023; Berton et al.,
2022) to learn latent representations for effective retrieval. However, all of these approaches are
dataset-specific, meaning they train specific neural networks for each dataset.

Foundation Models in Image Retrieval: The rise of foundation models, such as DINOv2 (Oquab
et al., 2024), CLIP (Radford et al., 2021), ViT (Dosovitskiy et al., 2021), has allowed recent works
to explore the applicability of these off-the-shelf models in image retrieval. As shown in (Keetha
et al., 2023; Lu et al., 2024), off-the-shelf models, in some cases, can have comparable retrieval per-
formance to dataset-specific models. However, these approaches either use the off-the-shelf models
as-is (Keetha et al., 2023) or adapt them using a labeled held-out dataset (Lu et al., 2024). In stark
contrast, our approach, AE-SVC, exploits the inherent properties of the distribution to improve the
performance of these off-the-shelf models without requiring any labeled data.

Distribution Constraints in Semi-supervised Representation Learning: Semi-supervised learn-
ing has seen significant advances with methods that leverage self-supervised objectives to learn
robust representations. A notable approach is Barlow Twins, which employs an additional cross-
correlation loss to align representations while minimizing redundancy across dimensions, promoting
feature decorrelation (Zbontar et al., 2021). Extending this idea, VICReg introduces an additional
variance constraint that ensures sufficient spread in the learned features, preventing collapse and
further enhancing representation quality (Bardes et al., 2022). However, to date, no work has specif-
ically explored the impact of such constraints in the context of autoencoders for retrieval tasks. In
this paper, we are the first to address this gap, providing a comprehensive theoretical analysis of
these constraints and their impact on retrieval.

Similarity Preserving Knowledge Distillation: Similarity preserving knowledge distillation
(SPKD) focuses on transferring knowledge from a teacher model to a student model, similar to
standard distillation (Hinton et al., 2015; Buciluǎ et al., 2006; Ba & Caruana, 2014; Zagoruyko
& Komodakis, 2017; Zhang et al., 2019; Passalis & Tefas, 2018), while maintaining the structure
of similarity of the data in the feature space. One of the pioneering works in this area is the Fit-
Nets approach, which uses intermediate representations to guide the student model (Romero et al.,
2014). The attention transfer method extends this by aligning the attention maps of the student
and teacher models (Zagoruyko & Komodakis, 2017). More recent advancements include (Tung &
Mori, 2019), which explicitly preserves pairwise similarities between data points in the feature space
during distillation. Contrastive Representation Distillation (CRD) further improves performance by
using contrastive loss to maximize mutual information between teacher and student representations
(Tian et al., 2020). Additionally, the Relational Knowledge Distillation (RKD) approach emphasizes
the importance of preserving the relational knowledge among data points (Park et al., 2019). All of
these works focus on training a lightweight student network to mimic a heavy teacher network. We
are the first to explore this idea in a dimensionality reduction setting for image retrieval.

Adaptive Feature Embeddings: A core requirement for dimensionality reduction in retrieval sys-
tems is adaptive embeddings due to varying compute constraints. Previous works on adaptive feature
embeddings have created efficient and adaptive embedding spaces for compression (Li et al., 2023)
and image classification (Kusupati et al., 2022), while ours focuses on image retrieval. The key
idea is to use only one neural network model to output a feature embedding ensuring that smaller
sub-chunks of the embedding also perform well in retrieval tasks.
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3 METHODOLOGY

We now formally define the image retrieval problem:

Suppose we have a query set Q of M query image feature vectors and a reference set R of N
reference image feature vectors, where each vector is d-dimensional. Given qj ∈ Rd randomly
drawn from Q, the task is to identify the feature vector ri in R that has the smallest distance or
highest similarity with qj . This can be mathematically expressed as:

ri = argmin
r∈R

dis(qj , r),

with the distance dis generally based on cosine similarity, i.e., dis(qj , ri) = 1 − cos(qj , ri), where
cos denotes the cosine similarity.

We will now describe our approach in detail. First, we will explain the step-by-step procedure for
AE-SVC. Next, we will present an in-depth explanation of (SS)2D. Note that both AE-SVC and
(SS)2D utilize only the reference set R during the training time. The query set Q is assumed to be
unavailable to the user during training. A standard assumption when doing dimensionality reduction
in image retrieval settings (Keetha et al., 2023).

3.1 AUTOENCODERS WITH STRONG VARIANCE CONSTRAINTS (AE-SVC)

Figure 2: In standard dimensionality reduc-
tion (say PCA), cosine similarity is dispropor-
tionately influenced by high-variance dimen-
sions, leading to poor retrieval. Given a task to
match the query with the correct clothing type. A
query image of a white man in a tank-top may be
incorrectly matched to a white man in a half-shirt
due to the dominant person dimension. Ideally,
both orthogonal dimensions should have an equal
influence on cosine similarity.

Motivation: Our primary motivation for AE-SVC
is that, while foundation models capture necessary
subtleties for effective retrieval, the underlying dis-
tribution of their embedding space can negatively
impact cosine similarity searches. In Sec. 4, we
discuss in mathematical detail that the discrimina-
tive power of the retrieval task is maximized when
the variance of the cosine similarity distribution is
minimized. AE-SVC introduces three constraints on
the latent space: an orthogonality constraint, a mean
centering constraint, and a unit variance constraint.
In Sec. 4, we prove that these constraints on the la-
tent space minimize the variance of the cosine simi-
larity distribution. We now provide a more intuitive
explanation of why these constraints are helpful.
Consider the example illustrated in Fig. 2. We have a
reference set comprising four categories of clothing:
men’s tank-tops, men’s half-shirts, women’s tank-
tops, and women’s half-shirts. The task is to match
the query with the correct clothing type. After applying dimensionality reduction (like a standard
PCA) to the reference set, we obtain two orthogonal dimensions: a person dimension (with high
variance) and a shirt shape dimension (with low variance). If similarity is overly dependent on the
high-variance dimension, as shown mathematically in Sec. 4, retrieval performance suffers. For in-
stance, a query for a white man in a tank-top might incorrectly match with a white man in a half-shirt
due to the dominant person dimension. Ideally, we need a space where both the person and shirt di-
mensions equally influence the distinction between men and women, as well as between half-shirts
and tank-tops. The goal of AE-SVC is to learn a projection from the reference set R such that the
latent dimensions are orthogonal and have equal variance.

Approach:. AE-SVC (as shown in Fig. 1(A)) takes an input embedding I ∈ Rd coming from the
foundation model, encodes it to a latent representation z ∈ Rd, and produces a reconstruction I ′ ∈
Rd. We have three additional losses to enforce the constraints mentioned above: an orthogonality
constraint, a mean centering constraint, and a unit variance constraint. Note that we can choose any
size for the latent representation z. We show the results for multiple sizes of z. However, since
AE-SVC is used to guide (SS)2D later, we will use the best performing embedding, i.e., z ∈ Rd,
for this guidance.
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Reconstruction Loss: We minimize the Mean Squared Error (MSE) between the input embedding
I and the reconstruction I ′:

Lrec =
1

n

n∑
i=1

∥Ii − I ′i∥22, (1)

where n is the number of samples.

Covariance Loss: To promote orthogonality, we penalize off-diagonal terms of the covariance ma-
trix:

Lcov =

∥∥∥∥ 1n (Z − µ)⊤(Z − µ)− I
∥∥∥∥2
F

, (2)

where Z ∈ Rn×d is the matrix of latent representations, µ ∈ Rd is the mean of Z, and I is the
identity matrix.

Variance Loss: We constrain the variance of each latent dimension to be one:

Lvar =
1

d

d∑
i=1

(
Var(zi)− 1

)2
, (3)

where zi is the i-th latent dimension of z and Var(zi) is the variance of the i-th latent dimension
across all n samples.

Mean-Centering Loss: To ensure the latent space is centered around zero, we minimize the mean
of the latent dimensions:

Lmean =
1

d

d∑
i=1

(µi)2, (4)

where µi is the mean of the i-th latent dimension across all n samples.

Total Loss: The final objective combines all four losses:

LAE-SVC = λrecLrec + λcovLcov + λvarLvar + λmeanLmean (5)

where λrec, λcov, λvar, and λmean are hyperparameters discussed in A.6. By optimizing this loss,
AE-SVC learns a latent space that improves retrieval performance through accurate reconstruction,
decorrelated and normalized feature dimensions, and a zero-centered mean. The latent representa-
tion, z ∈ Rd, is then used to guide the training of (SS)2D.

3.2 SINGLE SHOT SIMILARITY SPACE DISTILLATION ((SS)2D)

Motivation: As previously mentioned, embedding size significantly impacts retrieval speed. For an
embedding of size d and a reference set with N image vectors, the retrieval speed for a single query
is O(d×N). Therefore, it is crucial to reduce the embedding size while maintaining performance.
Standard dimensionality reduction techniques, such as PCA, Autoencoders (AEs), and Variational
Autoencoders (VAEs), are not optimized for retrieval. Additionally, AEs and VAEs require separate
training for each embedding size, which is impractical given varying computational constraints.
Therefore, there is a need for adaptive embeddings that maintain retrieval performance and are
flexible, ensuring that smaller sub-chunks of the embedding also perform well in retrieval tasks.

Approach: Previous works have employed Similarity-Preserving Knowledge Distillation (SPKD)
both in hidden layer activations (Smith et al., 2023) and output layers (Wu et al., 2022). SPKD
trains a student network to ensure that input pairs producing similar (or dissimilar) activations in the
teacher network yield similar (or dissimilar) activations in the student network. However, these stud-
ies have not explored similarity-preserving distillation for efficient dimensionality reduction. Our
approach is conceptually similar to SPKD, but rather than focusing on network distillation (teacher
to student), we perform embedding-level distillation, reducing a large embedding to a smaller one
while preserving similarity relationships. Using SPKD directly for dimensionality reduction requires
training separate networks for each dimension size. Previous works on adaptive embeddings have
utilized random projections in a distributed compression setting (Li et al., 2023) or optimized multi-
class classification loss for each nested dimension (Kusupati et al., 2022). Following the approach
in (Kusupati et al., 2022), we optimize a similarity-preserving loss for each nested dimension. By
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combining a similarity-preserving loss with an adaptive embedding training pipeline, we introduce
our approach, Single Shot Similarity Space Distillation, or (SS)2D. Fig. 1(B) illustrates the central
idea of (SS)2D which we will now describe in detail.

Let z ∈ Rd be the latent representation of the reference set obtained via AE-SVC. Our goal is
to reduce the dimensionality of z so that the performance of the smaller embedding approximates
that of the full embedding. In essence, the complete embedding z serves as a guide for creating
smaller embeddings. Although (SS)2Dcould theoretically be applied directly to the foundation
model embedding I , the latent representation z is shown to perform better in retrieval tasks, thus
providing stronger guidance.

Consider a set M ⊂ [d] of embedding sizes and a neural network F(·; θ) parameterized by θ. We
want to learn a projection ẑ = F(z; θ) such that each of the first m dimensions, for m ∈ M, of
the learned embedding vector ẑ1:m ∈ Rm independently preserves the retrieval performance of z.
To learn the function F , we first compute a cosine similarity matrix C ∈ RN×N by calculating the
cosine similarities of every z with every other z in the reference set R. We refer to this matrix as the
cosine similarity space of the teacher Z. Let Ci denote the ith row of C.

Next, for each m ∈ M, we define a student similarity space C̃m ∈ RN×N . We then introduce a
Kullback-Leibler (KL) divergence loss lm between C̃m and C for each m as follows:

lm =
∑
i

DKL(C̃
m
i ∥Ci) (6)

The overall loss L is then expressed as:

L(SS)2D =
∑
m

lm =
∑
m

∑
i

DKL(C̃
m
i ∥Ci) (7)

4 THEORETICAL ANALYSIS OF AE-SVC

In Sec. 3.1, we stated that the discriminative power of the retrieval task is maximized when the vari-
ance of the cosine similarity distribution is minimized. This discriminative power can be modeled
as the probability that the cosine similarity between two randomly drawn vectors Sa and Sb from
the same class exceeds a given threshold τ :

P (cos(Sa, Sb) > τ) = erf

(
E[cos(Sa, Sb)]− τ√

Var[cos(Sa, Sb)]

)
, (8)

where erf is the error function. The vectors Sa and Sb are assumed to be drawn from the same
Gaussian distribution. As evident from Eq. 8, the discriminative power increases as the variance of
the cosine similarity distribution decreases. For a theoretical proof of this and alternative methods
for modeling discriminative power, we refer the reader to Smith et al. (2023).

We now verify if the results of Gaussian assumptions also hold for real datasets. Fig. 3 shows the
distribution of cosine similarities of the reference set feature vectors on the Pittsburgh30k dataset
(Torii et al., 2013). We compute cosine similarities between all pairs of feature vectors in the refer-
ence set and plot the probability mass function (PMF) with and without AE-SVC for two models:
the off-the-shelf foundation model Dino (Fig. 3a) and the SOTA dataset-specific model Cosplace
(Berton et al., 2022) (Fig. 3b). Cosplace, which excels at retrieval, exhibits a PMF with signifi-
cantly less variance compared to Dino, as seen in the blue curves in Fig. 3a and 3b. The lower
variance indicates more discriminative feature vectors, which aligns with the findings from Eq. 8
that smaller variance enhances discriminative power and retrieval performance. Applying AE-SVC
reduces the variance in both models (orange curves), with a more pronounced shift in Dino than in
Cosplace. This suggests that AE-SVC benefits the off-the-shelf foundation model more (10%) than
the dataset-specific model (2%), as reflected in the retrieval performance plot in Fig. 3c. Thus, the
remainder of this work focuses on off-the-shelf foundation models.

We have mathematically and empirically demonstrated that the discriminative power of the retrieval
task is maximized when the variance of the cosine similarity distribution is minimized. Next, we will
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(a) (b) (c)

Figure 3: AE-SVC reduces the variance of cosine similarity distributions in both foundation (a) and
dataset-specific models (b), with a more significant shift in foundation models (a). This results in greater
improvement in retrieval performance for the foundation model (Dino) compared to the dataset-specific model
(Cosplace), as shown in (c).

prove that the constraints introduced on the latent space in Sec. 3.1 indeed minimize this variance.
Let Z be the latent space distribution of AE-SVC. By applying constraints in Eq. 2 and Eq. 4,
the distribution Z has a zero mean, µ = 0, and a diagonal covariance matrix Σ ∈ Rd×d, with
eigenvalues λi = σ2

i , where σ2
i is the variance of the individual dimensions of Z. Given two vectors

X and Y drawn from Z, i.e., X,Y ∼ Z, the cosine similarity between X and Y is:

cos(X,Y ) =

∑d
i=1 XiYi√∑

i X
2
i

√∑
i Y

2
i

=
XTY√

(XTX)(Y TY )
=

XTY

∥X∥∥Y ∥
, (9)

where subscript i denotes the i-th element of a vector , and ∥X∥ and ∥Y ∥ denote the Euclidean
norms of vectors X and Y respectively. Each term in the numerator of Eq. 9 is just a product of two
random variables, but the denominator makes things complicated. A closed-form solution of a ratio
of two random variables is difficult to calculate.

Let us introduce a relaxation that can be used to approximate the denominator and simplify the
calculation. Using cosine’s scale invariance (shown in A.2), we define a relaxation r(Z) as:

r(Z) =
Z

m
, (10)

where m =
√∑

i σ
2
i . Relaxation r has two properties. First, the expected value of the squared norm

after relaxation, denoted as E[||r(Z)||2], is equal to 1. Second, the ratio of variance to square of the

mean is given by
∑

k 2σ2
k

(
∑

k σ2
k)

2 , and it approaches 0 as the dimensionality d tends to infinity. Under the
condition that the contribution of any single covariance eigenvalue is sufficiently small. Smith et al.
(2023) show that these properties can then be used to approximate the cosine similarity as:

cos(X,Y ) = cos(r(X), r(Y )) =

∑d
i=1 r(X)ir(Y )i
∥r(X)∥∥r(Y )∥

≈
d∑

i=1

r(X)ir(Y )i. (11)

With this approximation, the moments of the cosine similarity can be easily calculated:

E[cos(X,Y )] = 0, (12)

Var(cos(X,Y )) =

d∑
i=1

σ4
i

(
∑d

j=1 σ
2
j )

2
. (13)

We can see from Eq. 13 that the cosine similarity distribution is highly dependent on the dimensions
with high variance. Taking the gradient of Eq. 13 with respect to σ2

i , we get:

∂

∂σ2
i

Var(cos(X,Y )) = 2

 d∑
j=1

σ2
j

−3 ( d∑
j=1

σ2
j )σ

2
i − (

d∑
j=1

σ4
j )

 . (14)
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We can see that the global minimum of the approximation for Var(cos(X,Y )) is achieved when
all individual variances of the original distribution are equal, i.e., σ2

i = σ2
j ∀ i, j. This is enforced

in AE-SVC by the variance constraint (Eq. 3). Therefore, we theoretically and empirically justi-
fied that AE-SVC minimizes the variance of the cosine similarity distribution, improving retrieval
performance.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets: We evaluate our approach on four distinct image retrieval datasets: InShop (Liu et al.,
2016), Stanford Online Products (SOP) (Song et al., 2016), Pittsburgh30K (Torii et al., 2013), and
TokyoVal (Torii et al., 2015). InShop and SOP are state-of-the-art (SOTA) image retrieval datasets
commonly used in metric learning research, while Pittsburgh30K and TokyoVal are recognized as
SOTA place recognition datasets, frequently used in robotics research.

Foundation Models Evaluated: To demonstrate the broad applicability of our approach, we con-
ducted experiments using four different foundational models trained with a variety of techniques
and pre-training datasets: CLIP (Radford et al., 2021), DINO (Caron et al., 2021), DINOv2 (Oquab
et al., 2024), and ViT (Dosovitskiy et al., 2021). The CLIP model was pre-trained on the LAION-
2B dataset (Community, 2023) using a contrastive learning approach. Both DINO and ViT models
were pre-trained in a self-supervised manner on the ImageNet dataset (Russakovsky et al., 2015).
The DINOv2 model was pre-trained in a self-supervised manner on the LVD-142M dataset (Oquab
et al., 2023). For the DINO and DINOv2 models, we evaluated different model sizes: specifically,
DINO-S8 with 22.7 million parameters and DINO-B16 with 300 million parameters, as well as
DINOv2-Small with 22.1 million parameters and DINOv2-Large with 300 million parameters.

Settings: Our work presents two contributions: the introduction of a novel space, AE-SVC, and a
new method for learning an adaptive embedding, (SS)2D, on top of AE-SVC. Consequently, our
experiments are divided into two parts. First, we demonstrate that AE-SVC significantly enhances
the retrieval performance of foundation models across various datasets and model choices. Second,
we show that (SS)2D facilitates more effective dimensionality reduction on top of AE-SVC, further
improving performance at lower dimensions. We compare (SS)2D with the following baselines:
a variational auto-encoder (VAE) applied to AE-SVC for each dimensional size separately. Addi-
tionally, we compare (SS)2D with using Similarity Space Distillation applied to each dimension
separately, referred to as SSD. Note that SSD serves as a theoretical upper bound for (SS)2D. We
use mean Average Precision at k (mAP@k), a standard metric for evaluating retrieval performance.
We show additional results on the Recall@k metric in Appendix A.5.

5.2 RESULTS

Figure 4: AE-SVC significantly improves the retrieval performance of foundation models. AE-SVC (solid
lines) consistently outperforms the off-the-shelf foundation models, i.e., PCA (dashed lines), on four datasets,
achieving a 15.5% average improvement in retrieval performance.

Fig. 4 shows the performance comparison between AE-SVC and PCA across 4 datasets, InShop,
Stanford Online Products (SOP), Pittsburgh30K, and TokyoVal, using 3 foundation models (ViT,
DINOv2-Large, and DINO-B16). The performance of PCA (dotted line) represents the default
off-the-shelf performance of the foundation models, while the performance of AE-SVC is shown

8
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with solid lines. AE-SVC consistently outperforms PCA across all datasets and embeddings. For
example, the DINOv2-Large embedding (yellow) shows a 24% improvement on InShop, 10% on
SoP, 5% on Pittsburgh30K, and 22% on TokyoVal at full embedding size. Overall, AE-SVC achieves
an average improvement of 15.5% across all datasets and embeddings at full size. Also, AE-SVC
consistently surpasses PCA at smaller embedding sizes, providing a better size-performance trade-
off. For additional results with more foundation models, see Appendix A.3.

Fig. 5 illustrates the advantages of (SS)2D on two datasets: InShop and Pittsburgh30K, utiliz-
ing two foundation models, Dinov2-Large and Dino-S8. We compare (SS)2D with a non-linear
dimensionality reduction technique, Variational Auto Encoder (VAE) (black crosses). Addition-
ally, we compare it with Similarity Space Distillation (SSD), which represents the theoretical upper
bound of (SS)2D. Note that unlike VAE (black crosses) and SSD (red crosses), which are trained
for each dimension separately, (SS)2D learns an adaptive embedding in one shot. From the plot, we
observe that AE-SVC (orange) initially enhances the performance of the original embedding (blue),
and (SS)2D subsequently provides additional improvements of up to 10% at smaller embedding
sizes. Also note that since SSD is trained for each dimension separately, it serves as the theoretical
upper bound of (SS)2D. The results indicate that (SS)2D closely approaches this upper bound. For
additional results involving more datasets and foundation models, please refer to Appendix A.4. As
discussed in Sec. 1, a smaller embedding size directly translates to faster retrieval speeds. Therefore,
the effective dimensionality reduction achieved with (SS)2D results in improved retrieval speeds,
as demonstrated in Fig. 1(D).

Figure 5: Applying (SS)2D over AE-SVC leads to further performance boost at lower embedding sizes.
Compared to VAE and SSD, (SS)2D offers superior single-shot dimensionality reduction, achieving up to a
10% enhancement at smaller embedding sizes, closely approaching SSD’s theoretical upper bound.

5.3 LIMITATIONS

While AE-SVC demonstrates significant improvements when applied to foundation models, its abil-
ity to enhance dataset-specific models is limited. The pre-trained models tailored for a specific
dataset already capture the nuances required for effective retrieval, leaving less room for further op-
timization via AE-SVC. Additionally, (SS)2D introduces a computational overhead during training
due to the need to compute the loss functions for various embedding sizes. This overhead increases
training time, though it is still substantially lower than the cost of retraining neural networks for
different embedding sizes from scratch.

6 CONCLUSION AND FUTURE WORK

In this paper, we proposed AE-SVC and (SS)2D, which improve retrieval scalability and efficiency.
Our results show a significant improvement on 4 datasets, from image retrieval to place recognition
tasks. AE-SVC demonstrates up to a 16% improvement in retrieval performance, and (SS)2D
shows an improvement of 10% for smaller embedding sizes, which further boosts retrieval efficiency.
Future work includes new retrieval models that orchestrate the variance-aware property in training
loss of foundation models. Although we observe the resulting difference in the cosine similarity
distributions of the foundation models and the data set-specific models (Figure 3), the fundamental
discrepancy between the embedding spaces remains unknown to the community.
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REPRODUCIBILITY STATEMENT

In the theoretical analysis section (Sec. 4) of this work, we clearly state all the assumptions as
and when necessary. Appendix A.1 and A.2 provides additional details necessary to understand the
proofs in Sec. 4. We also discussed all the hyperparameters in Appendix A.6. Lastly, we release a
reproducible codebase in the supplementary details. The code includes dataloaders, execution code,
and links to download all the datasets and models used. We also provide detailed instructions on how
to replicate our experiment setup and results, ensuring complete transparency and reproducibility.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
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A APPENDIX

A.1 INVARIANCE OF ORTHOGONAL TRANSFORMATION

We show that cosine similarity is invariant to orthogonal transformation. Define Torth ∈ {T :
T⊤T = I} as an orthogonal transformation. Following equation 9, we see that

cos(TorthX,TorthY ) =
(TorthX)

⊤
TorthY

∥TorthX∥∥TorthY ∥

=
X⊤IY√

X⊤IX
√
Y ⊤IY

=
X⊤Y

∥X∥∥Y ∥
= cos(X,Y ) □.

(15)

A.2 COSINE SCALE INVARIANCE

Similar to the derivation in A.1, we now show that cosine similarity is invariant to scaling. Again,
we define a constant c and follow equation 9:

cos

(
X

c
,
Y

c

)
=

X⊤Y/c2

∥X∥∥Y ∥/c2

=
X⊤Y

∥X∥∥Y ∥
= cos(X,Y ) □.

(16)

A.3 AE-SVC ADDITIONAL RESULTS WITH MORE FOUNDATION MODELS

In Fig. 4, we showed the advantage of using AE-SVC for embeddings of three models. Here, in
Fig. 6, we show additional results with three more embeddings, namely: CLIP, DINO-V2-Small,
and DINO-S8. We observe similar trends as previously noted. We release our codebase in the
supplementary material for easy reproduction of all these results.

Figure 6: AE-SVC significantly improves the retrieval performance of foundation models. Here, we see a
similar trend as discussed in the main paper but with three additional foundation models.

A.4 (SS)2D ADDITIONAL RESULTS WITH MORE DATASETS AND FOUNDATION MODELS

In Fig. 5, we showed the advantage of using (SS)2D on top of AE-SVC for additional improve-
ment in retrieval performance at smaller dimensions. Here, in Fig. 7, we show additional results for
(SS)2D on SOP with DINO-B16 and on TokyoVal with ViT. We observe similar trends as previ-
ously noted. For trying (SS)2D with more combinations of datasets and foundation models, please
refer to our codebase that we release in the supplementary material.
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Figure 7: Applying (SS)2D over AE-SVC leads to further performance boost at lower embedding sizes.
Here, we see a similar trend as discussed in the main paper but with two additional foundation models and
datasets.

A.5 AE-SVC ADDITIONAL RESULTS ON THE RECALL METRIC

In Fig. 4, we show the advantage of using AE-SVC for embeddings of three models on the mean Av-
erage Precision at k (mAP@k) metric. Here, in Fig. 8, we show additional results on the Recall@k
metric. We observe very similar trends on the Recall@k metric as we did on the mAP@k metric.
We release a reproducible codebase for readers to experiment with both metrics.

Figure 8: AE-SVC significantly improves the retrieval performance of foundation models on the recall
metric. AE-SVC (solid lines) consistently outperforms the off-the-shelf foundation models, i.e., PCA (dashed
lines), on four datasets.

A.6 HYPERPARAMETERS

We discussed four hyperparameters in Sec. 3.1: λrec, λcov, λvar, and λmean. We empirically deter-
mined the values of these hyperparameters, ensuring optimal performance across all datasets. The
fixed values are: λrec = 25, λcov = 1, λvar = 15, and λmean = 1.
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