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Abstract—Protecting personal data against exploitation of
machine learning models is crucial. Recently, availability attacks
have shown great promise to provide an extra layer of protection
against the unauthorized use of data to train neural networks.
These methods aim to add imperceptible noise to clean data
so that the neural networks cannot extract meaningful patterns
from the protected data, claiming that they can make personal
data “unexploitable.” This paper provides a strong counter-
measure against such approaches, showing that unexploitable
data might only be an illusion. In particular, we leverage the
power of diffusion models and show that a carefully designed
denoising process can counteract the effectiveness of the data-
protecting perturbations. We rigorously analyze our algorithm,
and theoretically prove that the amount of required denoising
is directly related to the magnitude of the data-protecting
perturbations. Our approach, called AVATAR, delivers state-of-
the-art performance against a suite of recent availability attacks
in various scenarios, outperforming adversarial training even
under distribution mismatch between the diffusion model and
the protected data. Our findings call for more research into
making personal data unexploitable, showing that this goal is
far from over. Our implementation is available at this repository:
https://github.com/hmdolatabadi/AVATAR.

Index Terms—neural networks, availability attacks, diffusion
models, facial recognition

I. INTRODUCTION

Neural networks have achieved great success in various ar-
eas of computer vision including object detection [25, 14], se-
mantic segmentation [78, 36], and photo-realistic image/video
generation [31, 11, 54]. While the efforts of the community in
the development of such models cannot be undermined, this
unparalleled success would have been impossible without the
abundance of data resources available today [9, 33, 49, 35]. In
this regard, social media, and the internet in general, provides a
platform that can be crawled easily to create massive datasets.
This capability can act both as a blessing and a curse: while
the collected data can facilitate learning larger, more accurate
neural networks, the users lose control over protecting their
personal data from being exploited. This issue has raised
increasing concerns about misuse of personal data [27, 26, 5].

Recently, there has been an increasing number of studies
on hindering the unauthorized use of personal data for neural
network image classifiers [15, 30, 72, 17, 18, 71, 62, 50].

These methods tend to add an imperceptible amount of noise
to the clean images so that while the data has the same
appearance as the ground-truth, it cannot provide any mean-
ingful patterns for the neural networks to learn. As a result,
such approaches, collectively known as availability attacks [4],
claim that personal image data can be made unexploitable
for the neural networks [30, 71]. While there has been an
abundance of research on designing better availability attacks,
far too little attention has been paid to counter-attacks that
might be employed by adversaries to break such precautionary
measures.

Unfortunately, the assumptions of existing availability at-
tacks are far too weak to make the data unexploitable. For
example, consider a user who shares their protected photos
over their social media. We can clearly see that once the
photos are shared, they cannot be protected against all future
countermeasures [47]. For instance, consider a corporate entity
that aims to train face recognition models by crawling over
social media without the consent of the users. While this
unauthorized entity might not have unprotected versions of
a particular person’s image from his/her social media, they
can have a large pre-trained model representing a facial image
distribution. Given this threat model, shown in Figure 1, we
aim to show that counteracting the protecting perturbations is
indeed plausible.

To this end, we show that pre-trained density estimators
are powerful tools that can be used to counteract the effects
of the data-protecting perturbations, eventually enabling us
to exploit protected data. We utilize the power of diffusion
models in representing the image data distributions to show
that reverse-engineering unexploitable data is easier than what
is thought. In particular, given a training dataset, we first
diffuse the images by adding a controlled amount of Gaussian
noise following the forward process of a pre-trained diffusion
model. Then, we denoise the noisy images using the reverse
process of the aforementioned model, resulting in a dataset
purified from data-protecting perturbations. Theoretically, us-
ing contraction properties of stochastic difference equations
we prove that the number of diffusion steps required to cancel
the data-protecting perturbations is directly influenced by the
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Fig. 1: The threat model considered in this paper. Availability attacks cannot guarantee to protect all the data that exists over
the web. A data exploiter might use large density estimators to defuse the data-protecting perturbations and exploit the data.

magnitude of its norm. Thus, protecting personal data using
imperceptible perturbations is not possible. We also empiri-
cally show that our approach is surprisingly powerful, being
able to deliver the state-of-the-art (SOTA) performance against
a wide variety of recent availability attacks. Our findings
indicate the fragility of unexploitable data, calling for more
research to protect personal data.

Diffusion models have been extensively used in various
areas. Closely related to our work, Yoon et al. [70] and
Nie et al. [42] have employed diffusion models to increase
robustness against adversarial attacks. In contrast to these
methods, in this paper, we investigate the capabilities of
diffusion models as a threat against personal data protected
by availability attacks. In particular, we leverage the SOTA
diffusion models as a proxy for the true data distribution and
argue why unlearnable examples provide a false sense of data
privacy.

Our contributions can be summarized as follows:
• We introduce AVATAR as a countermeasure against data

availability attacks. To the best of our knowledge, this is
the first work that explores the use of diffusion models
to circumvent such attacks.

• We show the power of AVATAR in breaking availability
attacks over five datasets, four architectures, and seven
of the most recent availability attacks. AVATAR achieves
the SOTA performance against availability attacks, out-
performing adversarial training.

• Our results indicate that even in the absence of the true
data distribution, one can use a similar distribution to
counteract availability attacks.

• Theoretically, we show that the amount of noise needed to
diffuse the data-protecting perturbation is directly related
to the magnitude of its norm. This result indicates that
achieving both goals of availability attacks (data utility
and protection) at the same time is impossible.

II. RELATED WORK

In this section, we review the related work to our approach.
a) Poisoning and Backdoor Attacks: A considerable

number of studies have been published on various types of

data poisoning attacks [4, 51, 20]. These attacks aim to pollute
the training data so that they can hinder the performance of
the machine learning model at test-time [3, 32, 40]. While
these methods are quite successful in achieving this goal, they
often tend to perform weakly against neural networks [40]
and appear to be distinguishable from the clean samples,
damaging the utility of the underlying data [68]. Backdoor
attacks are a popular family of data poisonings against deep
neural networks [23, 2, 63, 12]. Unlike general poisoning
attacks, these methods attach triggers to a small fraction of
the clean training data so that the model creates an association
between the existence of the trigger and a particular class.
During inference, the neural network would behave normally
on benign samples. However, if the trigger is activated, the
model would output the attacker’s desired value due to the
existence of a backdoor in the model.

b) Availability Attacks: Motivated to address the lack
of personal data privacy, an emerging type of poisoning
attacks known as availability attacks have drawn considerable
attention. Unlike previous types of poisoning attacks, avail-
ability attacks seek to add imperceptible perturbations to the
clean training data with two goals in mind. First, the added
perturbation should be able to protect the underlying data
from being exploited by a neural network during training.
Second, the perturbed data should still preserve its normal
utility. To understand these constraints, consider a user sharing
their photo over their social media. While the user wants to
protect their photo from unauthorized use of web-crawlers to
train a face recognition model [27] (first constraint), they still
wish their photo to appear normal to their audience (second
constraint) [30].

Feng et al. [15] propose to produce the poisoning per-
turbations by training an auto-encoder, whose aim is to get
the lowest performance from an auxiliary classifier. In a
similar spirit, Tian et al. [62] train a conditional generative
adversarial network (GAN) [21] to generate the availability
attacks’ perturbation. The training objective is designed to
create a spurious correlation between the noisy image and the
ground-truth labels. Concurrently, Yu et al. [71] empirically
investigate various types of availability attacks and show that



almost all of them leverage these spurious features to create
a shortcut within neural networks [19]. Yu et al. [71] then
propose a fast and scalable approach for perturbation gen-
eration by generating randomly-initialized linearly-separable
perturbations which can generate availability attacks for an
entire dataset in a few seconds. Concurrently, Sandoval-Segura
et al. [50] proposed another approach that generates the
random noise independent from the data. In this approach, first
the beginning rows and columns of each channel are populated
with Gaussian noise. Then, an autoregressive process is used
to find the value of the remaining pixel values.

Another popular approach to generate availability attacks
is via direct optimization. Huang et al. [30] define a bi-level
optimization objective to generate error-minimizing noise for
data samples and an auxiliary classifier. It is argued that since
the perturbed images minimize the auxiliary classifier’s loss,
they contain no useful information for any other target classi-
fier to learn, and as such, the model would not exploit them
during training. In contrast, Fowl et al. [17] show that using
adversarial examples [60, 22] as the poisoned data would make
it hard for the classifier to learn any meaningful pattern, and
thus, they can serve as a powerful family of availability attacks.
While optimization-based availability attacks are potent, they
are often computationally demanding and several attempts
have been made to ease their computational burden [16, 76].

Compared to various types of availability attacks, preven-
tative measures have received little attention. It has been
shown that various data augmentation techniques (such as
CutOut [10], Mixup [75], CutMix [73], and Fast Auto-
augment [34]) are not able to prevent availability attacks [30,
17, 62, 71]. Tao et al. [61] show that adversarial train-
ing [39, 77, 13], originally proposed to enhance robustness
against adversarial attacks [60, 22], can be used to train
successful classifiers against availability attacks. Later, Fu
et al. [18] extended the error-minimizing noise of Huang et al.
[30] resulting in perturbations that can even prevent adversarial
training from learning over the poisoned data. Despite this,
adversarial training has remained one of the strongest defense
baselines against availability attacks. In this work, we show
that one can outperform adversarial training in an attempt to
counteract availability attacks.

c) Diffusion Models: Denoising diffusion probabilistic
modeling (DDPM) [55, 28] (also known as score-matching
networks [56–58]) are a family of deep generative models
that have achieved the SOTA performance in image [11, 67],
text-to-image [48], video [54], and 3D-object [46] generation.
Diffusion models generally comprise of a forward and a back-
ward process [8]. In the forward process, the model gradually
adds noise to the data until it is transformed into Gaussian
noise. The backward process is the reverse of the forward
process, where the model tries to gradually transform/denoise
a Gaussian vector into a data point.

III. PROPOSED METHOD

This section formally introduces our proposed method,
called AVATAR (dAta aVailAbiliTy Attacks defuseR). First, we

define our notation and problem settings. Next, we introduce
our proposed approach that materializes our threat model
and provide a theoretical analysis of our framework. Finally,
we discuss the potential advantages of AVATAR compared to
existing methods such as adversarial training.

A. Problem Statement

Let D = {(x(i), y(i))}ni=1 be a labeled dataset consisting of
n i.i.d. samples x(i) each with a label y(i). Without loss of
generality, in this paper, we consider image data x(i) ∈ Rd

where d shows the data dimension. Also, we assume that y(i)

takes one of the K possible class values {1, 2, . . . ,K}. Fur-
thermore, let fθ : Rd → RK denote a neural network classifier
parameterized by θ that takes an image x and outputs a real-
valued vector z = fθ(x) known as the logit. The final decision
of the classifier is determined via ŷ = argmaxj zj . To train
the classifier, one usually aims to minimize the empirical error
between the ground-truth labels and the classifier predictions:

argmin
θ

E(x,y)∈D[ℓ(fθ(x), y)], (1)

where ℓ(·) denotes the cross-entropy loss.
Following the convention in availability attacks, we assume

that there exists a data curator that manipulates the dataset D
into Dpr = {(x̃(i), y(i))}ni=1 such that once a neural network
is trained over Dpr, it performs poorly over the clean data D:

argmax
Dpr

E(x,y)∈D[ℓ(fθ∗(x), y)]

s.t. θ∗= argmin
θ

E(x,y)∈Dpr [ℓ(fθ(x), y)]. (2)

Since each image x̃(i) needs to maintain its normal utility, it
is assumed that x̃(i) = x(i) + δ(i). Here, δ(i)’s are the data-
protecting perturbations such that

∥∥∥δ(i)∥∥∥
p
≤ ε, where ∥·∥p

denotes the Lp norm.

B. dAta aVailAbiliTy Attacks defuseR (AVATAR)

As discussed, large pre-trained generative models can pose
a threat to availability attacks and personal data protection. In
this section, we show how diffusion models, which are the
SOTA in image generation, can be leveraged to cancel out the
effects of availability attacks.

Recall that availability attacks provide a manipulated ver-
sion of the original data x that is seemingly unexploitable. At
the same time, the protected image x̃ = x + δ should have
its normal utility as it is going to be used by the users, e.g.,
to post over their social media. This condition reflects itself
through the constraint that ∥δ∥p ≤ ε.

A trivial idea would be to add random noise to the protected
perturbation that might counteract the perturbation, but this is
detrimental/ineffective in removing the unlearnable effect [30].
As such, we propose to use a diffusion model for denoising
as outlined next.1

1Note that while here we use DDPMs [28] to demonstrate our method,
it can be easily extended to other types of diffusion models as they are all
different ways of representing the same process [58].



Specifically, let us assume that we have a pre-trained
DDPM [28] model that represents the data distribution x0 ∼
pdata(x). The forward process of this model is represented
using a Markov chain of length T , such that:

xt =
√

1− βtxt−1 +
√

βtϵt, (3)

where ϵt ∼ N (0, I) is the normal distribution, and
t = 1, 2, . . . , T . The constants βt, known as variance sched-
ules, are selected such that xT ∼ N (0, I). If we set
αt :=

∏t
s=1 (1− βs), then this Markov process can also be

performed via a single step [28]:

xt =
√
αtx0 +

√
1− αtϵ. (4)

The reverse of this process is also a variational Markov chain
which is represented by:

xt−1 =
1√

1− βt

(xt + βtsϕ(xt, t)) +
√

βtϵt. (5)

Here, sϕ(·, t) is a network parameterized by ϕ representing
the score of the noisy data distribution at scale t.

To cancel the effects of the data-protecting perturbations, we
propose to first add Gaussian noise to the data. The amount of
noise should be adjusted in a way that each image maintains
its visual appearance. Otherwise, the semantic information of
each image would be lost, and since the reverse process is
probabilistic, the original image might not be recovered. In
particular, let x̃ be a protected image. We perform the forward
process up to a step t∗ < T such that the semantic information
of the image is preserved:

x̄t∗ =
√
αt∗ x̃+

√
1− αt∗ϵ. (6)

Now, we have managed to diminish the effects of the data-
protecting perturbation in xt∗ . However, this way we would
also damage the semantic features of the data which makes it
hard to train a neural network model (see the ablation study
in Figure 4). To revert to the normal image space, we use the
reverse process of our diffusion model to denoise the data:

x̄t−1 =
1√

1− βt

(x̄t + βtsϕ(x̄t, t)) +
√

βtϵt. (7)

Recursively solving Equation (7) from t∗ to 1, we get a
denoised version of the data which we denote by x̄ = x̄0.
Using this process, , shown in Figure 2, we unlock the entire
dataset Dpr, and construct a new one Dde = {(x̄(i), y(i))} for
neural network training. Algorithm 1 shows our final algorithm
for training a neural network using AVATAR.

C. Conflicting Assumptions in Availability Attacks

So far, we discussed how by using diffusion models we
can nullify the effects of the data-protecting perturbations.
Here, we take a theoretical perspective on our proposed
solution and show that in this setting, the two constraints of
availability attacks conflict with each other. Specifically, from
the perspective of availability attacks our result indicates that
for a better data protection against AVATAR, we need larger
perturbation norms. However, enlarging the perturbation is in

Algorithm 1 dAta aVailAbiliTy Attacks defuseR
Input: protected dataset Dpr = {(x̃(i), y(i))}ni=1, pre-trained diffu-
sion model sϕ(·, t).
Output: trained neural network classifier fθ(·).
Parameters: noise time-step t∗, learning rate α, total epochs E, and
batch-size b.

1: Initialize θ randomly.
2: Set Dde = {}.
3: for (x̃, y) in Dpr do
4: x̄t∗ =

√
αt∗ x̃+

√
1− αt∗ϵ.

5: for t in t∗, t∗ − 1, · · · , 0 do
6: x̄t−1 = 1√

1−βt
(x̄t + βtsϕ(x̄t, t)) +

√
βtϵt.

7: end for
8: Add (x̄0, y) to the dataset Dde.
9: end for

10: for i = 1, 2, . . . , E do
11: Assign Dde to batches of size b randomly.
12: for batch in batches do
13: θ ← SGD (batch, fθ, α).
14: end for
15: end for

conflict with retaining data utility which is the ultimate aim
of availability attacks as discussed in Section III-B.

Theorem 1. Let x ∈ Rd denote a clean image and x̃ = x+ δ
its protected version, where δ denotes any arbitrary data
protection perturbation. Also, let x̄0 be the sanitized image
using the AVATAR denoising process given in Equations (6)
and (7). If we set t∗ such that

2 log

(
2 ∥δ∥2 + 4d

µ∆

)
≤ t∗βt∗ ≤

µ∆

4d
,

then the estimation error between the sanitized x̄0 and clean
image x can be bounded as:

E
[
∥x̄0 − x∥2

]
≤ 2(µ+ 1)∆,

where ∆ = E[∥x0 − x∥2] and µ > 0 is a constant.

Proof. See Appendix A for our proof using the contraction
property of stochastic difference equations.

Theorem 1 states that for a protected image with a larger
perturbation norm ∥δ∥, a larger amount of noise (determined
by t∗βt∗ ) is required. However, the amount of noise cannot
be arbitrarily large as the semantic information of the image
might be lost in the process (as indicated by the presence of
∆ in the upper-bound).

D. AVATAR vs. Adversarial Training

As Tao et al. [61] have demonstrated, adversarial train-
ing (AT) [39] could also be used to train successful models
over unexploitable data. However, our approach has several
key advantages compared to AT:

1) First, AT modifies the learning algorithm, and as such, it
needs to be applied separately for training each neural
network. In contrast, AVATAR sanitizes the data only
once. As a result, AVATAR is more efficient.
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Fig. 2: Overview of AVATAR. According to a pre-trained diffusion model, we first add a controlled amount of Gaussian noise
to the training data. Then, we use the reverse diffusion process to denoise the data which is later going to be used for neural
network training.

2) Second, as shown by Tsipras et al. [64], AT greatly affects
the clean accuracy in its learning process, and as such,
might not be the ultimate method for defending against
availability attacks.

3) Lastly, as Fu et al. [18] show, one can build unexploitable
data against AT that would essentially render AT vul-
nerable to availability attacks. However, to the best of
our knowledge, no adaptive availability attacks have been
proposed against diffusion models so far.

IV. EXPERIMENTAL RESULTS

In this section, we run various experiments to analyze the
performance of AVATAR against availability attacks:

1) We conduct extensive experiments on seven SOTA avail-
ability attacks and show that given the data distribution,
AVATAR can counteract them (Section IV-B).

2) We provide detailed comparisons against various pre-
processing techniques (Section IV-C), early stop-
ping (Section IV-D), and adversarial training (Sec-
tion IV-E) to show that AVATAR delivers the best per-
formance.

3) We provide extensive ablation studies into different as-
sumptions made by AVATAR. First, we show that the
training data overlap between the diffusion model and
the unlearnable example generation has no effect on the
performance of AVATAR (Section IV-G). Interestingly, we
show that even a similar, different, or even poisoned
distribution compared to the true data distribution can
counteract availability attacks (Section IV-H).

4) We simulate our scenario given in Figure 1 for the
real-world application of facial recognition to show the
plausibility of our approach. Again, here we use a dif-
fusion model trained on a different dataset, but we man-
age to counteract the unlearnable examples for another
dataset (Section IV-I).

We also include an extended version of our experimental
results in Appendix B.

TABLE I: The classes of CIFAR-10 and their matching ones
in the ImageNet-10 dataset.

CIFAR-10 IN-10

Airplane Airliner
Automobile Wagon
Bird Humming Bird
Cat Siamese Cat
Deer Ox
Dog Golden Retriever
Frog Tailed Frog
Horse Zebra
Ship Container Ship
Truck Trailer Truck

A. Details of Experimental Settings

In this section, we provide the details of our experimental
settings.

a) Datasets: In our experiments, we use four different
datasets. CIFAR-10 & 100 [33] are 32×32 datasets of colored
images, where the classes contain different objects, animals,
plants, etc. SVHN [41] is a dataset of house numbers from 0
to 9 in a natural, street view setting. Finally, ImageNet [49]
is a dataset of natural images of size 224 × 224 with 1000
classes. In our experiments, we use two simplified versions of
this dataset. First, following the convention of prior research,
we select the first 100 classes of this dataset, which we refer to
as ImageNet (IN)-100. Second, for our distribution mismatch
experiments, we follow Huang et al. [30] and select 10 classes
of ImageNet that are closely aligned with CIFAR-10 and
downscale them to 32×32 size. We call this dataset IN-10. The
information on the selected classes can be found in Table I.
Finally, we also use the 32×32 version of the ImageNet dataset
for some of our experiments, which we denote by IN-1k-
32×32.

b) Classifiers: In our experiments, we use four types
of neural network image classifiers, namely: ResNet-18 (RN-



18) [25], VGG-16 [53], DenseNet-121 (DN-121) [29], and
WideResNet-34 (WRN-34) [74]. For training these classifiers
over different datasets and also training objectives (vanilla
vs. adversarial training (AT)), we follow two different training
conventions. The hyper-parameters of each setting are given
in Table II. Furthermore, Table III indicates the setting used
for each experiment in the paper.

c) Diffusion Models: For the diffusion models used dur-
ing the denoising process of AVATAR (shown in Figure 2),
we follow the implementation of DiffPure2 and use score
SDE [58] (for CIFAR-10, CIFAR-100, SVHN, IN-10) and
the guided DDPM (for IN-100 and IN-1k-32×32.) [11]. For
CIFAR-10 and IN-100, we download the pre-trained versions
available online.3 for IN-1k-32×32 dataset. Additionally, for
CIFAR-100, IN-10, and SVHN we use the PyTorch repository
of score SDE [58], and train variance-preserving diffusion
models with continuous DDPM++ architecture, similar to the
one used for CIFAR-10. The FID score of the trained diffusion
models is given in Table IV.

d) Availability Attacks: We use seven SOTA availabil-
ity attacks in our experiments: DeepConfuse (CON) [15],
Neural Tangent Generalization Attacks (NTGA) [72], Error-
minimizing Noise (EMN) [30], Targeted Adversarial Poi-
soning (TAP) [17], Robust EMN (REMN) [18], Short-
cut (SHR) [19], and Autoregressive attacks (AR) [50]. The
details of each availability attack are given below:

• For CON [15], we use the released protected CIFAR-10
dataset, available online at SHR [71] repository.4 Note
that since generating this attack for the CIFAR-10 dataset
would take 5-7 days, we just used the available data for
CIFAR-10 and skipped generating the attack for the other
datasets.

• For NTGA [72], we use their code5 to generate availabil-
ity attacks for our datasets. For CIFAR-10, we used the
data published online. For CIFAR-100 and SVHN, we
used the online repository, and generate NTGA protected
data using the CNN surrogate model, time-step of
64, and block-size of 100 to generate perturbations
of magnitude ∥δ∥∞ ≤ 8/255. Due to limited GPU
memory, we used the FNN surrogate model to generate
perturbations of magnitude ∥δ∥∞ ≤ 0.1 for IN-100. The
rest of the hyper-parameters were set similarly to CIFAR-
100 and SVHN.

• For EMN [30], TAP [17], and REMN [18], we use the
online repository of REMN6 which contains an imple-
mentation of EMN and TAP as well. We use the default

2https://github.com/NVlabs/DiffPure
3For CIFAR-10, we used the checkpoint for the

vp/cifar10_ddpmpp_deep_continuous setting on score SDE
repository: https://github.com/yang-song/score sde pytorch. Moreover, we
used the unconditional 256 × 256 model available on the guided DDPM
code-base for IN-100 expriments: https://github.com/openai/guided-diffusion.
Finally, we use the pre-trained DDPM-IP [43] models available on
https://github.com/forever208/DDPM-IP

4https://github.com/dayu11/Availability-Attacks-Create-Shortcuts
5https://github.com/lionelmessi6410/ntga
6https://github.com/fshp971/robust-unlearnable-examples

CIFAR-10 configurations of this repository for CIFAR-
10, CIFAR-100, and SVHN. For IN-10, we used the
default MiniIN configurations of the REMN code-base.

• Moreover, we use the SHR GitHub repository4 to gen-
erate shortcut attacks. For CIFAR-10, CIFAR-100, and
SVHN, we use the default settings. For IN-100, we use
patchsize of 32 as advised by the authors.

• Finally, we use the official data released on the AR
GitHub repository for this attack.7

A few samples for each availability attack are shown in
Figure 7.

B. Exploiting Protected Data

Table V shows our results for breaking availability attacks
against for four different datasets. As can be seen, AVATAR
can significantly improve the performance of neural network
training in almost all cases. Moreover, although the training
data was produced using diffusion models, the trained neural
networks can generalize to unseen test data easily. This trend
is more evident in the CIFAR-10 and SVHN datasets where
the pre-trained diffusion model can better represent the image
data density, as indicated by their low FID scores.

C. Comparison with Data Augmentation Techniques

AVATAR can be regarded as a type of data pre-processing
where the inner mechanics of the learning algorithms are not
modified. As such, here we compare our approach with various
SOTA data augmentation techniques that can be utilized during
model training. To this end, we follow the settings of [30], and
adopt four widely used data augmentation techniques. In addi-
tion, we employ the JPEG and grayscale pre-processing [38]
as well as two blurring techniques in Table VI. Finally, we also
test the quantization and total variation minimization (TVM)
approaches that have shown to be effective against adversarial
attacks [24]. Table VI shows the performance of these methods
compared to AVATAR. As shown, our approach outperforms
various types of pre-processing/data augmentation methods.

D. The Effect of Early Stopping

It has been previously shown that early stopping can also be
beneficial against availability attacks [30]. As such, here we
run the same set of experiments over availability attacks for the
CIFAR-10 dataset, but this time we record the highest accuracy
attainable during training. Table VII shows our results. As
seen, using our approach one achieves stable training, where
the variance between the final model accuracy and the highest
attainable accuracy is very low. Notably, while these results
indicate that existing availability attacks are less powerful than
what is thought, early stopping is not sufficient to recover the
best model performance. In contrast, AVATAR can significantly
cancel the effects of availability attacks.

7https://github.com/psandovalsegura/autoregressive-poisoning

https://github.com/NVlabs/DiffPure
https://github.com/yang-song/score_sde_pytorch
https://github.com/openai/guided-diffusion
https://github.com/forever208/DDPM-IP
https://github.com/dayu11/Availability-Attacks-Create-Shortcuts
https://github.com/lionelmessi6410/ntga
https://github.com/fshp971/robust-unlearnable-examples
https://github.com/psandovalsegura/autoregressive-poisoning


TABLE II: Training hyper-parameters used in our experiments.

Hyper-parameter Setting #1 Setting #2

Optimizer SGD SGD
Scheduler Multi-step Multi-step
Initial lr. 0.1 0.1
lr. decay 0.1 (@epoch: 80 & 100) 0.1 (@iter: 16k & 32k)
Batch Size 128 128
Training Steps 120 (epochs) 40k (iters)
Weight Decay 0.0005 0.0005
PGD Steps (for AT only) - 10
PGD Step Size (for AT only) - 0.8

TABLE III: Setting number used for each experiment.

Experiment Setting #1 Setting #2

Table V (CIFAR-10) ✓ -
Table V (CIFAR-100) ✓ -
Table V (SVHN) ✓ -
Table V (IN-100) - ✓
Table VI ✓ -
Table VII ✓ -
Table VIII ✓ -
Figure 4 ✓ -
Figure 3 - ✓

TABLE IV: The FID of the diffusion models used for denois-
ing. * denotes that the FID has been computed using 10k
generated samples only. † indicates that the scores have been
adapted from relative literature.

Dataset FID Dataset FID

CIFAR-10† 2.41 SVHN* 2.59

CIFAR-10 (TAP)* 4.11 CIFAR-100* 4.85

IN-10* 17.32 IN† 4.59

E. Comparison with Adversarial Training

As mentioned in Section II, adversarial training (AT) [39]
is the most successful defense technique against availability
attacks [61]. For the next set of experiments, we follow the
settings of Fu et al. [18] and compare our approach with AT.
To this end, we run two different scenarios. First, we perform
AT over the protected data. Then, we run AT over the data
that is defused (i.e., counteracted) by AVATAR. In both cases,
we vary the perturbation bound ε from 0 to 4, where 0 is
the vanilla training. Figure 3 shows our results. Apart from
what we discussed in Section III-D, two additional insights
are worth mentioning here:
(1) In most cases, AVATAR without AT (i.e., ε = 0) performs

on-par or better than AT with ε > 0. Thus, AVATAR
delivers the SOTA against availability attacks.

(2) As seen in Figure 3, AT yields the worst performance
against REMN [18]. However, our approach can combat

REMN [18] successfully, and it is the first approach that
does so.

F. Setting Diffusion Step t∗

As discussed in Section III-C, setting the diffusion timestep
should be performed carefully. Otherwise, either the data-
protecting noise is not eliminated, or the semantic information
of the image is lost. Here, we run an ablation study over
the diffusion timestep. In particular, for our CIFAR-10 ex-
periments, we run AVATAR with five different timesteps from
{0, 100, 200, 300, 400}. Then, we measure the test accuracy of
the trained neural networks over the clean test set. As shown
in Figure 4, setting t∗ too small means that the data-protecting
perturbations are not removed. In contrast, setting t∗ to a large
value might remove the semantic information which in turn
damages the generalizability of the trained model. For a more
thorough discussion on selecting t∗, please see Appendix B-C.

G. The Effect of Diffusion Models’ Training Data

It is well-known from the literature that diffusion models are
not a mere memorization of their training data [58] and can
further enhance the accuracy of down-stream tasks [1, 66]. To
empirically eradicate the influence of training data overlap on
our results, we perform the following experiment. Apart from
our results in Table V, we run a second set of experiments
where we create disjoint subsets of training data for training
diffusion models and those used as unlearnable examples.
Then, we train our in-house diffusion model and perform a
similar experiment to that of Table V, but this time with this
new, non-overlapping set of data. Finally, we measure the per-
formance over the unseen test data. We report the relative error
rate with respect to the clean data performance in Figure 5.
As seen, the overlap in diffusion models’ training data has no
impact on AVATAR’s final performance. We further validate
this through our real-world experiments in Section IV-I.

H. Distribution Mismatch

To go even further, we show that AVATAR is even resilient to
a distribution mismatch between the diffusion model and the
training data. In particular, we train three diffusion models
over the protected CIFAR-10 dataset with TAP [17], IN-10
which contains 10 classes of ImageNet that are most similar
to CIFAR-10 dataset [30] (see Table I for more details), and



CIFAR-10 SVHN CIFAR-100

(a) RN-18

CIFAR-10 SVHN CIFAR-100

(b) VGG-16

CIFAR-10 SVHN CIFAR-100

(c) DN-121

CIFAR-10 SVHN CIFAR-100

(d) WRN-34

Fig. 3: Test accuracy of CIFAR-10, SVHN, and CIFAR-100 classifiers against availability attacks using adversarial training
with different perturbation radii.



TABLE V: Test accuracy (%) of RN-18 architectures trained over data availability attacks on CIFAR-10, CIFAR-100, and
SVHN, and ImageNet-100 datasets without and with our denoising approach. The mean and standard deviation are computed
over 5 seeds. For our results over other architectures, please see Table X.

D
at

a

Method Clean
Data Availability Attacks

NTGA EMN TAP REMN SHR AR

C
IF

A
R

-1
0

Vanilla
94.50± 0.09

11.49± 0.69 24.85± 0.71 7.86± 0.90 20.50± 1.16 10.82± 0.22 12.09± 1.12

AVATAR 87.95± 0.28 90.95± 0.10 90.71± 0.19 88.49± 0.24 85.69± 0.27 91.57± 0.18

SV
H

N Vanilla
96.29± 0.12

9.65± 0.70 9.13± 2.00 65.97± 1.99 11.55± 0.19 10.59± 3.98 6.76± 0.07

AVATAR 89.84± 0.32 93.84± 0.12 93.35± 0.10 88.51± 0.23 83.82± 0.39 94.13± 0.17

C
IF

A
R

-1
00 Vanilla

75.01± 0.41
1.32± 0.31 2.05± 0.18 14.10± 0.19 10.88± 0.33 1.39± 0.10 2.15± 0.46

AVATAR 63.98± 0.55 65.73± 0.36 64.99± 0.10 64.88± 0.08 58.52± 0.46 64.54± 0.23

IN
-1

00 Vanilla
80.05± 0.13

74.74± 0.52 1.78± 0.17 9.14± 0.40 13.28± 0.51 43.48± 1.56

AVATAR 71.08± 0.48 72.84± 0.90 76.52± 0.46 39.79± 0.98 59.85± 1.01

TABLE VI: Test accuracy (%) of RN-18 models trained over data availability attacks on CIFAR-10 dataset using different
data augmentation/pre-processing techniques. The results are averaged over 5 runs. The best results are highlighted in bold.

Method Clean
Data Availability Attacks

CON NTGA EMN TAP REMN SHR AR

Vanilla 94.50± 0.09 15.75± 0.82 11.49± 0.69 24.85± 0.71 7.86± 0.90 20.50± 1.16 10.82± 0.22 12.09± 1.12

Cutout 94.39± 0.12 13.53± 0.34 13.43± 1.15 23.79± 1.28 9.73± 1.06 20.48± 1.09 11.78± 0.81 11.21± 1.01

MixUp 94.87± 0.05 28.58± 2.88 13.54± 0.36 51.48± 0.97 30.09± 1.93 26.61± 1.65 19.69± 0.71 12.67± 1.02

CutMix 95.16± 0.03 19.04± 2.74 14.16± 1.64 25.30± 1.18 7.45± 1.21 26.83± 1.99 10.89± 0.34 11.36± 0.50

FAutoAug. 95.11± 0.14 51.62± 1.28 27.56± 2.45 56.31± 1.13 20.39± 0.81 26.65± 0.89 25.88± 0.62 13.53± 0.79

Median Blur 85.83± 0.71 15.14± 0.38 28.43± 1.41 26.97± 0.39 57.16± 0.75 23.32± 0.69 17.50± 0.38 14.97± 0.40

Gaus. Blur 94.33± 0.08 15.36± 0.69 11.86± 0.81 24.08± 0.40 8.87± 0.65 20.89± 1.56 11.39± 1.91 13.39± 1.08

Quantization 94.57± 0.14 15.17± 0.79 16.29± 1.03 25.38± 0.68 7.38± 1.59 22.33± 1.21 11.12± 0.24 12.87± 0.69

TVM 73.20± 1.32 42.82± 2.00 47.41± 1.37 54.86± 2.17 70.66± 0.58 19.28± 1.12 25.35± 2.54 34.09± 2.07

Grayscale 92.89± 0.20 83.30± 0.40 63.21± 0.85 92.09± 0.22 9.57± 0.59 75.84± 1.36 57.13± 0.87 35.88± 0.99

JPEG 84.99± 0.28 82.87± 0.23 79.26± 0.12 84.65± 0.16 83.44± 0.36 83.66± 0.30 69.03± 0.62 85.03± 0.23

AVATAR (Ours) 90.16± 0.21 89.43± 0.09 87.95± 0.28 90.95± 0.10 90.71± 0.19 88.49± 0.24 85.69± 0.27 91.57± 0.18

CIFAR-100. Then, we use these surrogate distributions to san-
itize protected CIFAR-10 data and train a neural network over
the denoised data. We report our results in Table VIII. Sur-
prisingly, our approach can tolerate the distribution mismatch
to some extent. As the diffusion model density gets closer
to the true training data, the performance gap is gradually
closed. Interestingly, even using a diffusion model that is
trained over protected data can be beneficial in removing the
effects of availability attacks. Note that according to our threat
model discussed in Figure 1, this case is too extreme, meaning

that the data protector needs to add a perturbation to all the
data on the web which is almost impossible. Interestingly,
our method using the sub-optimal CIFAR-100 distribution is
still performing better than grayscale and JPEG compression
techniques of Liu et al. [38].

These results motivates us to run AVATAR in a real-world
case. In particular, we employ the off-the-shelf diffusion
model, DDPM-IP [43], that is trained over the 32×32 version
of the ImageNet dataset in AVATAR. Then, we re-run our
experiments of Table V on CIFAR-10, CIFAR-100, and SVHN



TABLE VII: Test accuracy (%) of RN-18 models trained over data availability attacks on CIFAR-10 dataset. The early stopping
rows contain the highest achievable accuracy over the course of training. The results are averaged over 5 runs.

Method
Data Availability Attacks

CON NTGA EMN TAP REMN SHR AR

Vanilla 15.75± 0.82 11.49± 0.69 24.85± 0.71 7.86± 0.90 20.50± 1.16 10.82± 0.22 12.09± 1.12

+ Early Stopping 23.99± 6.22 31.71± 3.97 27.23± 1.83 67.13± 2.03 21.90± 0.57 22.72± 0.83 38.78± 8.65

AVATAR (Ours) 89.43± 0.09 87.95± 0.28 90.95± 0.10 90.71± 0.19 88.49± 0.24 85.69± 0.27 91.57± 0.18

+ Early Stopping 89.55± 0.15 88.07± 0.22 91.07± 0.11 91.00± 0.11 88.59± 0.26 85.76± 0.25 91.63± 0.17

(a) RN-18 (b) VGG-16

(c) DN-121 (d) WRN-34

Fig. 4: Effect of changing the forward process diffusion timestep in AVATAR on the final test accuracy in CIFAR-10 classifiers.

using this diffusion model. As this DDPM-IP [43] uses a
cosine schedule [11], we need to adjust the value of t∗ to
reflect this change. As we discuss in Appendix B-C, we set
t∗ = 200 to have an equivalent performance to the linear
schedule that was used in our earlier experiments.

Our results are shown in Table IX. As seen, AVATAR is
resilient to the choice of the diffusion model. Even though
there is a distribution mismatch between our test datasets and
ImageNet-32×32, our results are on par with the use of the
matching data distribution. These results indicate the real-
world value of AVATAR which can serve as a strong baseline
against availability attacks.

I. Real-world Example I: Face Recognition

In Section I, we discussed in detail that the threat model of
existing availability attacks is fragile and a malicious adversary
might still exploit the personal data. This means that possibly
no imperceptible adversary can protect the image data from
being maliciously used. To show this, we discussed a real-
world example in Section IV following a similar experiment
from Huang et al. [30]. In particular, we create a set of
clean and protected identities in the WebFace [69] dataset by
randomly selecting 50 identities from this dataset. As a result,
the remaining 10522 identities constitute our clean data. For all
of the identities, we randomly split the data so that 80% of that



(a) CIFAR-10 (b) SVHN

Fig. 5: Relative error rate of RN-18 models trained against availability attacks on CIFAR-10 and SVHN averaged over 5 runs.
Overlapping indicates that the diffusion model and availability attacks use the same subset as training data. Non-overlapping
means that the diffusion model and availability attacks are trained on disjoint subsets of data.

TABLE VIII: Test accuracy (%) of RN-18 models trained over data availability attacks on the CIFAR-10 dataset. For AVATAR,
we use different pre-trained distributions over CIFAR-10, poisoned CIFAR-10 (TAP), ImageNet-10 (IN-10) [30], and CIFAR-
100. The results are averaged over 5 runs.

Distribution
Data Availability Attacks

CON NTGA EMN TAP REMN SHR AR

Vanilla 15.75± 0.82 11.49± 0.69 24.85± 0.71 7.86± 0.90 20.50± 1.16 10.82± 0.22 12.09± 1.12

CIFAR-10 (TAP) 61.70± 2.02 75.62± 3.75 64.03± 0.98 35.09± 2.28 60.16± 1.44 74.96± 2.82 60.36± 2.29

IN-10 80.98± 0.06 79.42± 0.25 83.78± 0.39 82.71± 0.24 82.83± 0.28 75.91± 0.06 84.88± 0.19

CIFAR-100 84.85± 0.49 83.07± 0.33 87.81± 0.14 86.55± 0.26 85.84± 0.19 79.52± 0.22 88.59± 0.15

CIFAR-10 89.43± 0.09 87.95± 0.28 90.95± 0.10 90.71± 0.19 88.49± 0.24 85.69± 0.27 91.57± 0.18

TABLE IX: Test accuracy (%) of RN-18 models trained over data availability attacks on CIFAR-10, CIFAR-100, SVHN with
our denoising approach using the matching distribution and ImageNet-32×32. The mean and standard deviation are computed
over 5 seeds.

D
at

a

Distribution Clean
Data Availability Attacks

NTGA EMN TAP REMN SHR AR

C
IF

A
R

-1
0

CIFAR-10
94.50± 0.09

87.95± 0.28 90.95± 0.10 90.71± 0.19 88.49± 0.24 85.69± 0.27 91.57± 0.18

ImageNet-32×32 86.41± 0.21 90.17± 0.15 89.02± 0.15 88.26± 0.24 82.97± 0.24 90.61± 0.18

SV
H

N SVHN
96.29± 0.12

89.84± 0.32 93.84± 0.12 93.35± 0.10 88.51± 0.23 83.82± 0.39 94.13± 0.17

ImageNet-32×32 91.32± 0.17 94.82± 0.10 95.01± 0.21 91.00± 0.27 83.12± 0.30 94.29± 0.22

C
IF

A
R

-1
00 CIFAR-100

75.01± 0.41
63.98± 0.55 65.73± 0.36 64.99± 0.10 64.88± 0.08 58.52± 0.46 64.54± 0.23

ImageNet-32×32 65.22± 0.55 67.09± 0.18 66.52± 0.25 66.52± 0.15 58.32± 0.56 66.44± 0.17



Fig. 6: Test accuracy for protected vs. clean identities in WebFace [69] facial recognition. The protected users protect their
images using data-protecting perturbations. Our approach uses a diffusion model trained over the CelebA [37] dataset. For
all the stealthy data-protecting perturbations our approach manages to recover the performance over protected data. The only
exception is SHR, which according to Figure 8, leaves a noticeable trace over the image, rendering them not useful anymore.

data is allocated to a training set and the rest is the test set. We
assume that the protected identities would add data-protecting
perturbations to their images before sharing them. To this end,
we use class-wise EMN [30], TAP [17], REMN [18], and
SHR [71] with a perturbation radius of ∥δ∥∞ ≤ 16/255. For
perturbation generation using the first three attacks, we follow
the settings of Huang et al. [30]. Specifically, we select 100
random identities from the CelebA [37] dataset and create
an auxiliary dataset consisting of these 100 identities and the
50 protected WebFace [69] identities. Then, using these 150
identities we generate data protecting perturbations against
a neural network with 150 classes. For SHR, however, we
generate the data for all the 10572 WebFace identities and
select the relevant data for protecting our above-mentioned
50 identities. Once we have the protected data, we train an
InceptionResNet [59] facial recognition over the training set
with or without our approach and evaluate the models over
the test set. In our case, we assume that the malicious entity
has access to a pre-trained diffusion model over CelebA [37]
faces8, and can run AVATAR over the protected data that it
acquires from crawling the web. Since the WebFace photos are
of size 112× 112 but the diffusion model generates 256× 256
images, we use bi-linear up- and down-sampling to connect
the two. Like the CIFAR-10 experiments, here we also denoise
the data with timestep set to 100. Samples of the WebFace
dataset along with the protected data are shown in Figure 8.
To evaluate the performance of our method, we test the models
over the clean test set and record the recognition accuracy for
both the protected and clean identities.9

As shown in Figure 6, AVATAR can recover the recognition
accuracy over protected identities in all cases except the

8For this experiment, we use a pre-trained DDPM model over CelebA-HQ:
https://github.com/ermongroup/SDEdit.

9Running the identity overlap removal of Wang et al. [65], we found that
only 8 out of 50 protected identities had overlap between CelebA-HQ and
WebFace. After removing these identities, we saw no major drop in the final
performance of AVATAR.

SHR [71] perturbations. The reason behind this might be two-
fold. First, we are using a sub-optimal diffusion model as
both the domain and, more importantly, size of the images
have a mismatch. Second, looking at Figure 8, we see that
while the SHR perturbations can protect the data, they trade
the stealthiness of the original data due to their large patches.
As such, the images would lose their utility. Now, the question
is:

Can we protect the data using stealthy patterns without
losing the data utility?

Interestingly, our theoretical result in Theorem 1 says that this
might not be possible. According to Theorem 1, if the data
curator wants to makes the denoising process harder, they need
to increase the data-protecting perturbation. This increase is
naturally at odds with the data utility, since by adding more
powerful perturbations we lose the data utility.

V. CONCLUSION

In this paper, we introduced a countermeasure against data
protection algorithms that use availability attacks. In particular,
we show that by adding a controlled amount of Gaussian
noise to the images and subsequently denoising them one
can eliminate data-protecting perturbations. To this end, we
use the forward and reverse diffusion processes of pre-trained
models. We theoretically analyze our approach and show
that the amount of Gaussian noise required to defuse the
data-protecting perturbations is directly related to their norm.
We conduct extensive experiments over various availability
attacks. Our experiments demonstrate the superiority of our
approach compared to adversarial training, setting a new SOTA
defense against availability attacks. AVATAR demonstrates
brittleness of availability attacks and calls for more research to
protect personal data. Future work involves investigating the
applicability of AVATAR to other models such as text-to-image
generative models [52] and its relationship with techniques
such as randomized smoothing [7].

https://github.com/ermongroup/SDEdit
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The Devil’s Advocate:
Shattering the Illusion of Unexploitable Data using Diffusion Models

APPENDIX A
PROOFS

Here we provide our proof for Theorem 1. First, we provide the theoretical results that would be used in our proof. Then,
we re-state Theorem 1 and provide its detailed proof. Our proofs heavily borrow from the contraction properties of stochastic
difference equations [44, 45, 6].

Theorem 2 (Discrete stochastic contraction [44, 6]). Let

xt−1 = h(xt, t) + σ(xt, t)ϵt, (8)

denote a stochastic difference equation where:

(a) h : Rd × N → Rd is a contraction mapping, i.e., for every t ∈ N there exists a λt ∈ [0, 1) such that

∥h(x, t)− h(y, t)∥ ≤ λt ∥x− y∥ ∀ x,y ∈ Rd, (9)

(b) σ : Rd × N → R is a function such that for every t ∈ N and x ∈ Rd

Tr
(
σ(x, t)Iσ(x, t)

)
≤ Ct, (10)

(c) and ϵt ∼ N (0, I).

Then, for two sample trajectories xt−1 and x̄t−1 that satisfy Equation (8) we have:

E
[
∥xt−1 − x̄t−1∥2

]
≤ λ2

t E
[
∥xt − x̄t∥2

]
+ 2Ct. (11)

Using Theorem 2 and Equation (5) we can get the following result [6].

Corollary 2.1. The reverse diffusion process of DDPMs are contracting stochastic difference equations.

Proof. Our proof closely follows that of Chung et al. [6]. Specifically, we need to show that for the reverse diffusion process
given in Equation (5), the conditions of Equations (9) and (10) hold. To show this, note that if we set:

h(xt, t) =
1√

1− βt

(xt + βtsϕ(xt, t))

and
σ(xt, t) =

√
βt

then Equations (5) and (8) coincide. Using Lemma A.1. from Chung et al. [6], one can show that for

λt =
√

1− βt
1− αt−1

1− αt
(12)

and
Ct = dβt (13)

the conditions of Equations (9) and (10) are satisfied. As such, for two reverse sample trajectories xt−1 and x̄t−1 that satisfy
the reverse diffusion process of Equation (5), Equation (11) holds.

Next, we present two lemmas that are going to be used in our proof of Theorem 1.

Lemma 1 ([6]). For λt’s given in Equation (12) the following holds:

t∗∏
s=1

λ2
s ≤ exp(− t∗βt∗

2
). (14)

Proof. See Lemma C.1. in [6].

Lemma 2. For two random vectors x and y we have:

E
[
∥x+ y∥2

]
≤ 2 E

[
∥x∥2

]
+ 2 E

[
∥y∥2

]
. (15)



Proof. We know that:

E
[
∥x+ y∥2

]
= E

[
∥x∥2

]
+ E

[
∥y∥2

]
+ 2 E

[
x⊤y

]
≤ 2 E

[
∥x∥2

]
+ 2 E

[
∥y∥2

]
,

where the last inequality follows from the fact that E
[
∥x− y∥2

]
≥ 0.

We are now ready to prove our theoretical result.

Theorem 1 (restated). Let x ∈ Rd denote a clean image and x̃ = x+ δ its protected version, where δ denotes any arbitrary
data protection perturbation. Also, let x̄0 be the sanitized image using the AVATAR denoising process given in Equations (6)
and (7). If we set t∗ such that

2 log

(
2 ∥δ∥2 + 4d

µ∆

)
≤ t∗βt∗ ≤ µ∆

4d
,

then the estimation error between the sanitized x̄0 and clean image x can be bounded as:

E
[
∥x̄0 − x∥2

]
≤ 2(µ+ 1)∆,

where ∆ = E[∥x0 − x∥2] and µ > 0 is a constant.

Proof. We are looking to find an upper-bound for the estimation error between the sanitized image and its clean version. Using
Lemma 2 we can write:

E
[
∥x̄0 − x∥2

]
= E

[
∥(x̄0 − x0) + (x0 − x)∥2

]
≤ 2 E

[
∥x̄0 − x0∥2

]
+ 2 E

[
∥x0 − x∥2

]
≤ 2 E

[
∥x̄0 − x0∥2

]
+ 2 ∆. (16)

Now, we need to find an upper-bound for the first term. To this end, we are going to use the contraction property of the
DDPMs (Corollary 2.1). In particular, given the noisy versions of the clean x and the protected image x̃ = x + δ, in other
words:

xt∗ =
√
αt∗x+

√
1− αt∗ϵ0

x̄t∗ =
√
αt∗ x̃+

√
1− αt∗ϵ

′
0, (17)

we know that both x0 and x̄0 satisfy the reverse diffusion process, or:

xt−1 =
1√

1− βt

(xt + βtsϕ(xt, t)) +
√

βtϵt

x̄t−1 =
1√

1− βt
(x̄t + βtsϕ(x̄t, t)) +

√
βtϵ

′
t, ∀ t ∈ {1, 2, . . . , t∗}, (18)

where ϵt, ϵ
′
t ∼ N (0, I). As such, we can treat x0 and x̄0 as two sample trajectories of the same stochastic difference equation.

Thus, by recursively applying Equation (11) we would get:

E
[
∥x̄0 − x0∥2

]
≤ E

[
∥x̄t∗ − xt∗∥2

] t∗∏
s=1

λ2
s + 2

t∗∑
s=1

Cs

s−1∏
r=1

λ2
r. (19)

Now, let us consider each term on the RHS of Equation (19) separately. For the red term, we can write:

E
[
∥x̄t∗ − xt∗∥2

]
(1)
= E

[∥∥√αt∗(x̃− x) +
√
1− αt∗(ϵ

′
0 − ϵ0)

∥∥2]
(2)
= E

[∥∥√αt∗δ +
√
1− αt∗(ϵ

′
0 − ϵ0)

∥∥2]
= ∥

√
αt∗δ∥2 + E

[∥∥√1− αt∗(ϵ
′
0 − ϵ0)

∥∥2]+ 2
√
αt∗

√
1− αt∗δ

⊤E [ϵ′0 − ϵ0]

(3)
= αt∗ ∥δ∥2 + (1− αt∗)E

[
∥(ϵ′0 − ϵ0)∥

2
]
. (20)



where (1) is derived from Equation (17), (2) holds since x̃ = x+ δ, and (3) is valid as ϵ0, ϵ
′
0 ∼ N (0, I). Given that:

ϵ′0 − ϵ0 ∼ N (0, 2I),

we can simplify Equation (20) as:

E
[
∥x̄t∗ − xt∗∥2

]
= αt∗ ∥δ∥2 + 2(1− αt∗)E [χ] ,

where χ follows the chi-squared distribution with d degrees of freedom. Using the fact that 0 < αt∗ < 1, we can finally write:

E
[
∥x̄t∗ − xt∗∥2

]
= αt∗ ∥δ∥2 + 2(1− αt∗)d

≤ ∥δ∥2 + 2d. (21)

Using Lemma 1, for the blue term in Equation (19) we can write:

t∗∏
s=1

λ2
s ≤ exp(− t∗βt∗

2
). (22)

Finally, for the green term we have:

2

t∗∑
s=1

Cs

s−1∏
r=1

λ2
r

(1)
= 2

t∗∑
s=1

dβs

s−1∏
r=1

λ2
r

(2)

≤ 2

t∗∑
s=1

dβs

(3)

≤ 2dt∗βt∗ . (23)

Here, (1) is the result of Equation (13), (2) holds since 0 < λr < 1 (see Equation (12)), and (3) is derived from
0 < β1 < · · · < βt < 1.

Putting Equations (21) to (23) together, we have:

E
[
∥x̄0 − x0∥2

]
≤
(
∥δ∥2 + 2d

)
exp(− t∗βt∗

2
) + 2dt∗βt∗ . (24)

Given that:

2 log

(
2 ∥δ∥2 + 4d

µ∆

)
≤ t∗βt∗ ≤ µ∆

4d
,

we can simplify Equation (24) as:

E
[
∥x̄0 − x0∥2

]
≤
(
∥δ∥2 + 2d

)
exp(− t∗βt∗

2
) + 2dt∗βt∗

≤
(
∥δ∥2 + 2d

) µ∆

2 ∥δ∥2 + 4d
+ 2d

µ∆

4d

≤ µ∆. (25)

Replacing Equation (25) into Equation (16), the proof can be completed.



APPENDIX B
ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide additional experiments and insights that were omitted from the main paper due to space limitations.

A. Denoising Samples

Figures 7 and 8 include samples from the protected IN-100 and WebFace datasets alongside their denoised ones. As seen,
AVATAR can successfully recover the benign data except cases where the perturbations are sever enough to remain visible. In
these cases, however, the protected data has lost its normal utility due to the visibility of the protecting perturbation.
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(e) SHR [71]

Fig. 7: Samples from IN-100 dataset. For each attack, we show the perturbation, the protected image, the noisy version of the
image, and the denoised one using AVATAR.
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Fig. 8: Samples from the WebFace [69] dataset. In each case, we generate the data-protecting perturbations with a maximum
magnitude of 16/255. For denoising, we use AVATAR based on a diffusion model pre-trained on the CelebA [37] dataset.
As seen, the SHR [71] perturbations leave a noticeable pattern over the protected data, which put their utility (e.g., posting
over the social media) under question. Nevertheless, since they have a more global structure, they remain persistent even after
denoising.

B. Extended Experimental Results over Different Architectures

In Table V, we presented our results on training RN-18 models over protected data. To show the applicability of our
approach across various architectures, we also report our results for three additional architectures, namely DN-121, VGG-16,
and WRN-34, in Table X. Similar to our RN-18 experiments, AVATAR delivers the best performance against protected data.

C. On Selecting Diffusion Step t∗

In Figure 4, we demonstrated that setting t∗ = 100 delivers a consistent performance across different architectures. However,
chances are that practitioners may want to replace the diffusion model used in AVATAR with one of their own. In such cases,
the diffusion model might have different characteristics compared to the ones used in this paper. In this part, we present two
methods for setting t∗.

1) Using the αt Curves: A naı̈ve approach in selecting a suitable diffusion timestep t∗ is using the αt curves between
the new diffusion model and a reference model. Specifically, since the value of αt in Equation (3) controls the amount of
disruptive noise, we can use the value of αt to guide our hyper-parameter selection. To this end, we can find an equivalent t∗

such that the value of αt∗ is set to an acceptable value. This is because if too much disruptive noise is required to be added
to the data to counteract the protecting perturbation, it means that the data has already been corrupted so much that it has lost
its utility in the first place.

We demonstrate this approach for selecting the timestep t∗ for our IN-1k-32×32 experiments in Table IX. As discussed
in Section IV-H, for this new experiment we want to use a guided diffusion model (DDPM-IP [43]) which uses a cosine
schedule for sampling. As per our prior experience, we know that an acceptable value for t∗ using a linear scheduler is 100.
As such, we can draw the αt curve for both cases, and find an equivalent t∗ for the cosine scheduler in DDPM-IP. As shown
in Figure 9, we can see that in this new case we should set t∗ = 200 to get an equivalent αt as the one which we previously
used for the CIFAR-10 experiments.

2) Using Reconstruction Quality: Another approach to set a viable value for the diffusion timestep t∗ is through controlling
a desirable reconstruction quality. Recall that the goal of availability attacks is to preserve the normal utility of the data. As
such, they usually aim to add imperceptible perturbations to the data. This assumption can help us in selecting a good value for
t∗. In particular, having a small portion of clean data, we can run the denoising process of AVATAR on these benign data and
record a reconstruction Peak-to-Signal-Noise-Ratio (PSNR) for different values of t∗. In general, as we move towards larger
t∗, the PSNR drops. We can set an acceptable level of PSNR value, for example 22dB, to select t∗. Beyond that, the PSNR
drops so significantly that both the clean and protected data become unreasonably noisy, losing their utility.

To demonstrate this point through our IN-1k-32×32 experiments in Table IX, we have reported AVATAR’s reconstruction
PSNR for different values of t in Table XI. As seen, while t∗ = 100 reaches a PSNR value of 22.52dB when we use a linear



scheduler for sampling, we can still get a reasonable PSNR of 23.71dB for t∗ = 200 in DDPM-IP. Therefore, we can pick
t∗ = 200 for denoising using the IN-1k-32×32 model.

Fig. 9: The αt curve for linear vs. cosine sampling
schedulers.

TABLE XI: Reconstruction PSNR for clean CIFAR-10 dataset.
The mean and standard deviation are computed over 1000
random samples as the validation set.

Scheduler
Diffusion Timestep (t)

50 100 150 200

Linear 25.19± 4.16 22.52± 3.32 20.83± 2.92 19.54± 2.61

Cosine 31.20± 1.50 27.49± 1.51 25.27± 1.50 23.71± 1.50

D. Additional Experimental Results over Different Combination of Availability Attacks

A scenario that might happen in the real-world is that different classes use a different type of protection. To simulate this
scenario, we choose five of the best performing availability attacks, namely CON (C), NTGA (N), TAP (T), REMN (R), and
SHR (S), based on our results in Table V to protect four classes of the CIFAR-10 dataset. We create different combinations
of these five attacks to protect the four classes, resulting in five distinct combinations which we name CNTR, NTRS, RSCN,
SCNT, and TRSC. We use AVATAR to defuse the entire dataset, which includes both protected and unprotected classes. To
this end, we use our setting from Section IV-H and use DDPM-IP models pre-trained over the IN-1k-32×32 dataset. We then
train RN-18 models over protected and defused data. Our results have been reported as confusion matrices in Figure 11. As
seen, our model is attack-agnostic and can revive the normal data.

E. Additional Experimental Results over Different Perturbation Norms

Another interesting use-case might happen when different classes use a different perturbation norm to protect their data. We
designed an experiment on CIFAR-10 to test this case. For these experiments, we first choose four classes of the CIFAR-10
randomly and aim to protect them with availability attacks. We then use four distinct levels of protection, from ε = 4 to
ε = 32, to protect these selected classes. Figure 10 shows a few samples for each of the availability attacks used in this
scenario. Like the previous experiment, again we use our settings from Section IV-H to run these experiments. As seen in the
confusion matrices of Figure 12, AVATAR performance decreases as we increase the perturbation norm. This is in line with our
theoretical insights: to protect the data against AVATAR, we need larger perturbations. However, a larger perturbation means
losing the regular utility of the data.

Fig. 10: Samples from protected CIFAR-10 datasets with four different availability attacks. We have selected four classes to
protect, where in each case we use a different perturbation norm to protect the data. The protecting perturbations become
extremely visible as we increase their norm.



TABLE X: Test accuracy (%) of various neural network architectures trained over data availability attacks on CIFAR-10,
CIFAR-100, SVHN, and ImageNet-100 datasets without and with our denoising approach. The mean and standard deviation
are computed over 5 seeds.
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Fig. 11: The confusion matrices of RN-18 classifiers trained over CIFAR-10 dataset. In each case, we use a different combination
of availability attacks to protect some of the classes. For AVATAR, we follow our settings for the experiments in Table IX and
use a DDPM-IP pre-trained over the IN-1k-32×32 dataset.



Vanilla Training AVATAR

(a) EMN [30]

Vanilla Training AVATAR

(b) TAP [17]



Vanilla Training AVATAR

(c) REMN [18]

Vanilla Training AVATAR

(d) SHR [71]

Fig. 12: The confusion matrices of RN-18 classifiers trained over CIFAR-10 dataset. For each availability attack, we use
four different perturbation norms to protect a randomly selected set of classes. For AVATAR, we follow our settings for the
experiments in Table IX and use a DDPM-IP pre-trained over the IN-1k-32×32 dataset.


