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Abstract

Large models such as Large Language Models (LLMs) and Vision Language
Models (VLMs) have transformed artificial intelligence, powering applications in
natural language processing, computer vision, and multimodal learning. However,
fully fine-tuning these models remains expensive, requiring extensive computa-
tional resources, memory, and task-specific data. Parameter-Efficient Fine-Tuning
(PEFT) has emerged as a promising solution that allows adapting large models
to downstream tasks by updating only a small portion of parameters. This survey
presents a comprehensive overview of PEFT techniques, focusing on their moti-
vations, design principles, and effectiveness. We begin by analyzing the resource
and accessibility challenges posed by traditional fine-tuning and highlight key
issues, such as overfitting, catastrophic forgetting, and parameter inefficiency. We
then introduce a structured taxonomy of PEFT methods—grouped into additive,
selective, reparameterized, hybrid, and unified frameworks—and systematically
compare their mechanisms and trade-offs. Beyond taxonomy, we explore the
impact of PEFT across diverse domains, including language, vision, and generative
modeling, showing how these techniques offer strong performance with lower
resource costs. We also discuss important open challenges in scalability, inter-
pretability, and robustness, and suggest future directions such as federated learning,
domain adaptation, and theoretical grounding. Our goal is to provide a unified
understanding of PEFT and its growing role in enabling practical, efficient, and
sustainable use of large models.
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1 Introduction

LARGE Language Models (LLMs) [601, 280] and Pre-trained Language Models (PLMs) [432,
436, 577, 719] have revolutionized artificial intelligence [648, 122] , driving transformative

advancements across domains such as Natural Language Processing (NLP) [96, 478] , Computer
Vision (CV) [30, 707] , and multimodal learning [56, 187, 508]. Built on billions of parameters and
trained on vast datasets, these models have demonstrated unparalleled capabilities in applications like
text generation [455, 129], language translation [267, 10] , conversational agents [355, 555], Chatbot
[326, 571], and content summarization [3, 55]. These breakthroughs have redefined the possibilities
of artificial intelligence [497], making substantial contributions to academia, industry, and real-world
applications [205, 569, 569].

Figure 1: Overview of key PEFT techniques: Adapter, Prefix Tuning, LoRA, Parallel Adapter, and
Scaled Parallel Adapter [217]

.

Despite their immense potential, the size and complexity of modern LLMs and Pretrained Language
Models (PLMs) [369, 332] continue to pose profound challenges to both research and industrial
communities [539, 802]. Consider, for example, LLama-3— [424, 333]arguably one of the most
sophisticated and computationally demanding LLMs available [152, 766]. Its architecture, featuring
on the order of 300 billion parameters and employing intricate, multi-head attention mechanisms [256,
170, 27, 514, 810] , achieves state-of-the-art benchmarks across a breadth of tasks [507, 486].Yet,
diespite theise remtarkable captabilitiees, the fine-tuning process for such a model is nontrivial
[12, 127]. It entails mobilizing immense computational infrastructures, including petabyte-scale
storage systems, ultra-high memory bandwidth interfaces, and extensive arrays of cutting-edge GPUs
[380, 655]. For example, effective fine-tuning of LLama-3 [152, 445] necessitates provisioning
compute clusters that may incorporate hundreds to thousands of high-end, data-center-grade GPUs—
often NVIDIA A100 or H100 units [242, 806]. Each of these sophisticated processors comes
equipped with tens of gigabytes of high-bandwidth memory (HBM), yet even this generous memory
footprint proves insufficient for accommodating the entirety of LLama-3’s parameter set, intermediate
activations, and optimizer states on any single device. Multiple GPUs [574, 80] must thus be
aggregated to host the model and its associated training workflow. Achieving the requisite efficiency
in this context demands careful orchestration of distributed training paradigms [454], including
tensor parallelism [665, 336, 656], pipeline parallelism [260, 629, 481, 760], and model sharding
[353, 374] all of which must be meticulously tuned to maintain throughput and ensure balanced
workload distribution across the GPU ensemble. By necessity, such infrastructural complexity and
the corresponding operational overheads place significant resource constraints on the fine-tuning
process, effectively limiting the accessibility and deployability of models at this scale [151].

4



As traditional fine-tuning [368, 614] involves updating all model parameters for each new task,
which becomes prohibitively expensive as model sizes grow, addressing this knowledge gap is
essential for maximizing the potential of LLMs and PLMs [613] Optimizing their deployment and
fine-tuning [616, 534] processes would not only reduce computational demands but also enhance
their adaptability to a wide range of tasks, ensuring that these models remain impactful across
diverse applications [582, 709]. Bridging this gap is crucial for democratizing their use, enabling
resource-constrained organizations to harness the power of LLMs like LLama-3 [547, 382] and apply
them in emerging fields [488, 232].

The central research question driving this study is: What are the resource requirements and fine-tuning
challenges associated with LLMs and PLMs [771, 580], and how can they be addressed to optimize
their deployment and fine-tuning This question seeks to uncover critical limitations and explore
strategies to enhance the efficiency and accessibility of these models.

The aim of this study is to investigate the computational and fine-tuning challenges associated
with LLMs, VLMs, and LMMs [435, 538, 575] and to identify strategies for optimizing their
deployment and fine-tuning processes [6, 99]. Through systematic analysis, this study intends to
provide actionable insights to guide researchers and practitioners in overcoming the limitations of
these models.

We hypothesize that LLMs require substantial computational resources and fine-tuning expertise to
achieve optimal performance. However, strategies such as parameter-efficient fine-tuning (PEFT)—
[520, 634, 311]which selectively updates only a small subset of model parameters—can significantly
reduce resource requirements while maintaining or enhancing performance [734]. By exploring
and validating these approaches, this study aims to contribute to the broader understanding and
democratization of LLMs and PLMs, paving the way for their effective use in AI research and
applications [570, 207].

PEFT [384]methods offer a promising alternative by significantly reducing the number of trainable
parameters [69, 628, 291] making fine-tuning more accessible, scalable, and sustainable. Techniques
such as adapter modules, prefix-tuning [444, 517, 76, 427] LoRA [17, 130, 335] (Low-Rank Adapta-
tion), BitFit, and prompt tuning have demonstrated strong empirical performance across a variety of
benchmarks, often matching or surpassing full fine-tuning with only a fraction of the computational
cost. These methods are particularly valuable in real-world scenarios, where practitioners must handle
multiple tasks, work within resource constraints, or deploy models on edge devices.

Despite the growing popularity of PEFT, there is still a lack of systematic understanding of the
design space, trade-offs, and applicability of these techniques across different modalities. This
survey aims to fill that gap by offering a comprehensive review of parameter-efficient fine-tuning
methods for both language and vision models [735] . We begin by analyzing the computational and
memory limitations of standard fine-tuning, followed by a discussion of its inherent drawbacks. We
then present a unified taxonomy that categorizes PEFT approaches into five major classes: additive,
selective, reparameterized, hybrid, and unified methods. This taxonomy provides a structured lens
through which to understand and compare different strategies.

Furthermore, we evaluate the application of PEFT across domains, including NLP [286, 148],
computer vision, multimodal tasks, and generative modeling. We highlight how PEFT methods
contribute to improved efficiency, better generalization, and more responsible AI deployment. Lastly,
we identify key challenges and open questions in the field, such as interpretability, theoretical
foundations, and domain-specific adaptation [68, 701], and we suggest future directions for research.

Through this survey, we aim to provide researchers and practitioners with a clear and comprehensive
guide for parameter-efficient fine-tuning [619, 391], empowering them to build more efficient and
adaptable AI systems.

2 Main Contributions

To summarize, the main contributions of this survey can be outlined as follows:

• Comprehensive Resource Analysis: We examine the computational, memory, and storage
demands associated with full fine-tuning of large-scale pre-trained models (PLMs and
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LLMs), emphasizing practical constraints faced by researchers with limited access to
infrastructure.

• Critical Evaluation of Fine-Tuning Limitations: We discuss the limitations of con-
ventional fine-tuning approaches, such as overfitting on low-resource tasks, catastrophic
forgetting in continual learning, redundancy in parameter updates, and scalability bottle-
necks.

• Unified Taxonomy of PEFT Methods: We propose a structured taxonomy categorizing
PEFT techniques into five key families—additive, selective, reparameterized, hybrid, and
unified—to offer a clear lens for comparing design strategies and identifying common
patterns.

• Comparison of Representative PEFT Techniques: We provide a side-by-side evaluation
of widely-used methods such as LoRA, adapters, BitFit, prompt tuning, and prefix-tuning,
analyzing their parameter efficiency, performance trade-offs, and implementation complex-
ity.

• Cross-Domain Application Survey: We survey the application of PEFT in diverse domains,
including NLP, computer vision, multimodal learning, speech, and generative modeling,
highlighting their robustness, transferability, and real-world usability.

• Adaptation in Specialized Settings: We explore how PEFT methods are applied in emerg-
ing areas such as continual learning, federated learning, privacy-preserving fine-tuning,
domain adaptation, and low-resource language support.

• Empirical Insights and Trends: We summarize recent experimental findings and perfor-
mance benchmarks to uncover trends in PEFT research and identify the conditions under
which specific methods excel or fail.

• Open Challenges and Future Directions: We outline open problems in the field, includ-
ing scaling PEFT to ultra-large models, enhancing interpretability, improving theoretical
understanding, and integrating PEFT with efficient inference strategies.

• Accessible Summary and Practical Guidelines: We provide an actionable guide to help
practitioners choose appropriate PEFT methods based on resource budgets, task types, and
model architectures.

This paper is organized as follows:

In Section 1, we introduce the background and motivation for this work, highlighting the rise of large-
scale foundation models such as Large Language Models (LLMs), Vision Large Models (VLMs),
and Large Multimodal Models (LMMs), and the need for parameter-efficient fine-tuning (PEFT)
approaches to mitigate the high computational and resource costs of full fine-tuning.

In Section 2, we outline the key contributions of this survey, including a systematic taxonomy of
PEFT methods, an evaluation of their trade-offs, and an in-depth discussion of their applications and
limitations across domains.

In Section 3, we present the necessary preliminaries for understanding PEFT, including attention
mechanisms, self-attention, multi-head configurations, transformer architecture, and the inherent
inefficiencies of full fine-tuning, supported by complexity and scaling analyses.

In Section 4, we detail the key architectural and practical considerations in the design of PEFT
strategies, including design goals, quantized decision spaces, task-adaptive routing mechanisms, and
optimization strategies for memory, time, and energy efficiency, especially in multimodal contexts.

In Section 5, we present key PEFT methods, including additive fine-tuning with serial and parallel
adapters, hybrid adapters for task-specific adaptation, soft prompt tuning, and reparameterized
approaches such as LoRA. We also cover scaling behaviors, selective fine-tuning, and emerging
hybrid frameworks such as MoE-based PEFT.

In Section 6, we evaluate the performance of PEFT methods through empirical comparisons on
benchmark datasets, including GLUE for NLP tasks and reasoning evaluations on large language
models, highlighting parameter-to-performance trade-offs.

In Section 7, we explore the application of PEFT techniques across diverse domains, including
natural language processing, computer vision, multimodal learning, and robotics, emphasizing their
adaptability and domain-specific benefits.
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In Section 8, we analyze the computational, memory, and scaling complexities associated with
different PEFT strategies, offering comparative insights into their theoretical and practical efficiency.

In Section 9, we summarize the strengths and limitations of PEFT methods, focusing on their
parameter efficiency, adaptability, generalization, and constraints in real-world deployment.

In Section 10, we identify key limitations in current PEFT methods, including heuristic reliance, lack
of theory, poor interpretability, and limited standardization—emphasizing the need for semantically
aware and architecture-sensitive designs.

In Section 11, we outline promising future research directions, including theoretical modeling of
parameter influence, layer-wise tuning strategies, continual learning integration, interpretability,
benchmarking, and privacy-aware PEFT.

In Section 12, we conclude the paper by reflecting on the role of PEFT in enabling efficient and
scalable adaptation of large foundation models, and its significance for the future of resource-aware
AI.

3 PRELIMINARIES

3.1 Attention Mechanisms

Attention mechanisms [28, 646, 328] enable a model to focus on specific parts of an input sequence
to produce representations for downstream tasks. Let X ∈ Rn×dmodel represent a sequence of n
input token embeddings, each of dimension dmodel. The goal of attention is to combine these token
representations into contextualized outputs by weighting their relevance.

To achieve this, the input X is mapped into three sets of vectors: queries Q, keys K, and values V.
Typically, these are given by:

Q = XWQ, K = XWK , V = XWV , (1)

where WQ,WK ,WV ∈ Rdmodel×dk are trainable projection matrices and dk is the dimension of
each head’s projection space (for single-head attention). These projections enable the computation of
pairwise compatibilities between queries and keys, determining how much each token should attend
to others.

The core computation of attention is often implemented as scaled dot-product attention. Given
Q,K,V, we define:

Attention(Q,K,V) = softmax
(
QK⊤
√
dk

)
V. (2)

The dot product QK⊤ ∈ Rn×n computes the pairwise compatibility between each query vector and
each key vector. Without scaling, the magnitude of the dot products increases with dimension dk,
potentially affecting training stability. Dividing by

√
dk normalizes the variance of the input features,

making the softmax distribution less extreme and stabilizing training. Applying the softmax row-wise
converts raw alignment scores into a probability distribution, ensuring that attention weights are
non-negative and sum to 1. Finally, the output is a weighted combination of the values V, using the
attention weights computed by the softmax.

3.2 Self-Attention

In self-attention [200, 783, 184], the queries, keys, and values come from the same sequence:

Z = softmax
(
XX⊤
√
dk

)
X. (3)

This avoids explicit recurrence or convolution and provides O(n2) complexity in sequence length n,
allowing the model to capture long-range dependencies effectively.

7



3.3 Multi-Head Attention

Multi-Head Attention (MHA) [646, 418, 42] generalizes single-head attention by using H parallel
attention heads [457, 44]. Each head focuses on a different projection of the input, providing richer
modeling capacity. Let Qh,Kh,Vh denote the projections for head h:

Qh = XWQ
h , Kh = XWK

h , Vh = XWV
h , (4)

where Qh,Kh,Vh ∈ Rn×dhead , dmodel = H · dhead. (5)

Each head computes scaled dot-product attention [39] independently:

Zh = Attention(Qh,Kh,Vh). (6)

The outputs from all H heads are then concatenated and transformed by an output projection
WO ∈ R(Hdhead)×dmodel :

Z = [Z1;Z2; · · · ;ZH ]WO. (7)

MHA allows the model to jointly attend to information from different representation subspaces,
improving its ability to capture complex patterns.

3.4 Transformer Architecture

Within the Transformer architecture, a pivotal component is the Multi-Head Self-Attention (MHSA)
[352, 397] mechanism, which allows the model to attend to different representation subspaces
simultaneously. Formally, given an input matrix X ∈ Rn×dmodel , where n is the sequence length and
dmodel is the dimensionality of the model, the MHSA operates by first linearly projecting X into three
distinct matrices: queries Q, keys K, and values V . These projections are achieved through learnable
weight matrices WQ,WK ,WV ∈ Rdmodel×dk , such that:

Q = XWQ, K = XWK , V = XWV .

Each attention head h computes scaled dot-product attention as previously defined:

Attention(Qh,Kh, Vh) = softmax
(
QhK

⊤
h√

dk

)
Vh.

For H parallel heads, the outputs are concatenated and projected back to the original model dimension
using a weight matrix WO ∈ R(H·dk)×dmodel :

MHSA(X) = Concat
(

Attention(Q1,K1, V1), . . . ,Attention(QH ,KH , VH)
)
×WO (8)

= [Attention(Q1,K1, V1) || . . . || Attention(QH ,KH , VH)]WO. (9)

This multi-head approach enables the model to capture diverse aspects of the input by allowing each
head to focus on different parts or features of the sequence.

Following the MHSA layer, the Transformer employs a Position-Wise Feed-Forward Network
(FFN) [236, 551], which applies two linear transformations with a non-linear activation function in
between. The FFN operates independently on each position in the sequence, enhancing the model’s
capacity to learn complex patterns. Mathematically, the FFN is defined as:

FFN(x) = max(0, xW1 + b1)W2 + b2,

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff×dmodel are weight matrices, and b1, b2 are bias vectors. The
activation function max(0, ·) introduces non-linearity, allowing the network to model more complex
relationships within the data.
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Both the MHSA and FFN [409, 62]layers are integrated with residual connections and layer
normalization [576, 318] to facilitate stable and efficient training. Specifically, the output of each
sub-layer is added to its input and then normalized:

OutputMHSA = LayerNorm(X + MHSA(X)),

OutputFFN = LayerNorm(OutputMHSA + FFN(OutputMHSA)).

These residual connections help in mitigating the vanishing gradient problem, enabling the training
of deep Transformer models by allowing gradients to flow more effectively through the network.

3.5 Pretraining Language Model

Language models often utilize massive unlabeled corpora for pretraining to develop robust language
representations. One prevalent approach is Masked Language Modeling (MLM) [591, 494, 298]
where a subset M of positions within the input sequence is masked, and the model is tasked with
predicting these masked tokens. The loss function for MLM is defined as:

LMLM = −
∑
i∈M

logP (xi | x\i), (10)

where x\i denotes the sequence with the i-th token masked. This Application encourages the model
to understand the context surrounding the masked positions to accurately predict the missing tokens.

Another fundamental approach is Autoregressive (AR) Language Modeling [765, 721], where the
model predicts each token based on all preceding tokens in the sequence. The loss function for AR
modeling is expressed as:

LAR = −
n∑

i=1

logP (xi | x<i). (11)

In this formulation, x<i represents all tokens before the i-th position, allowing the model to generate
coherent and contextually relevant sequences. Both MLM and AR Applications contribute to learning
representations that are highly general and transferable, enabling the pretrained models to perform
effectively across a wide range of downstream tasks.

3.6 Full Fine-Tuning

Full fine-tuning [818] involves updating all parameters of a pre-trained large language model (LLM)
to adapt it to a specific downstream task. Let θ ∈ Rp represent the model’s parameters, where p
typically spans billions. Given a task-specific dataset Dtask = {(xi, yi)}Ni=1, the Application is to
determine the optimal parameters θ∗ that minimize the cumulative loss:

θ∗ = argmin
θ

∑
(x,y)∈Dtask

L(fθ(x), y), (12)

where fθ(x) is the model’s prediction for input x, and L is a task-specific loss function, such as
cross-entropy for classification.

Optimization typically employs gradient-based algorithms like Adam or AdamW. In each iteration,
the parameters are updated as follows:

θ ← θ − η∇θL(fθ(x), y), (13)

where η is the learning rate. This comprehensive adaptation leverages the model’s full capacity,
enhancing performance on the target task.
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3.7 Limitations and Challenges of Full Fine-Tuning

However, full fine-tuning incurs significant computational and memory overheads. Storing gradients
for all p parameters requires substantial memory, often necessitating techniques like mixed-precision
training or gradient checkpointing [668, 88] to manage resource usage. Additionally, the extensive
parameter updates lead to high computational costs, making the training process time-consuming
and reliant on specialized hardware such as GPUs or TPUs [694]. Maintaining multiple model
checkpoints further increases storage requirements, complicating deployment and scalability.

These challenges have driven the development of PEFT methods [774] which aim to reduce resource
consumption by updating only a subset of parameters or introducing lightweight modules. Despite
these alternatives, full fine-tuning remains fundamental due to its ability to fully exploit the model’s
expressive power, often resulting in superior task-specific performance.

Full fine-tuning is also prone to overfitting, especially with limited downstream data. To enhance
generalization, regularization techniques like weight decay and dropout are commonly employed.
Additionally, strategies such as gradual unfreezing—where layers are fine-tuned incrementally—help
stabilize training and improve performance.

3.8 Large Language Models (LLMs)

LLMs are a class of neural networks characterized by their vast scale, with parameter counts typically
ranging from hundreds of millions to hundreds of billions [254, 152, 43]. Let p denote the number of
parameters in the model, and |D| represent the size of the training dataset, measured in terms of the
number of tokens. The computational complexity of training such models can be approximated as
O(|D| · p), reflecting the operations required for forward and backward passes during gradient-based
optimization. This scaling impacts both the computational cost and the memory footprint, which
grows proportionally to O(p) [294, 482], assuming all parameters and activations are stored for
gradient computation.

The architecture of LLMs [334, 21] such as Transformer-based models [646, 4] enables efficient
parallelization via self-attention mechanisms [399]. However, as p increases, training and inference
require distributed computing strategies to manage memory and computational demands. Typical
implementations leverage GPU/TPU clusters, where advanced techniques like mixed-precision
arithmetic [465], gradient checkpointing, and pipeline parallelism optimize performance.

Scaling laws, as empirically demonstrated by Kaplan et al. [294], provide a quantitative framework
for understanding the relationship between model size, dataset size, and performance. These laws
observe that as p and |D| increase, the performance of LLMs follows predictable power-law trends.
Specifically, the loss L on a given task is approximately proportional to:

L ∝ p−α + |D|−β ,

with α, β > 0 are empirically determined constants. This relationship highlights the diminishing
returns of scaling, wherein gains in performance taper off as p and |D| grow beyond certain thresholds.

While larger models exhibit improved flexibility, generalization, and capacity for in-context learning,
the resource demands for full fine-tuning scale with O(|D| · p). Fine-tuning such models for
downstream tasks necessitates extensive compute resources, large memory footprints, and long
training durations, posing significant barriers to accessibility. Moreover, full fine-tuning modifies all
p parameters, leading to storage inefficiencies when maintaining task-specific variants of a single
model.

The impracticality of full fine-tuning for massive LLMs underscores the importance of PEFT tech-
niques, which aim to adapt models using significantly fewer parameter updates. By modifying only a
subset of p or introducing lightweight task-specific modules, PEFT enables adaptation with minimal
resource overhead while preserving the pre-trained knowledge of the underlying LLM.

3.9 Transfer Learning

Transfer learning [623, 817, 581, 530] is a cornerstone methodology in modern machine learning,
designed to harness the knowledge embedded within a large pretrained model to enhance the per-
formance of downstream tasks. At its core, the parameters θ of a pretrained LLM encapsulate
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extensive linguistic and contextual understanding. These parameters can be effectively adapted to
task-specific requirements through the fine-tuning of a small subset of parameters or by incorpo-
rating lightweight task-specific components. This paradigm demonstrates the remarkable utility of
leveraging generalized pretraining to achieve task-specific excellence.

Let us consider a pretrained model fθ0 characterized by its parameters θ0, trained on a large corpus.
Transfer learning facilitates its adaptation to a downstream task represented by the dataset Dtask. The
adaptation process aims to produce an optimized model fθ∗ , and the optimization Application is
expressed as:

θ∗ = argmin
θ
L(fθ, Dtask)

In this formulation, L denotes the loss function specific to the downstream task. The pretrained
parameters θ0 serve as a robust initialization, which not only enhances the model’s generalization
capabilities but also acts as a form of regularization. This results in a significant reduction in the
need for extensive task-specific training, making the adaptation process computationally efficient and
effective.

The principles of transfer learning [107] are integral to the development and application of PEFT
methodologies. PEFT techniques—such as adapters, low-rank matrix updates, and prompt tun-
ing—enable the fine-tuning [142] of only a minimal fraction of the pretrained model’s parameters.
Alternatively, they introduce lightweight modular adjustments tailored to the task at hand. This
strategic approach ensures that task-specific knowledge is seamlessly incorporated, while preserving
the comprehensive capabilities of the pretrained model. Consequently, PEFT exemplifies the scalabil-
ity and resource-efficiency required for modern machine learning applications [264], and transfer
learning serves as the foundational framework that underpins its success.

3.10 Computational Complexity

The computational and memory demands of training and fine-tuning LLMs are substantial, primarily
due to the self-attention mechanism. The time complexity of self-attention is O(n2) in sequence
length n [302, 328], as each token in the input sequence attends to every other token. During
pretraining, where LLMs process datasets containing billions or trillions of tokens, this quadratic
complexity results in operations requiring trillions of floating-point operations (FLOPs) [495]. Fine-
tuning further adds to this computational burden by necessitating the retraining of all model parameters
for each downstream task, particularly when handling lengthy input sequences or complex datasets.

The memory complexity of LLMs [281, 327] is equally challenging. Storage requirements scale with
the number of model parameters, p, and the size of activations, which is proportional to O(n · dmodel),
where dmodel represents the dimensionality of the model. During training, memory usage includes
storing parameters and their gradients, leading to a total memory requirement of 2p. This results in
substantial memory overhead, especially when updating all parameters during full fine-tuning.

PEFT methods address these computational and memory challenges by modifying only a small subset
of parameters. Techniques like adding low-rank matrices or lightweight adapter layers [295, 327, 529]
significantly reduce the number of trainable parameters and the associated memory footprint, enabling
faster training and deployment on resource-constrained hardware without compromising performance.

3.11 Overfitting and Generalization

Although they have a high capacity, LLMs are prone to overfitting [269, 404] when fine-tuned on
small downstream datasets. Overfitting occurs when a model learns to memorize the training data
instead of identifying patterns that generalize to unseen examples. This phenomenon is formally
characterized by the inequality:

Train Error(θ)≪ Test Error(θ),

where θ represents the model parameters. Overfitting becomes especially problematic in low-resource
settings, where the lack of sufficient training data limits the model’s ability to generalize effectively
to new tasks or datasets.

The bias-variance trade-off [160] provides a theoretical framework for understanding the general-
ization capabilities of LLMs. High-capacity models, such as LLMs, inherently exhibit low bias due
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to their ability to approximate complex functions. However, this flexibility comes at the cost of high
variance, which often leads to overfitting on small datasets.

PEFT methods address overfitting by updating a small, structured subset of parameters, such as in
LoRA and adapters [345]. This implicit regularization reduces variance without adding significant
bias, improving generalization in low-resource settings while ensuring computational and memory
efficiency.

4 PEFT Design

The expansion of LLMs has presented significant challenges in computational resource allocation,
necessitating the development of PEFT techniques [530, 108, 325]. Unlike full fine-tuning, which
requires updating all model parameters, PEFT selectively fine-tunes a subset of parameters, main-
taining adaptation effectiveness while reducing computational and memory costs [247, 788]. The
efficiency of PEFT methods is dictated by multiple factors, including memory footprint, latency,
model sparsity, and energy consumption. This section explores innovative efficiency strategies,
starting with precision-aware quantization, dynamic task-adaptive routing, memory-optimized fine-
tuning, KV-cache optimization, pruning-based efficiency techniques, energy-aware fine-tuning, and
multi-modal PEFT adaptations. These approaches collectively enhance PEFT scalability, enabling
cost-effective fine-tuning for diverse AI applications.

4.1 Precision-Aware Quantization

Quantization serves as a foundational technique for reducing computational complexity and storage
requirements in LLM fine-tuning [465]. Traditional fine-tuning often relies on high-precision floating-
point computations, which lead to increased memory usage and slow inference speeds [294]. In
contrast, precision-aware quantization strategically reduces numerical precision in model parameters
while preserving task-specific performance. Hybrid bit-width quantization assigns lower precision
(e.g., 2-bit or 4-bit) to less critical parameters, while preserving higher precision (e.g., 8-bit or 16-bit)
for task-sensitive layers, ensuring optimal trade-offs between efficiency and model accuracy [217].
Another promising approach is quantization-aware fine-tuning (QAT), where models undergo low-bit
adaptation during the fine-tuning process, preventing performance degradation from post-training
quantization methods [482]. By integrating adaptive precision scaling, PEFT frameworks achieve
efficient inference performance, making them well-suited for edge and mobile deployments.

4.2 Dynamic Task-Adaptive Routing

Traditional PEFT methods operate under static tuning architectures, assuming that all tasks require
uniform adaptation. However, task complexity varies significantly, necessitating dynamic routing
mechanisms that selectively activate fine-tuned modules based on task-specific demands. Attention-
based gating enables models to dynamically engage only the necessary fine-tuned adapters, thereby
reducing redundant computations and improving adaptation efficiency [644]. In multi-task learning,
task-specific pathway optimization ensures that different task-related modules remain distinct, prevent-
ing interference between independent fine-tuned representations [217]. Additionally, self-supervised
routing algorithms can learn optimal activation strategies based on data-driven task profiling, further
enhancing PEFT scalability across diverse learning Applications [644].

4.3 Memory-Optimization

One of the most significant constraints in fine-tuning LLMs is memory consumption, particularly
in resource-limited environments [482]. Standard fine-tuning requires the storage of large-scale
activations, optimizer states, and gradients, creating high GPU memory overhead [465]. To alleviate
this burden, memory-efficient PEFT strategies employ techniques such as activation checkpointing,
where only critical activations are stored during forward passes, and remaining states are recomputed
on demand during backpropagation [482]. Gradient offloading further enhances memory efficiency
by storing gradients in secondary memory units, reducing the in-memory footprint required for
backpropagation. Additionally, reversible fine-tuning architectures eliminate the need for storing
intermediate activation states, instead recomputing them as needed, effectively reducing training
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memory costs [465]. By integrating these techniques, PEFT models can be fine-tuned on hardware-
constrained environments, including mobile devices and low-power AI accelerators.

4.4 Key-Value (KV) Cache Optimization

KV-cache management is a critical factor in transformer-based inference efficiency, particularly in
auto-regressive generation models [482]. Each new token generation step requires retrieving and
updating previous activations, significantly impacting inference latency and memory consumption
[465, 482]. Inefficient KV-cache handling can lead to fragmentation, slow retrieval speeds, and unnec-
essary memory bloat. To address these inefficiencies, hierarchical KV-cache storage introduces tiered
caching mechanisms, where frequently accessed activations remain in high-speed memory, while
longer-term dependencies are stored in low-priority memory pools [482]. Additionally, entropy-based
KV-cache pruning ensures that only high-relevance activations are retained, discarding redundant
cache states dynamically [294]. Multi-user PEFT deployments further benefit from adaptive cache
allocation strategies, which optimize memory distribution based on workload requirements, enabling
high-throughput AI systems to function efficiently across various computational environments [482].

4.5 Pruning-Based Efficiency

Pruning has long been recognized as a powerful tool for reducing model size and computational
complexity [219, 416, 782]. However, unstructured pruning often results in fragmented weight
distributions, making weight merging challenging [736, 251, 139]. To overcome this limitation,
structured PEFT pruning applies task-aware sparsification, ensuring that critical task-relevant layers
remain intact, while low-impact parameters are dynamically removed [753, 143, 799]. Layer-wise
adapter pruning selectively eliminates adapters from lower transformer layers, focusing computational
resources on higher-layer fine-tuned representations [401]. Channel-wise LoRA pruning further
refines efficiency by sparsifying LoRA weight matrices (W_up and W_down), reducing unnecessary
storage and computation [788, 195, 675]. Additionally, Neural Architecture Search (NAS)-driven
pruning integrates automated reinforcement learning techniques that optimize sparsity patterns
dynamically, ensuring optimal parameter reduction with minimal impact on task performance [343,
813, 251]. By implementing structured, sparsity-aware, and automated pruning methodologies, PEFT
frameworks can maintain high adaptation accuracy while significantly reducing computational costs.

4.6 Energy-Aware Tuning

With increasing concerns over AI energy consumption, sustainable fine-tuning techniques have
become essential for reducing the environmental impact of large-scale LLM training [482, 428, 233].
Gradient-free optimization introduces an alternative approach where fine-tuning is conducted without
backpropagation, significantly reducing power consumption [217, 151, 469]. Additionally, early
convergence monitoring leverages adaptive loss tracking to terminate training once the model achieves
optimal adaptation performance, preventing unnecessary computational cycles [644, 788, 139].
Another key advancement in energy-aware PEFT is low-power computation graph optimization,
which restructures transformer execution pathways to minimize redundant processing operations
[465, 665, 260]. These energy-efficient methodologies not only reduce carbon footprints but also
enable AI models to operate on energy-constrained devices, making large-scale adaptation more
sustainable.

4.7 Multi-Modal

While PEFT techniques have predominantly been applied to text-based language models, recent
advances demand multi-modal adaptation capabilities, enabling PEFT to function across vision,
speech, and multimodal AI systems [211, 734, 750]. Cross-modal parameter sharing introduces a
unified fine-tuning approach, where fine-tuned text-based representations are transferred to vision
and speech tasks, minimizing redundant adaptation efforts [421, 282, 137]. Furthermore, token-wise
sparsity in multi-modal learning ensures that only the most relevant cross-modal embeddings are
retained, significantly improving fine-tuning efficiency for vision-language models (VLMs) and multi-
sensory AI frameworks [816, 762, 738]. By integrating multi-modal fine-tuning strategies, PEFT
expands beyond traditional NLP tasks, enabling scalable and efficient adaptation across multiple AI
disciplines.
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[255], MoeLORA [401], MoLORA [773],
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Original Serial Adapter [244], AdapterHub
[523], MAD-X [524], PALs [602], Sequen-
tial adapters for cross-lingual tasks [512],
Hadamard Adapter [89], Adapter Drop [556]

Uni-Adapter [421], UniPT [137], AdaptFormer
[81], ConvPass [279], PEMT [389]

AUTOPEFT [813], CODA [351], HarMa [257],
XMAdapter [750], MV Adapter [282], Conv
Adapter [73], Tiny Attention Adapter [801]

K adapter [684], ViT-Adapter [90], Simple,
Scalable Adaptation [32]

Bert and PAL’s [602], Adapter fusion [522],
OrchMoE [674], Multi-Head Adapter Routing
[503], Hyperformer [442], MOELoRA [401],
LLM-Adapters [254], AdapterSoup [98], MPT
[696], MerA [224], PASTA [751], LST [609]

RLPrompt [132], SPARSEFIT [596], OVOR
[258]

Prefix-Tuning [372], PEDRO [732], DEPT
[587], P Tuning V2 [407], Q-PEFT [520], PTR
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SPoT [653], LOPA [265], APT [799], Info-
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Figure 2: PEFT Categorized. A comprehensive taxonomy of Parameter-Efficient Fine-Tuning (PEFT)
methods. The diagram illustrates the hierarchical organization of PEFT techniques into five major
branches: Additive Fine Tuning (with Adapter-Based and Soft Prompt-Based methods), Selective
Fine Tuning (parameter-based, unstructured parameter-based, and structured approaches), Reparame-
terized PEFT (including low-rank decomposition, adaptive rank methods, and Lora variants), Hybrid
Approach, and MoE-based methods. Each branch further subdivides into specific implementation
strategies and variants. The taxonomy highlights the diverse approaches to achieving parameter
efficiency while maintaining model performance across various adaptation scenarios.
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5 PEFT Methods

With a foundation established in the underlying principles of transfer learning and fine-tuning for
large-scale neural networks, we now delve into PEFT, a transformative paradigm for adapting LLMs
[211]. Traditional full fine-tuning involves updating all parameters θ ∈ Rp, where p can scale
to billions for modern LLMs [56]. While this approach achieves state-of-the-art performance in
task-specific scenarios, it poses core difficulties, including high computational costs, substantial
storage overhead, and inefficiencies in multi-task learning [233]. These issues become particularly
pronounced when deploying and maintaining task-specific versions of LLMs at scale [469]. PEFT
techniques address these limitations by rethinking the fine-tuning process, focusing on updating only
a small subset of parameters or introducing lightweight task-specific modules, thereby significantly
reducing computational and memory overhead [247]. The primary Applications of PEFT methods
are to reduce trainable parameters, minimize computational demands, and preserve or enhance
model performance despite fewer updates. These techniques are particularly well-suited for resource-
efficient adaptation of LLMs to new tasks and domains, enabling practical deployment scenarios.
PEFT strategies can be broadly classified into five distinct categories, each tailored to optimize the
fine-tuning process while minimizing computational and memory overhead.

Additive Fine-Tuning enhances the adaptability of pre-trained models by introducing new, trainable
modules or parameters into the existing architecture [244]. These modules, such as adapters or
low-rank projections, integrate task-specific information without modifying the frozen parameters of
the pre-trained model. This approach maintains the original model’s generalizability while efficiently
encoding task-specific features, making it a resource-effective solution. Selective Fine-Tuning
focuses on updating only a subset of the model’s parameters, targeting components most relevant to the
task at hand [775]. This method significantly reduces the computational requirements of fine-tuning
while retaining task-specific effectiveness. Strategies like LoRA (Low-Rank Adaptation) and BitFit
selectively adjust specific layers or modules, offering a balance between computational efficiency and
performance. Reparameterized PEFT transforms the model parameters into a lower-dimensional
representation during training to facilitate efficient optimization [247]. These reparameterized
forms are later mapped back to the original parameter space during inference, ensuring the model’s
full capacity and expressiveness are preserved. Techniques such as tensor decomposition, low-rank
matrix factorization, and singular value decomposition exemplify this approach, making it particularly
valuable for large-scale models. Hybrid Approach combines elements from multiple PEFT strategies,
creating a unified framework that leverages their complementary strengths [797]. For example, hybrid
methods may integrate additive modules with selective fine-tuning to optimize both modularity and
task-specific performance. This approach provides flexibility and adaptability, enabling tailored
solutions for complex tasks with varying resource constraints. MoE-Based PEFT (Mixture-of-
Experts) leverages sparsely activated architectures where only specific subsets of parameters, or
experts, are utilized for a given task [401]. Dynamic gating mechanisms determine which experts
to activate during inference, ensuring task relevance while reducing unnecessary computation. This
strategy excels in multi-task and large-scale systems by dynamically allocating resources to achieve
efficiency and specialization. Collectively, these strategies present a robust and versatile framework
for adapting pre-trained models to diverse tasks, offering significant computational savings while
preserving or enhancing task performance. An overview of different PEFT algorithms is summarized
below. In Figure 2, we present a detailed categorization of PEFT techniques.

5.1 Additive Fine-tuning

Additive fine-tuning has emerged as a transformative approach in the field of artificial intelligence,
offering an efficient and scalable way to customize large-scale pre-trained models for diverse down-
stream applications. Unlike traditional fine-tuning, which requires extensive updates to all model
parameters, additive fine-tuning introduces modular components known as adapters. These adapters
provide a lightweight mechanism for integrating task-specific knowledge while preserving the in-
tegrity of the frozen parameters of the pre-trained model [244, 247]. By significantly reducing
computational demands and memory requirements, this approach has become a cornerstone in the
development of adaptable and flexible models. Additive fine-tuning encompasses three primary
architectures—serial adapters [244, 523], parallel adapters [217], and hybrid adapters [254, 313]
—each designed to address distinct computational and application-specific challenges. Furthermore,
these architectures are applied across two major adaptation task scopes: single-task adaptation
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Figure 3: Left: Parallel adapter implementation across visual and language encoders with cross-modal
connections. Right: Unified adapter structure with modality-specific up-projections feeding into a
shared down-projection pathway.

[247, 372] and multi-task adaptation [522, 255], broadening their applicability to a variety of
practical contexts. In Figure 3, we illustrate the parallel adapter and unified adapter structures.

Figure 4: Comparison of serial adapter integration in Transformer architecture (left) and adapter layer
structure (middle) and Hybrid adapter architecture(right)

.

5.1.1 Serial adapters

Serial adapters represent one of the earliest and most straightforward approaches to additive fine-
tuning. These adapters are integrated sequentially into each layer of the pre-trained model, transform-
ing intermediate representations to embed task-specific features while leaving the original model
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parameters unaltered. Architecturally, serial adapters employ a bottleneck structure, including a
down-projection layer to reduce dimensionality, a non-linear activation function for task-specific
transformations, and an up-projection layer to restore the original dimensionality [244]. Notable
implementations include the Original Serial Adapter [244], AdapterHub [523], MAD-X [524],
and PALs [602]. For instance, AdapterHub [523] provides a modular framework that facilitates the
deployment and reuse of adapters across a variety of domains, enhancing both scalability and adapt-
ability. Meanwhile, MAD-X (Modular Adapter Exchange) [524] extends the capabilities of serial
adapters [244] to multilingual and cross-lingual tasks by integrating task-specific and language-
specific adapters. Mathematically, the transformations in a serial adapter [244] are described as
follows:

hdown = ReLU(Wdownhin + bdown)

hup = Wuphdown + bup

where Wdown and Wup are projection matrices, and bdown, bup are biases. The final output is computed
as:

hout = hin + hup

This residual structure ensures that task-specific features are added without disrupting the foundational
knowledge encoded in the pre-trained model. These methods, classified as Additive Tuning, are
illustrated in Figure 4 showcasing their sequential integration within model architectures.

5.1.2 Parallel adapters

Parallel adapters offer an alternative design, introducing task-specific modules that operate con-
currently with the primary layers of the pre-trained model [217]. Unlike serial adapters [244],
which modify intermediate representations directly, parallel adapters [217] process task-specific
representations alongside the model’s primary computations, reducing interference while maintaining
independent pathways for task-specific learning. Examples include Uni-Adapter [421], UniPT
[137], AdaptFormer [81], ConvPass [73], and PEMT [389]. For instance, AdaptFormer [81]
embeds parallel adapters [217] within transformer-based architectures to improve adaptability in
multi-task contexts, while ConvPass [73] uses convolutional modules for enhanced performance in
vision-oriented tasks. The operation of a parallel adapter [217] can be expressed mathematically as:

hparallel = Wparallelhin + bparallel

where Wparallel and bparallel represent learnable parameters. The final output combines the primary
model’s representation hmain with the adapter’s output:

hout = hmain + αhparallel

with α is a scaling factor that adjusts the influence of the adapter’s contribution. These designs,
categorized under Additive Tuning, are illustrated in Figure 3, highlighting the parallel integration of
UniAdapters across visual, textual, and cross-modal pathways.

5.2 Hybrid adapters

Hybrid adapters synthesize the benefits of both serial adapters [244] and parallel adapters
[217], offering a unified framework that balances computational efficiency with adaptability to
complex tasks. By combining sequential pathways for feature extraction with parallel modules
for task-specific encoding, hybrid adapters [797] address scenarios such as multi-modal learning
and domain-specific applications. Key implementations include AUTOPET [813], CODA [351],
HarMa [224], XMAdapter [750], MV Adapter [282], and Conv Adapter [73]. For example,
XMAdapter [750] effectively blends serial [244] and parallel components [217] to adapt models
for vision-language tasks, while AUTOPET [813] dynamically adjusts the architecture based on
task complexity, optimizing both performance and resource use. The mathematical formulation for
hybrid adapters [797] integrates outputs from serial and parallel components:

hout = βhserial + γhparallel

where β and γ are coefficients that balance the contributions of the two pathways. These versatile
approaches, classified as Additive Tuning, are depicted in Figure 4, illustrating their capability to
handle diverse and complex tasks.

Beyond the core architectures, additive fine-tuning is applied to two primary adaptation scenarios
from Task Scope: single-task adaptation [247] and multi-task adaptation [522].
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5.2.1 Single-task adaptation

Single-task adaptation focuses on fine-tuning models for specific applications by employing highly
tailored adapters [247]. Examples include the K-Adapter [684], ViT-Adapter [90], and methods
for neural machine translation. The K-Adapter [684] integrates external knowledge into pre-trained
systems, enabling them to excel in knowledge-intensive tasks, while the ViT-Adapter [90] adapts
Vision Transformers for visual tasks such as object detection and segmentation. This approach
incorporates spatial prior modules, feature injectors, and extractors to embed task-specific knowledge.
Mathematically, the integration of external features Fsp into a layer representation Fi is performed
via cross-attention:

F̂i = CrossAttention(Fi, Fsp)

These methods, categorized under Additive Tuning, are illustrated in Figure 5, showcasing the
integration of spatial prior modules, feature injectors, and extractors for single-task adaptation.

Figure 5: Vision Transformer (ViT) with adapter modules: (a) Standard ViT architecture, (b) ViT-
Adapter framework with injector-extractor modules, (c) Spatial Prior Module, (d) Spatial Feature
Injector with cross-attention, and (e) Multi-Scale Feature Extractor. The design supports single-task
applications including detection and segmentation.

5.2.2 Multi-task adaptation

Multi-task adaptation, on the other hand, enables a single model to handle multiple applications
simultaneously by maintaining task-specific representations while leveraging shared pre-trained
parameters [522]. Notable implementations include AdapterFusion [522], Hyperformer [442],
AdapterSoup [98], OrchMoE, and MOEoRA [402]. For instance, AdapterFusion [522] integrates
multiple adapters dynamically to optimize performance across different tasks, while AdapterSoup
[98] aggregates and selects relevant adapters during inference for enhanced task generalization.

Figure 6: An illustration of a multi-task adaptation architecture integrating Parallel Adapter Layers
(PALs). The input passes through a sequence of self-attention (SA) and layer normalization (LN)
blocks, while task-specific PAL modules inject parallel residual pathways into the backbone model.
The PALs at each layer facilitate task-specific adaptation while maintaining the shared structure.

Mathematically, for a specific task t, the adapter processes the input as:

htask-specific = Wthin + bt

Fusion mechanisms, such as those employed in AdapterSoup, dynamically combine the outputs
of multiple adapters, ensuring effective performance across diverse tasks. These strategies, clas-
sified under Additive Tuning, are depicted in Figure 6, showcasing their versatility in multi-task
environments.
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5.3 Soft Prompt PEFT

Soft prompt-based fine-tuning has revolutionized how pre-trained models are adapted for specific
tasks [354]. By leveraging lightweight prompts—either learnable or fixed—it offers a modular
and efficient alternative to traditional fine-tuning approaches. This framework revolves around
two fundamental components: prompt structures [407] and adaptation Techniques [372], both
supported by precise mathematical formulations. Each section below includes correctly represented
mathematical expressions for a deeper understanding. At the core of this methodology are the
prompt structures, which determine how prompts are represented and incorporated into the model
architecture [354]. These structures are divided into two principal categories: continuous prompts
[372] and discrete prompts [210]. Continuous prompts are learnable embeddings, optimized during
the fine-tuning process to capture intricate task-specific patterns. Techniques such as Prefix-Tuning
[372], P-TUNING v2 [407], Q-PEFT [520], PTR [210], Prefix-Propagation [365], and LPT
[406] showcase the adaptability of this approach. For instance, Prefix-Tuning appends trainable
embeddings, referred to as prefixes, to the input sequence, augmenting the attention mechanism to
emphasize task-relevant features. This adjustment is mathematically expressed as:

Attention(Q, [P ;K], [P ;V ]) = softmax
(
Q[P ;K]T√

d

)
[P ;V ], (14)

where P represents the prefix, and Q,K, V are the query, key, and value matrices, respectively.
Expanding on this, P-TUNING v2 [407] incorporates continuous prompts into multiple transformer
layers, enabling deeper task-specific generalization. Other advancements, such as Q-PEFT [520],
employ quantized embeddings to enhance memory efficiency, while PTR [210] facilitates the transfer
of learned prompts across related domains. Figure 7 (Left) illustrates how continuous prompts are
integrated into transformer architectures, dynamically adjusting the model’s focus on task-critical
elements.

Figure 7: Prompt-based parameter-efficient fine-tuning architecture. (Left) Top: Model structure
with frozen LM layers and tunable Vector Generator. Bottom: Modified Self-Attention and FFN
mechanisms showing interaction between generated vectors (yellow) and existing components (green).
(Right) Architecture of a RL Prompt

Discrete prompts, by contrast, utilize fixed, tokenized sequences—such as phrases or pre-defined
linguistic structures—that provide explicit guidance to the model. These prompts are static and do
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not involve learnable embeddings. Techniques such as RLPrompt [132], SPARSETT [596], and
OVOR [258] demonstrate the utility of discrete prompting. For example, RLPrompt (Figure 7
(Right) optimizes tokenized prompts through reinforcement learning to maximize task performance.
The optimization process is mathematically represented as:

θ = θ + η∇θE[R(P )], (15)
where θ denotes the parameters of the prompt policy, η is the learning rate, and R(P ) represents the
reward function tailored to task-specific Applications. Similarly, SPARSETT [596] employs sparse
optimization techniques to retain only the most relevant tokens, ensuring computational efficiency.
This refinement process is expressed as:

Psparse = argmin
P
∥P∥0 subject to R(P ) ≥ Rthreshold. (16)

The role of discrete prompts is visually depicted in Figure 7 (Right), highlighting their integration
into the input sequence to guide model outputs effectively. Building on these foundational structures,
adaptation strategies refine how prompts are used to tailor pre-trained models for specific applica-
tions. Task-specific adaptation focuses on tailoring prompts for individual tasks to achieve high
accuracy and efficiency. Techniques such as Prompt Tuning [434], SK-Tuning [529], L-Tuning
[329], XPrompt [434], IDPG [724], Arprompt [683], TPT [717], and SMoP [94] fall into this
category. For instance, Prompt Tuning introduces task-specific embeddings to the input sequence,
enabling precise modulation of the model’s outputs. This can be mathematically expressed as:

y = f(x, Ptask-specific), (17)

with x is the input, and Ptask-specific represents the learned prompt for the specific task. Iterative
approaches like IDPG (Iterative Dual Prompt Generation) [724] refine prompts iteratively over
multiple steps, expressed as:

P (t+1) = P (t) − α∇PL(f(x, P (t))), (18)

where t represents the iteration step, and α is the learning rate.

5.4 Scaling PEFT

Scaling PEFT extends the utility of prompts to handle broader and more complex contexts. A notable
advancement in this area is the Propulsion concept [327], which incorporates polynomial scaling to
dynamically adjust the influence of prompt parameters. This mechanism allows for granular control
over the model’s sensitivity to input features and is mathematically defined as:

V ′
i = [v1 ⊙ zk1 , v2 ⊙ zk2 , . . . , vs ⊙ zks ], (19)

where vi represents the input features, zi are scaling parameters, k is the scaling exponent, and ⊙
denotes element-wise multiplication. The Propulsion method’s architecture is illustrated in Figure 8
(right), showing its attention mechanism modification approach with selective parameter tuning.

5.5 Selective fine-tuning

Selective fine-tuning is an advanced model optimization technique designed to adapt pre-trained
models to specific tasks by modifying only a carefully chosen subset of parameters while keeping
the rest unchanged [325, 775, 250]. Unlike traditional fine-tuning, which updates all parameters
in the model, selective fine-tuning focuses on parameters that are most relevant to the task. This
targeted approach reduces computational costs, mitigates overfitting, and preserves the general-
purpose knowledge embedded in the pre-trained model. By relying on principles such as parameter
importance, sparsity, and structural organization, selective fine-tuning achieves a balance between
efficiency and adaptability, making it an invaluable tool in modern machine learning.

The parameters of a pre-trained model, denoted as θ, are divided into two subsets: θs, the parameters
selected for fine-tuning, and θf , the parameters that remain fixed. The selection of θs is guided by a
criterion C(·), which evaluates the relevance of each parameter to the task. Parameters with relevance
scores exceeding a threshold τ are included in θs, while the rest are assigned to θf . Mathematically,
this can be expressed as:

θs = {θi |C(θi) ≥ τ}, θf = θ \ θs.
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Figure 8: Architecture of a unified hybrid PEFT approach integrating multiple parameter-efficient
fine-tuning strategies within a transformer block (left). Propulsion architecture showing trainable
and frozen components. The design features scaled dot-product attention with selectively tunable
parameters (orange) and frozen weights (blue), enabling efficient fine-tuning through element-wise
multiplication of scaled vectors (right).

The optimization process then focuses on θs, while θf remains unchanged to preserve the pre-trained
knowledge. This process is formalized as:

argmin
θs

L(f(x; θs ∪ θf ), y),

where f(x; θ) represents the model’s output for input x, and L is the task-specific loss function.
Selective fine-tuning often identifies important parameters based on their contribution to the task.
Techniques such as Fisher information, gradient magnitudes, or sensitivity analysis are commonly
used to measure parameter importance. Methods like FishMask [143], Adafish [250], IST [753],
and U-Diff Pruning [199] exemplify this approach.

For example, FishMask [143] uses Fisher information to evaluate the importance of each parameter.
The Fisher information for parameter θi is defined as:

I(θi) = E

[(
∂ log p(x; θ)

∂θi

)2
]
,

where I(θi) quantifies the influence of θi on the model’s predictions, and log p(x; θ) is the log-
likelihood. Parameters with high Fisher information are included in θs, as they have a significant
impact on task performance. Similarly, Adafish [250] dynamically adjusts the selection criteria
during training by analyzing gradient magnitudes, allowing the model to focus on parameters that
are most relevant to the evolving task. As illustrated in Figure 9, this approach utilizes a dual-loop
architecture to iteratively identify and select important parameters based on Fisher information,
enabling more efficient task-specific adaptation.
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Figure 9: Parameter importance selection framework with dual optimization loops. Left: Fine-
tuning loop updating model parameters based on task loss. Center: Layer-wise importance scoring
mechanism with PEFT response suppression. Right: Importance updating loop that samples subset
layers for targeted optimization based on their calculated importance scores.

Unstructured parameter selection focuses on selecting individual parameters independently of their
groupings or positions within the model. This approach is commonly employed in sparsity-based
techniques, such as UBitFit [343], LT-SFT [18], Child-Tuning [742], and PaFi [378].

In Child-Tuning, for instance, the relevance of each parameter is determined using gradient norms:

C(θi) =

∥∥∥∥ ∂L∂θi
∥∥∥∥ ,

where C(θi) is the importance score for parameter θi, and parameters with scores above a threshold τ
are included in θs. This approach ensures that only the parameters that contribute significantly to the
task are updated, enhancing both efficiency and performance. Figure 10 illustrates the unstructured
parameter selection process, showing how individual parameters are identified and updated to achieve
task-specific optimization without disrupting the overall structure of the model.

Structured fine-tuning focuses on updating coherent groups of parameters, such as layers, attention
heads, or blocks, rather than individual parameters. This approach is particularly effective for modular
architectures like transformers, where parameters are hierarchically organized. Methods such as
RoCoFT [325], Far [654], Xattn Tuning [186], X-PEFT with Hard Masking [338], and SURM
[579] adopt this strategy.

In X-PEFT with Hard Masking, a binary mask M is applied to enforce structural constraints during
fine-tuning:

θs = M ⊙ θ,

where M ∈ {0, 1}d represents the mask, ⊙ denotes element-wise multiplication, and d is the number
of parameters. This ensures that only critical components, such as specific layers or blocks, are
updated, while the remaining parameters remain fixed. Similarly, SURM [579] applies domain-
specific masking strategies to align fine-tuning with the structural requirements of the task. Figure 11
(right) illustrates different parameter update patterns in the RoCoFT [325] approach, showing how
selective modification of rows or columns within weight matrices enables efficient fine-tuning while
preserving model coherence.

5.6 Reparameterized PEFT

Reparameterized PEFT methods aim to optimize large-scale pre-trained models by introducing
efficient, low-rank transformations that reduce trainable parameters while preserving task-specific
performance [247, 403, 788, 181]. These methods can be broadly categorized into three groups:
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Figure 10: Sparse Fine-tuning Framework. This diagram illustrates the process of sparse parameter
fine-tuning for language models. Starting with a pretrained model (left), the framework utilizes both
Wikipedia corpora for sparse language fine-tuning (top path) and task-specific datasets for sparse
task fine-tuning (bottom path). The selective parameter updates, represented by colored cells in the
matrices, allow the fine-tuned model (right) to maintain general capabilities while adapting to specific
tasks with minimal parameter changes. The blue cells represent language-related parameters, while
red cells indicate task-specific parameters selected for updating.

Figure 11: Visualization of LoRA and RoCoFT architectures. The first figure (left) illustrates the
architecture of LoRA. The remaining figures depict the RoCoFT variants, including row-wise updates,
column-wise updates, and random updates.

core low-rank decomposition techniques, adaptive and dynamic rank methods, and enhanced LoRA
variants for specific tasks and fine-tuning efficiency. This paper provides a detailed overview of
these methods and their applications in large-scale machine learning models. Reparameterized PEFT
addresses the computational and memory constraints of fine-tuning large-scale models by introducing
low-rank parameterization techniques. These approaches focus on reparameterizing the delta weight
matrix (∆W ) into a low-dimensional form, significantly reducing the number of trainable parameters.
The techniques can be classified into three main categories: core low-rank decomposition, adaptive
and dynamic rank methods, and enhanced LoRA variants tailored for specific tasks.

5.6.1 Low-Rank Decomposition

The foundation of reparameterized PEFT lies in low-rank decomposition, where the parameter
update matrix ∆W ∈ Rd×d is approximated as the product of two low-rank matrices, A ∈ Rd×r and
B ∈ Rr×d, with r ≪ d. Mathematically, this can be expressed as:

∆W ≈ AB (20)

This decomposition reduces the number of trainable parameters from d2 to 2dr, significantly lowering
computational requirements. Methods such as LoRA [247], Compactor [295], Intrinsic SAID [7],
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K Adaption [225], DoRA [403], and LLEmbed [392] build on this concept. For instance, LoRA
constrains the updates to a low-rank subspace, while Compactor introduces sparsity-inducing priors
for further efficiency. Intrinsic SAID optimizes updates using intrinsic dimensionality principles,
and K Adaption dynamically tunes the rank r to align with task-specific requirements, enhancing
flexibility. Figure 11 illustrates the low-rank adaptation approach used in LoRA, demonstrating how
the pretrained weight matrix W ∈ Rd×d is combined with low-rank matrices A and B to form the
final weight matrix h = W · x + BA · x, where B is initialized to zero and A is sampled from a
Gaussian distribution.

This approach is particularly effective for large language models where the full fine-tuning of all
parameters would be prohibitively expensive. By focusing training exclusively on the low-rank
matrices A and B, LoRA achieves comparable performance to full fine-tuning while requiring
only a fraction of the computational resources and storage requirements. The rank r serves as a
hyperparameter that controls the trade-off between model capacity and training efficiency.

5.6.2 Dynamic Rank Methods

While core low-rank decomposition uses a fixed rank r, adaptive and dynamic rank methods adjust
the rank during training to optimize performance and resource usage. Techniques such as DyLoRA
[644] and AdaLoRA [788] dynamically modify r based on gradient information or layer sensitivity:

rt = f(∥∇t∥), t ∈ {1, . . . , T} (21)

where f(·) is a function of the gradient norm ∥∇t∥, and T is the number of training steps. Similarly,
SLORA [139] employs layer-wise rank scheduling, while CapaBoost [598] and AutoLoRA [790]
automate rank selection using task-specific metrics. These methods introduce adaptability, ensuring
efficient resource allocation and improved task performance. Figure 12 illustrates the DyLoRA
approach that dynamically adjusts low-rank updates through block-wise decomposition patterns,
showcasing how parameter updates propagate through the model architecture while maintaining
efficiency.

Figure 12: Visualization of DyLoRA (Dynamic Low-Rank Adaptation), which enhances standard
LoRA by introducing dynamically sampled low-rank blocks. Left: Frozen pretrained weight matrix
W ∈ Rm×d with blocks Wqp and Wkv. Center: Forward pass showing how blocks bi ∼ PB(·) are
sampled and multiplied with corresponding weight matrices. Right: Parameter updates with dynamic
allocation across matrix blocks, enabling more efficient fine-tuning by focusing updates where they
provide the greatest benefit.

DyLoRA extends the standard LoRA framework by introducing block-wise dynamic parameter
allocation, where update resources are distributed based on importance. Rather than applying uniform
low-rank decomposition across all weight matrices, DyLoRA samples blocks bi from a probability
distribution PB(·) and focuses on parameter updates in these regions. This targeted approach allows
the model to concentrate computational resources where they will be most impactful, further reducing
training overhead while maintaining or even improving adaptation quality compared to static low-rank
methods.
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5.6.3 LoRA Variants

Building on the foundational low-rank framework, enhanced variants of LoRA address domain-
specific challenges and improve fine-tuning efficiency. Methods like Laplace LoRA [746], LoRA
Dropout [386], and Predict LoRA [460] introduce regularization and dropout techniques to mitigate
overfitting. For example, Laplace LoRA augments the decomposition with a regularization term:

∆W ≈ AB + λI, λ > 0 (22)

where λ controls the regularization strength. LoRA++ [215], MoSLoRA [720], and LoRA for
Continual Learning [93] are tailored to sequential learning tasks, effectively preventing catastrophic
forgetting. On the other hand, Trans-LoRA [685] and RoseLoRA [675] extend LoRA to transfer
learning scenarios, adapting pre-trained models to new domains through task-specific subspaces.

Further innovations address fine-tuning challenges in low-resource settings. LoRA for Few-Shot
Learning [777], SVDQUANT [370], and Variational LoRA IVON [114] enhance efficiency through
quantization and probabilistic modeling. For example, SVDQUANT performs singular value decom-
position (SVD) followed by quantization, while Variational LoRA incorporates Bayesian principles
to account for uncertainty:

p(W |D) ∝ p(D|W )p(W ), W = W0 +AB (23)

where W0 is the original weight matrix, and AB is the low-rank update. Ensemble methods, such
as MoeLoRA [401], MoLoRA [773], and MixLoRA [359], integrate multiple low-rank models
to improve robustness and generalization. Finally, LoRA Hub [255] consolidates diverse PEFT
strategies into a unified framework, facilitating their application across varied tasks. Figure 13
illustrates dropout regularization techniques applied to LoRA and AdaLoRA, showcasing how
selective parameter dropping during training enhances model robustness and prevents overfitting.

Figure 13: Comparison of dropout regularization strategies for low-rank adaptation methods: Top
- LoRA Dropout applies structured dropout to low-rank matrices A ∈ Rr×n2 and B ∈ Rn1×r

during training, randomly dropping elements along both row and column dimensions; Bottom
- AdaLoRA Dropout extends this concept with matrices P , Λ, and Q, providing more flexible
regularization patterns while maintaining the efficiency benefits of low-rank decomposition. Both
approaches preserve the pretrained weight matrix W ∈ Rn1×n2 while selectively regularizing the
update components.

These dropout techniques strategically disable portions of the low-rank matrices during training,
which serves multiple purposes: preventing co-adaptation of weight updates, improving generalization
by creating an implicit ensemble effect, and further reducing computational demands. In LoRA
Dropout, elements in matrices A and B are randomly zeroed according to dropout patterns along
both dimensions, while AdaLoRA Dropout implements a more sophisticated approach with its
three-matrix decomposition. These regularization methods are particularly valuable for scenarios
where the fine-tuning dataset is limited, as they help prevent the model from simply memorizing
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training examples while maintaining the parameter efficiency that makes low-rank adaptation methods
attractive.

5.7 Hybrid PEFT

Hybrid approaches in PEFT combine multiple fine-tuning strategies, such as LoRA, adapters, and
prompt-tuning, into a unified framework to leverage the strengths of each method. By integrating
these techniques, hybrid approaches provide flexibility, adaptability, and robustness across diverse
tasks. These methods dynamically determine the most suitable combination of strategies to optimize
performance while maintaining efficiency.

For example, the MAM Adapter [217] incorporates memory components into adapters, allowing task-
specific information to be stored and retrieved, thereby enhancing the model’s ability to specialize in
different tasks. Similarly, UniPELT [447] (Unified Parameter-Efficient Language Tuning) integrates
LoRA, prefix-tuning, and adapters within a single framework, enabling the model to switch
dynamically between strategies depending on the task. Another prominent method, RoSA (Rank-
Ordered Subspace Adaptation) [490], prioritizes the most significant subspaces of parameters for
fine-tuning. This is achieved by rank-ordering parameters and selecting the top-ranked ones for
updates:

θs = {θi | rank(θi) ≤ k},
where k is the threshold for the top-ranked parameters.

Hybrid approaches often use a weighted combination of parameter updates:

θhybrid =

n∑
i=1

αiθi,

where αi represents the dynamically adjusted weight for the i-th strategy, and n is the number of
integrated strategies. This framework allows hybrid methods to balance computational efficiency
with task-specific adaptability.

Additional methods such as S4 [75], NOAH [795], Auto PEFT [813], LLM Adapter [254], SH-
PEFT [400], Hyper PELT [797], and Hydra [313] extend the versatility of hybrid approaches by
automating strategy selection, focusing on structured sparsity, or incorporating multi-headed designs
for enhanced flexibility. Figure 8 (left) illustrates the architecture of a unified hybrid approach,
demonstrating how multiple parameter-efficient fine-tuning methods can be integrated within a single
transformer block.

This unified architecture elegantly combines the strengths of multiple PEFT approaches: Adapters
provide sequential transformation through bottleneck architectures, Prefix-tuning prepends learnable
vectors to modify attention patterns, and LoRA applies low-rank updates to weight matrices. The
inclusion of gating mechanisms (GA, GP , GL) enables the model to dynamically weight the contri-
bution of each method based on task requirements. This hybrid design achieves superior performance
by leveraging complementary benefits: Adapters excel at capturing task-specific transformations,
Prefix-tuning provides efficient context modification, and LoRA delivers parameter-efficient weight
adjustments. The unified approach not only improves task performance but also enhances transfer
learning capabilities across diverse domains while maintaining the parameter efficiency that makes
PEFT methods attractive for resource-constrained environments.

5.7.1 MoE-Based

An emerging class of Mixture-of-Experts (MoE)-based PEFT methods extends low-rank adaptation
by incorporating expert routing mechanisms that dynamically select or combine multiple low-rank
modules during training or inference. These methods aim to improve model specialization and
generalization across diverse tasks while maintaining parameter efficiency. Formally, the update
matrix ∆W is expressed as a weighted sum of expert-specific low-rank transformations:

∆W =

n∑
i=1

αiAiBi,

n∑
i=1

αi = 1 (24)

where AiBi represents the i-th low-rank expert, and αi is a gating coefficient determined by the
MoE router. This formulation enables input-dependent specialization by activating only the most
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relevant subset of experts, reducing computational overhead while enhancing adaptability. Several
MoE-based methods have been proposed to leverage this framework. MoE LoRA [401] introduces a
learned gating mechanism to select among multiple LoRA experts, facilitating dynamic specialization
across inputs. MixLoRA [359] combines several LoRA modules through task-aware mixture
weights, improving robustness and domain generalization. MoLoRA [773] routes tokens to different
LoRA experts at each transformer layer, enabling fine-grained control over parameter updates.
MOA (Mixture of Adaptations) [169] generalizes this idea by integrating multiple adaptation
strategies—such as LoRA, adapters, and prefix tuning—within a unified routing framework. Finally,
MoLE (Mixture of Low-rank Experts) [720] consolidates several low-rank experts and selects
them dynamically based on input features, enhancing scalability and performance in multi-task and
low-resource settings. Figure 14 illustrates the taxonomy and relationships among MoE-based PEFT
methods, highlighting how they extend traditional low-rank approaches with modular, expert-driven
architectures to support efficient, task-adaptive fine-tuning.

Figure 14: Illustration of a Mixture-of-Experts (MoE) feedforward network layer with gated expert
selection. The input X is routed to multiple feedforward sub-networks (experts), labeled as FFN1
through FFN4. A gating mechanism computes routing weights to determine which subset of experts
to activate for a given input. In this example, two experts (FFN2 and FFN3) are selected and their
outputs are weighted and combined. The result is added to the residual connection and passed through
a normalization layer to produce the final output Y . This structure enables conditional computation,
enhancing model capacity while maintaining computational efficiency.

6 Experiments

6.1 GLUE Benchmark Performance Comparison:

We conducted a comprehensive evaluation of various PEFT methods across the General Language
Understanding Evaluation (GLUE) benchmark [660] using both RoBERTaBase and RoBERTaLarge
models [413]. The GLUE tasks include a diverse range of linguistic challenges, such as single-
sentence classification (CoLA and SST-2), sentence-pair classification (MRPC, QQP, MNLI, QNLI,
and RTE), and regression-based semantic similarity (STS-B). For evaluation, we employed standard
metrics: Matthews Correlation Coefficient (MCC) for CoLA, accuracy for SST-2, accuracy and F1
score for MRPC and QQP, Pearson and Spearman correlations for STS-B, and accuracy for MNLI,
QNLI, and RTE. This analysis aimed to determine the trade-off between model performance and
parameter efficiency across established and novel PEFT techniques, including the recently introduced
SK-Tuning method.

Table 1 presents a comprehensive evaluation of various parameter-efficient fine-tuning (PEFT)
methods on the GLUE benchmark using RoBERTaBase and RoBERTaLarge models. Full fine-tuning
(FT), which updates all model parameters, consistently yields strong performance across all tasks but
incurs high computational and memory costs. It serves as a performance upper bound for assessing
the efficiency of PEFT techniques.
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PEFT Method # TTPs CoLA SST2 MRPC STS-B QQP MNLI QNLI RTE
RoBERTaBase

FT 124.6M 59.84 92.89 85.24/88.18 90.48/90.16 90.18/87.02 86.27 91.17 72.43
AdapterS 7.41M 61.53 94.11 89.81/90.85 90.25/90.09 89.81/86.90 86.27 92.06 73.56
Prompt tuning 0.61M 49.37 92.09 70.83/81.72 82.44/83.11 82.99/78.35 80.57 80.03 58.12
Prefix-tuning 0.96M 59.31 93.81 84.25/85.03 88.48/88.32 87.75/84.09 85.21 90.77 54.51
(IA)3 0.66M 58.58 93.92 83.00/85.52 90.30/90.32 87.99/84.10 83.95 90.88 71.12
BitFit 0.083M 61.32 93.12 87.22/88.41 90.34/90.27 88.12/84.11 84.64 91.09 77.98
LoRA 0.89M 60.09 93.31 86.50/88.68 90.66/90.47 88.83/85.21 86.54 92.02 74.92
AdaLoRA 1.03M 59.82 93.92 86.49/88.03 90.83/90.73 88.58/84.98 86.26 91.43 76.04
MAM Adapter 1.78M 58.34 94.24 87.31/88.21 90.74/90.42 88.31/83.20 86.63 90.19 72.62
PROPETLAdapter 1.87M 64.24 93.85 87.15/87.82 90.33/90.64 89.22/85.79 86.49 91.56 75.54
PROPETLPrefix 10.49M 60.11 93.63 86.73/87.98 90.30/90.19 88.54/85.05 86.22 91.51 63.31
PROPETLLoRA 1.77M 57.94 94.11 87.42/88.87 90.66/90.35 88.90/85.55 86.83 92.04 67.39
MoSLoRA 1.67M 60.57 93.95 86.74/87.98 90.05/89.43 88.76/85.62 87.84 90.60 75.10
LoRA-XS 0.26M 58.49 93.19 86.65/87.49 89.60/89.33 87.13/84.31 85.34 90.42 76.24
VeRA 0.043M 60.35 93.89 86.01/87.88 89.27/89.41 87.88/85.65 85.64 90.22 75.32
LoRAFA 0.44M 60.49 93.65 88.18/89.98 90.70/90.66 88.90/85.46 86.11 91.42 76.11
SFT 0.90M 64.45 94.28 87.74/88.64 89.37/89.12 87.24/85.11 86.64 92.11 78.42
Diff Pruning 1.24M 62.45 93.77 88.00/89.21 89.72/90.02 88.62/85.54 85.32 92.14 77.90
RoCoFT1-Row 0.083M 60.18 94.06 87.74/88.48 90.70/90.47 88.49/85.35 85.23 90.70 76.61
RoCoFT3-Row 0.249M 63.53 94.92 87.71/88.74 90.89/90.49 88.97/85.80 86.73 92.12 78.31
RoCoFT1-Column 0.083M 60.32 93.88 88.38/89.78 90.23/90.14 88.46/85.84 85.35 90.58 76.74
RoCoFT3-Column 0.249M 62.95 94.69 89.18/90.94 90.85/90.45 88.86/85.38 86.76 91.89 75.21
Propulsion1-Row 0.086M 61.76 93.18 89.34/85.99 90.37/89.92 89.11/86.53 86.41 91.79 75.66
Propulsion3-Row 0.258M 63.21 94.35 87.28/86.12 90.29/90.04 89.42/86.84 87.12 91.56 76.92
PropulsionAttn 0.028M 58.51 92.03 89.01/85.14 89.36/89.96 86.73/84.80 85.13 89.89 75.02
SK-Tuning (Prompt) 0.60M 60.21 93.88 89.73/92.47 91.30/90.19 87.83/85.82 86.24 92.60 76.91
SK-Tuning (Prefix) 0.84M 61.83 93.72 87.21/88.04 90.11/89.92 88.67/87.12 85.83 92.09 75.32

RoBERTaLarge
FT 355.3M 65.78 95.50 92.22/94.28 91.74/91.96 90.83/88.68 89.21 93.19 81.40
AdapterS 19.77M 65.33 96.37 89.88/90.23 92.58/92.42 91.19/87.11 91.00 94.31 85.25
Prompt-tuning 1.07M 61.13 94.61 73.04/76.29 78.51/78.99 80.74/75.16 68.15 89.13 60.29
Prefix-tuning 2.03M 59.01 95.76 88.24/89.37 90.92/91.07 88.88/85.45 89.30 93.32 74.01
(IA)3 1.22M 61.15 94.61 86.45/87.53 92.22/86.25 89.45/86.25 88.63 94.25 81.23
BitFit 0.222M 67.01 96.10 90.93/92.13 91.93/93.38 89.48/86.43 89.98 94.47 87.73
LoRA 1.84M 64.47 96.67 87.50/88.19 91.66/91.44 90.15/86.91 90.76 95.00 79.78
AdaLoRA 2.23M 65.85 94.95 89.46/90.34 92.05/91.80 89.60/86.30 90.36 94.62 77.98
MAM Adapter 4.20M 67.39 95.81 90.12/92.07 92.44/92.18 90.87/86.65 90.62 94.31 86.62
PROPETLAdapter 5.40M 65.55 96.27 89.71/91.15 91.92/91.67 90.67/87.74 91.37 94.80 87.69
PROPETLPrefix 26.85M 62.24 96.17 90.04/91.92 90.70/90.49 89.30/86.30 90.33 94.73 79.71
PROPETLLoRA 4.19M 61.90 95.93 87.31/89.87 91.66/91.38 90.93/88.05 90.53 94.93 83.57
MoSLoRA 3.23M 67.27 96.17 89.96/92.67 90.97/91.72 90.12/87.68 90.29 94.73 82.41
RoCoFT1-Row 0.222M 65.70 96.63 89.97/90.79 91.81/92.07 90.17/86.15 90.73 94.20 85.31
RoCoFT3-Row 0.666M 67.39 96.69 91.05/92.19 92.10/92.10 90.82/86.11 90.98 94.85 87.83
RoCoFT1-Column 0.222M 64.89 96.60 89.12/90.24 91.96/92.10 90.17/85.83 90.81 94.17 85.71
RoCoFT3-Column 0.666M 67.18 96.67 89.88/91.47 92.52/92.31 91.38/87.12 91.13 94.85 87.82
Propulsion1-Row 0.225M 64.53 95.10 90.47/88.85 91.78/91.58 92.26/88.91 90.52 95.34 85.30
Propulsion3-Row 0.675M 67.12 96.68 91.15/92.07 91.68/91.81 91.96/87.84 91.42 95.12 88.28
PropulsionAttn 0.073M 62.31 94.02 89.78/87.95 90.16/90.86 88.02/86.19 89.54 94.00 83.07
SK-Tuning (Prompt) 1.02M 67.13 96.43 91.10/93.22 90.54/90.11 92.10/88.73 90.42 95.42 87.11
SK-Tuning (Prefix) 1.94M 66.33 96.08 90.96/93.09 91.87/90.68 90.23/87.93 89.97 96.10 86.99

Table 1: RoBERTa models performance on GLUE tasks: Metrics used are MCC for CoLA, accuracy
for SST-2, accuracy/F1 score for MRPC and QQP, Pearson/Spearman correlations for STS-B, and
accuracy for MNLI, QNLI, and RTE.

Among the PEFT baselines, AdapterS, BitFit, and LoRA perform remarkably well. For example,
BitFit (0.083M parameters) achieves 77.98% on RTE and 93.12% on SST-2, rivaling full fine-tuning.
LoRA (0.89M) consistently outperforms most early PEFT methods and even FT in certain tasks, such
as MNLI and QNLI. AdapterS also demonstrates strong performance, particularly with RoBERTaLarge,
scoring 96.37% on SST-2 and 85.25% on RTE.

Prompt-tuning and Prefix-tuning, while highly parameter-efficient (under 1M parameters), generally
underperform on tasks requiring fine-grained semantic understanding, such as MRPC, STS-B, and
RTE. This highlights their limited expressive capacity despite their minimal footprint.

Advanced LoRA-based methods such as AdaLoRA, MoSLoRA, and LoRAFA improve per-
formance further. AdaLoRA, for instance, achieves 76.04% on RTE and 90.83% on STS-B with
RoBERTaBase, indicating the benefit of adaptive low-rank decompositions. MoSLoRA (1.67M)
performs particularly well on MNLI (87.84%) and QNLI (90.60%), suggesting it captures diverse
token-level information more effectively.

The RoCoFT and Propulsion families deliver better results among compact methods. RoCoFT3-Row
and RoCoFT3-Column attain scores close to or exceeding FT on several tasks. Notably, RoCoFT3-Row
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reaches 78.31% on RTE and 94.92% on SST-2, with only 0.249M parameters. Similarly,
Propulsion3-Row matches or surpasses strong baselines, achieving 76.92% on RTE and 94.35%
on SST-2 with just 0.258M parameters. Even ultra-light versions like PropulsionAttn (0.028M) score
competitively on tasks like STS-B and MRPC.

SK-Tuning, a recent method that integrates semantic knowledge into prompt and prefix tuning,
demonstrates robust performance. SK-Tuning (Prompt) with 0.60M parameters achieves 92.60% on
QNLI and 76.91% on RTE, outperforming traditional prompt-based approaches. Its prefix variant
also performs well across all tasks, suggesting that semantically-aware prompting offers a powerful
alternative for low-resource fine-tuning.

Finally, comparing across model sizes, PEFT methods applied to RoBERTaLarge typically outperform
their RoBERTaBase counterparts by a significant margin. For instance, RoCoFT3-Row achieves 87.83%
on RTE with RoBERTaLarge, compared to 78.31% with RoBERTaBase, highlighting the scaling benefits
of PEFT with larger backbones.

In summary, modern PEFT methods—particularly LoRA-based variants, RoCoFT, Propulsion, and
SK-Tuning—approach or even surpass full fine-tuning performance on many GLUE tasks while
drastically reducing the number of updated parameters. This makes them highly attractive for efficient
and scalable deployment of large language models in both academic and production settings.

6.2 LLM Reasoning PEFT Comparison :

Method # TTPs BoolQ PIQA SIQA H.Sw. W.Gra. ARCe ARCc OBQA M.Ar. G.8K A.S. Sing.Eq S.MP
BLOOM7B

Prefix 33.37M 58.53 62.24 65.41 48.32 66.63 68.13 49.32 63.51 78.41 66.45 67.52 66.94 49.10
AdaLoRA 24.88M 66.94 74.68 72.49 55.89 68.30 73.21 56.59 72.85 79.43 70.25 68.93 70.93 53.89

(IA)3 19.34M 63.30 73.33 71.01 52.50 71.60 69.45 54.14 68.60 78.90 71.17 70.33 70.84 53.95
LoRA 24.22M 65.89 73.92 73.33 56.65 71.39 73.46 57.15 72.31 79.50 70.93 70.90 70.59 54.85

RoCoFT3-Row 13.37M 66.33 74.53 73.56 56.60 72.14 73.29 57.48 72.92 79.76 70.94 70.95 70.90 54.42
RoCoFT3-Column 13.37M 66.34 74.64 71.12 55.93 72.50 73.11 57.19 72.90 79.72 71.05 70.88 70.76 54.38

Propulsion 13.37M 66.38 74.63 73.62 57.25 72.33 73.09 57.61 73.12 79.36 70.95 70.92 71.22 53.52
GPT-J6B

Prefix 27.83M 62.28 65.04 67.72 44.15 63.71 63.59 46.47 58.31 83.12 67.44 75.25 78.46 49.12
AdaLoRA 20.77M 65.19 67.58 71.22 45.16 66.03 64.10 47.75 63.92 88.51 73.45 80.21 83.03 56.14

(IA)3 16.61M 63.17 68.51 68.97 45.79 66.06 62.42 45.32 65.42 89.51 72.04 80.50 81.50 55.43
LoRA 20.02M 65.50 68.63 69.46 45.60 66.80 65.56 46.81 63.82 88.30 72.82 80.60 81.24 56.73

RoCoFT3-Row 11.62M 65.92 68.53 69.90 45.97 66.87 64.91 45.12 65.07 89.45 72.80 80.45 82.12 56.79
RoCoFT3-Column 11.62M 65.12 68.22 69.96 45.98 66.78 64.89 45.70 64.81 89.74 72.24 80.23 82.61 56.70

Propulsion 11.62M 65.97 68.05 69.96 45.99 66.18 64.45 46.95 64.56 89.19 72.82 81.41 81.42 56.68
LLama-27B

Prefix 33.53M 67.33 79.46 75.80 76.04 72.11 71.67 57.33 69.98 84.18 68.47 81.04 80.00 52.17
AdaLoRA 24.90M 67.03 80.69 76.06 88.85 76.47 76.50 61.36 74.22 89.81 77.07 86.70 83.01 60.25

(IA)3 19.42M 69.02 78.10 78.00 87.57 76.78 75.48 60.54 74.02 90.20 76.13 86.55 83.70 59.16
LoRA 24.30M 69.89 79.37 76.15 88.86 77.54 76.54 60.55 74.63 90.13 75.68 84.67 82.14 59.94

RoCoFT3-Row 13.47M 69.36 80.01 78.09 87.28 76.73 76.46 60.55 75.55 90.37 76.12 86.66 82.75 59.92
RoCoFT3-Column 13.47M 69.32 80.08 77.99 87.46 76.41 76.46 60.59 74.90 90.42 77.35 86.16 82.48 60.35

Propulsion 13.47M 68.99 79.47 77.02 76.73 76.06 76.64 61.29 74.76 90.21 77.57 85.63 82.60 60.51
LLama-213B

Prefix 61.97M 68.38 80.99 77.80 80.00 76.35 77.62 61.32 72.94 87.22 71.09 84.09 81.28 58.25
AdaLoRA 45.04M 71.71 82.55 78.88 91.60 83.01 83.04 67.33 81.76 90.55 80.19 87.00 87.10 66.03

(IA)3 36.02M 71.39 83.33 78.32 92.40 83.24 83.34 66.43 80.99 91.88 79.24 88.16 87.08 67.03
LoRA 44.94M 71.19 83.99 79.15 91.86 83.24 83.35 67.05 81.37 91.27 78.90 86.89 86.07 65.85

RoCoFT3-Row 24.88M 71.46 83.32 79.54 91.86 83.22 83.65 67.12 81.54 90.69 79.70 88.24 87.28 66.60
RoCoFT3-Column 24.88M 71.44 83.52 79.50 91.84 83.20 83.39 67.06 81.73 91.46 79.63 88.11 87.58 66.63

Propulsion 24.88M 71.93 83.12 79.01 90.73 83.60 83.44 67.64 81.38 90.91 78.71 87.64 87.11 66.67

Table 2: Accuracy comparison of commonsense and mathematical reasoning performance across
different PEFT methods using LLMs.

Table 2 provides a detailed comparison of PEFT methods on a diverse set of reasoning
tasks—including commonsense (BoolQ [103], PIQA [47], SIQA [568], HellaSwag [778], Wino-
Grande [563], ARCe [105], ARCc [105], OBQA [466]) and mathematical/logical reasoning (MathQA
[15], GSM8K [111], Arithmetic Sequence (A.S.) [240], SVAMP [513], and SingleEq [321]). The
analysis spans four large language models (LLMs): BLOOMZ7B [712], GPT-J6B [663], LLaMA-27B
[633], and LLaMA-213B [633]. We observe consistent patterns in performance improvements across
PEFT methods and models.

Across all LLMs, full prefix tuning serves as a baseline and generally underperforms compared to
more advanced PEFT methods, despite using a relatively large number of trainable parameters (e.g.,
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61.97M for LLaMA-213B). In contrast, AdaLoRA, (IA)3, and LoRA deliver substantial gains in
reasoning benchmarks while reducing the parameter budget by 25–40%. Notably, AdaLoRA achieves
robust results across most tasks, particularly with LLaMA-213B, scoring 91.60% on HellaSwag,
83.01% on WinoGrande, and 66.03% on SingleEq.

RoCoFT and Propulsion, both low-rank, structure-aware fine-tuning strategies, consistently match
or outperform other PEFT baselines with significantly fewer trainable parameters. For example,
RoCoFT3-Row and Propulsion, each with only 13.37M parameters on BLOOMZ7B, outperform
both AdaLoRA and LoRA on multiple tasks such as PIQA (74.63%) and SIQA (73.62%), while
maintaining comparable scores on MathQA, GSM8K, and SVAMP. On GPT-J6B, RoCoFT and
Propulsion similarly demonstrate improvements over LoRA, especially on arithmetic and symbolic
reasoning benchmarks like AquaRat and SVAMP, reflecting their potential to capture deeper reasoning
patterns with minimal parameter cost.

With LLaMA-27B, performance increases across the board. LoRA and RoCoFT3-Row show strong
results on difficult commonsense tasks such as HellaSwag (88.86% and 87.28%) and ARCc (60.55%
for both). Meanwhile, Propulsion achieves near-competitive results (e.g., 77.57% on GSM8K) while
maintaining efficiency. This further supports that structural PEFT methods can scale well to larger
models without compromising generalization ability.

The LLaMA-213B model yields the highest overall accuracy, with all PEFT methods outperforming
their smaller model counterparts. RoCoFT3-Row and Propulsion reach peak performance on SIQA
(79.54%), HellaSwag (91.86%), and OBQA (81.54%), matching or exceeding AdaLoRA despite
requiring nearly half the trainable parameters. For mathematical reasoning tasks like GSM8K and
AquaRat, (IA)3 and Propulsion offer strong performance, indicating that selective structural adaptation
helps retain precision in arithmetic operations and symbolic pattern generalization.

In summary, while classical methods such as LoRA and AdaLoRA continue to perform strongly,
newer PEFT techniques like RoCoFT and Propulsion demonstrate impressive performance-per-
parameter efficiency across a wide range of reasoning tasks and model sizes. These approaches
not only reduce computational costs but also scale robustly with model size, making them ideal for
fine-tuning large LLMs on complex reasoning domains in real-world applications.

7 Applications

Figure 15: The figure depicts a Propulsion into ChatLLM framework. Token-type embeddings handle
multi-turn dialogue, while a reparameterization mechanism modulates activations via element-wise
multiplication for efficient adaptation in tasks like instruction tuning and personalization.
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7.1 PEFT in NLP

PEFT techniques have been widely adopted across a range of NLP applications, offering an efficient
way to adapt large language models (LLMs) to task-specific Applications without incurring the
high cost of full fine-tuning. In text classification tasks such as sentiment analysis [699, 456, 615,
459, 60, 262, 390, 135], spam detection [117, 283, 449, 662, 731, 666], and topic categorization
[600, 292, 815, 812, 533], PEFT methods allow models to be fine-tuned on relatively small labeled
datasets while retaining strong performance, particularly in low-resource or domain-specific settings.
For sequence generation tasks like text summarization [411, 704, 155, 622, 179, 246, 2], information
extraction [528], and machine translation [669, 419, 320, 263, 303, 722], PEFT enables the model to
adapt to domain-specific vocabulary and style, achieving competitive results with a fraction of the
training parameters.

In dialogue systems, especially in multi-turn chat applications [367, 792, 339, 293, 677], PEFT plays
a crucial role by enabling LLMs to handle evolving context and intent across conversation turns.
Notably, PEFT has been integrated into frameworks like ChatLLM [326, 213, 553], where it supports
efficient training and deployment of chat models by modifying only selected parameters—such
as adapters or token embeddings—while keeping the core model frozen. This allows for rapid
customization to different user personas, use-cases, or industries (e.g., healthcare, customer support)
without retraining the entire model.

PEFT is also instrumental in instruction tuning and prompt-based learning, where models are aligned
to follow specific instructions or exhibit desired behavioral traits. In few-shot and zero-shot scenarios,
PEFT enables effective model adaptation with very limited examples. Furthermore, in multi-task
and cross-lingual NLP setups [85, 553, 213, 116], PEFT allows a single LLM to be fine-tuned for
multiple tasks or languages using task-specific adapters, thus promoting parameter sharing and
memory efficiency.

An overview of this architecture is shown in Figure 15, where the Propulsion method [327] is
integrated into the ChatLLM framework [326, 213] for training chat models with LLMs.

Additionally, we present a comprehensive summary of PEFT methods applied in NLP tasks across
various LLMs and datasets in Tables 5, 6, 7, 8, 9, 10, 11, and 12.

Overall, PEFT has become a cornerstone of practical NLP development, making the deployment
of powerful LLMs feasible for a wide variety of real-world applications and resource-constrained
environments.

Figure 16: Diagram Description: The figure demonstrates a pipeline where vision embeddings (from
SigLIP) are projected into the LLM input space via trainable layers. The model processes varying
visual contexts (e.g., a cat or a natural scene) to produce structured language outputs, suitable for
captioning, summarization, and vision-grounded reasoning.
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7.2 PEFT in Vision

PEFT has also gained significant traction in computer vision, where large vision models—such
as Vision Transformers (ViTs) [146] and large-scale convolutional neural networks (CNNs) [441,
326, 70] —are increasingly being adapted to diverse downstream tasks. In image classification
[686, 420, 77, 543], PEFT enables efficient domain adaptation by allowing models pretrained on
large datasets like ImageNet [672] to be fine-tuned on task-specific or domain-specific datasets
(e.g., medical imaging [296, 245, 588, 40, 180, 612], satellite imagery [50, 33, 123, 268, 544])
with minimal additional parameters. This is particularly valuable in cases where data is scarce or
computational resources are limited.

In object detection [824, 804, 16, 509] and instance segmentation [301], PEFT techniques such as
adapter-based tuning or bias tuning have been applied to integrate task-specific knowledge into large
vision backbones like DETR and Mask R-CNN [188, 218, 41]. This allows the base detection models
to be repurposed for new object categories or specialized detection tasks (e.g., autonomous driving
[772, 356, 452, 259, 58, 61], surveillance [643, 316, 156, 157, 120, 474]) without the need to retrain
all parameters.

PEFT has also shown promise in vision-language tasks such as image captioning [300, 763, 238],
visual question answering (VQA) [289, 20, 718, 192], and referring expression comprehension,
where it helps adapt multimodal models like BLIP [366, 360, 57], Flamingo [11, 92, 453], and CLIP
[121, 206, 585, 605] to specific domains or tasks. In such multimodal setups, PEFT modules can be
injected into either the visual encoder, the language decoder, or their cross-attention layers to steer
the joint representation learning efficiently.

Furthermore, PEFT facilitates continual learning in vision [734], enabling models to incorporate
new classes or tasks incrementally without catastrophic forgetting. In few-shot and zero-shot image
classification scenarios, PEFT makes it feasible to quickly adapt models with very limited supervision
[310, 417, 235, 234, 498, 706].

As an example, PEFT techniques have enabled the integration of frozen visual encoders, such as
SigLIP [781, 637], with pretrained LLMs for language-guided visual reasoning tasks. Similar to the
X2L framework shown in Figure 16, the key innovation lies in the use of a lightweight two-layer
multilayer perceptron (MLP) and a projection matrix Pθ, trained to convert visual features into a
token-compatible format that can be understood by the LLM. This visual adapter module performs
the necessary transformation without altering the vision encoder or language model, significantly
reducing the number of parameters requiring training. This parameter-efficient approach supports
diverse input formats—including static images, video frames, and multi-image sequences—making it
highly suitable for tasks like temporal visual reasoning, multi-image comparison, and descriptive
captioning. By grounding image features into a language-aligned semantic space, this PEFT-driven
architecture ensures generalizability across domains and tasks without necessitating re-training of
foundational models.

We present a comprehensive summary of PEFT methods applied in vision tasks across various LLMs
and datasets in Tables 5, 6, 7, 13, and 14.

7.3 PEFT in Multimodal Learning

PEFT has become increasingly important in multimodal learning, where models process and integrate
information from multiple input modalities—such as vision [561, 650, 25, 710, 134, 174, 768],
language [113, 711, 214, 377, 118], audio [83, 37, 171, 119, 290, 112, 692], and video [542, 594,
361, 679, 237, 431, 682]. Modern multimodal architectures, like CLIP [121, 206, 585, 605], Flamingo
[11, 92, 453], BLIP [366, 360, 57], PaLI [84], and Video-LLaMA [784], typically consist of large
pretrained encoders and decoders spanning both visual and textual domains. Fine-tuning these
models entirely is computationally expensive and memory-intensive, especially when adapting to new
modalities, tasks, or domains. PEFT addresses this challenge by introducing lightweight, task-specific
modules—such as adapters, low-rank matrices, or reparameterized prompts—into selected parts of
the multimodal pipeline, allowing efficient and scalable adaptation.

In vision-language tasks like image captioning [300, 763, 649, 754, 546], visual question answering
(VQA) [192, 300, 763, 238], and cross-modal retrieval [805, 680, 664, 688, 702, 168, 284], PEFT
modules are often injected into the cross-attention layers between vision and text components,
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Figure 17: This figure outlines an X2L (Cross-modal to Language) framework where modality-
specific encoders feed into lightweight adapters, which in turn align with a frozen LLM. Example
outputs demonstrate cross-lingual generation grounded in images, videos, and speech, showcasing
real-world applicability in multilingual and multimedia environments.

enabling the model to learn task-specific alignments without modifying the full backbone. Similarly,
in video-language models used for tasks such as video QA [749, 779, 769, 95, 308, 349], temporal
grounding [87, 383, 477, 350, 697, 798, 196], and action recognition [322, 270, 606, 676, 271, 231,
64], PEFT enables efficient fine-tuning on long video sequences by adapting only certain projection
or fusion layers while freezing the majority of the vision encoder and language decoder.

Multimodal instruction tuning is another growing area where PEFT is heavily used, especially for
aligning models to follow visual and language instructions together. In models like InstructBLIP
[505, 690] and MiniGPT-4 [819, 755, 770, 23, 26], PEFT techniques allow fast customization
to downstream multimodal tasks such as referring expression comprehension, image editing via
text commands [54, 323, 162, 342, 572], and multimodal dialogue [285, 636, 379, 287, 659], all
with limited supervision. Moreover, in low-resource or domain-specific settings (e.g., medical
image–report generation or surveillance video QA), PEFT allows multimodal models to generalize
effectively by training only a small subset of parameters.

As demonstrated in Figure 17, each modality—whether vision, audio, or text—is processed by a
frozen encoder, such as SigLIP [781, 637] for images or pretrained audio models for speech. These
encoders generate modality-specific embeddings, which are aligned into a shared latent space using
transformer modules like Q-Former for visual features and C-Former for speech. Instead of re-training
these components, PEFT introduces modality-specific lightweight adapters—namely, I-Adapter
(image), V-Adapter (video), and S-Adapter (speech)—which serve as narrow bottleneck modules
for mapping each modality’s features into a unified token stream consumable by a frozen LLM.
This approach localizes the adaptation to specific components, enabling the model to support cross-
modal reasoning and generation tasks, such as bilingual captioning or voice-command interpretation,
without degrading performance on prior capabilities. The decoupled design makes it possible to
incrementally expand the system to new modalities with minimal overhead, exemplifying PEFT’s
utility in extensible and memory-efficient architectures.

7.4 PEFT in Robotics

In robotics, PEFT is increasingly being used to adapt large pretrained models—particularly vision-
language and policy models—for control [433, 573, 803], perception [730, 499, 635, 483, 745, 725,
565], and decision-making tasks [297, 8, 473, 638, 640, 468] in physical environments. Robotics
systems often require integrating visual input, natural language instructions, and low-level control
signals to perform complex tasks in real-world settings. However, fine-tuning large multimodal
models for each specific robot, environment, or task is often impractical due to computational and
data constraints. PEFT provides a practical solution by allowing targeted fine-tuning of small subsets
of parameters, such as adapters or low-rank projections, while keeping the majority of the base model
frozen.

33



Figure 18: The figure presents various real-world robotic use cases, such as cooking, object sorting,
and visual Q & A, all mediated through a unified LLM that integrates perception and control. By
interpreting complex queries and translating them into actionable steps, the model exemplifies the
future of grounded language understanding in robotics.

For instance, in vision-language-action models used in imitation learning and instruction following,
PEFT enables adaptation to new environments or unseen tasks with minimal retraining. Techniques
like LoRA [247, 133, 608, 49] or adapter tuning [421, 222, 789, 344] have been successfully applied
in models such as RT-2 [53, 823] and SayCan [9], where robots are guided by high-level language
commands grounded in visual context. PEFT also facilitates domain adaptation—e.g., transferring
policies trained in simulation to the real world (sim-to-real)—by fine-tuning lightweight modules on
real-world data without the need to retrain the entire policy network [158, 147, 24, 521, 714, 317, 550].

In embodied AI, where agents interact with their surroundings via sensors and actuators (e.g.,
navigation, manipulation, object fetching), PEFT allows for task- or goal-specific adaptation by
introducing small trainable components into large pretrained transformers or diffusion policies
[243, 201, 126, 548, 549]. These approaches help maintain generalization across environments while
allowing fast adaptation to new robotic skills with limited data. Moreover, in multi-robot or multi-task
scenarios, PEFT promotes modularity and parameter sharing, enabling efficient scalability across
hardware platforms and task sets.

As illustrated in Figure 18, although current implementations like PaLM-E [149] are not explicitly
PEFT-based, their architecture—a frozen LLM processing tokenized streams of language prompts,
visual inputs, and proprioceptive data—lends itself well to PEFT augmentation. The figure demon-
strates various real-world robotic applications including mobile manipulation, tabletop tasks, and
motion planning, all unified through a central language model. In such systems, PEFT can be applied
through LoRA (Low-Rank Adaptation) modules designed for specific output heads, or by introducing
lightweight adapters that facilitate fusion of proprioceptive information. These adaptations would
allow the robot to learn task-specific motor commands, such as “grasp,” “rotate,” or “navigate,” with
high efficiency and without retraining the entire network. This is particularly advantageous in robotic
environments, where data is sparse and tasks are dynamic, requiring continual learning without
compromising previously acquired behaviors. Through the integration of PEFT modules, robotics
systems can achieve lifelong learning capabilities, extending their utility across diverse operational
contexts with minimal retraining cost.

8 Complexity of PEFT Methods

Table 3 provides a detailed comparison of various PEFT methods based on their space and time
complexity, as well as the total number of trainable parameters (TTPs) and additional parameters
(APs) introduced during fine-tuning. Traditional full fine-tuning (FT) modifies all parameters of the
model, resulting in a quadratic complexity of O(d× d) in both space and time, with a high memory
footprint and zero additional modularity.

Adapter-based methods such as (IA)3 reduce the fine-tuning burden by introducing small modules
within the transformer layers, yielding linear complexity and maintaining trainable parameter counts
at 3d. Soft prompt-based methods, like Prompt and Prefix tuning, encode task-specific knowledge
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Category Method Space Complexity Time Complexity TTPs APs

Full Fine-Tuning FT (Full Fine-Tuning) O(d× d) O(d× d) d2 0

Adapter-Based Fine-Tuning (IA)3 O(lk + lv + lff ) O(dk + dv + dff ) 3d 3d

Soft Prompt-Based Prompt O(d× lp) O(d× lp) lpd lpd
Soft Prompt-Based Prefix O(L× d× lp) O(L× d× lp) Llpd Llpd

Structured Fine-Tuning LoRA O((d+ d)× r) O((d+ d)× r) 2dr dr
Structured Fine-Tuning LoRA-FA O((d+ d)× r) O((d+ d)× r) dr 2dr

Adaptive Rank Methods AdaLoRA O((d+ d+ r)× r) O((d+ d+ r)× r) 2dr + r2 2dr + r2

Hybrid Approach LoHA O(2r × (d+ d)) O(2r × (d+ d)) 4dr 4dr

Low Rank Decomposition RoCoFT (Row) O(d× r) O(d× r) rd 0
Low Rank Decomposition RoCoFT (Column) O(d× r) O(d× r) rd 0

Scaling Adaptation Propulsion O(d) O(d) d d

Table 3: Comparison of PEFT methods and their computational complexity. Here, TTPs refers to the
total trainable parameters, and APs refers to the additional parameters introduced by the fine-tuning
method.

Method ∆W Reparameterization Notes
Intrinsic SAID ∆W = F (W r) F : Rr → Rd, W r ∈ Rr are parameters to be optimized, and r ≪ d.
LoRA ∆W = WdownWup Wdown ∈ Rd×r, Wup ∈ Rr×d, and r ≪ {k, d}.
KronA ∆W = Wdown ⊗Wup rank(Wdown ⊗Wup) = rank(Wdown) × rank(Wup).
DyLoRA ∆W = Wdown↓bWup↓b Wdown↓b = Wdown[: b, :], Wup↓b = Wup[:, : b], b ∈

{rmin, . . . , rmax}.
AdaLoRA ∆W = PAQ PP⊤ = P⊤P ̸= I = QQ⊤ = Q⊤Q, Λ = diag(σ1, σ2, . . . , σr).
IncreLoRA ∆W = WdownΛWup Λ = [λ1, λ2, . . . , λr] with λi being an arbitrary constant.
DeltaLoRA ∆W = WdownWup W (t+1) ←W (t) +

(
W

(t+1)
down W

(t+1)
up −W

(t)
downW

(t)
up

)
.

LoRAPrune ∆W = WdownWup ⊙M δ = (W +WdownWup)⊙M, M ∈ {0, 1}1×G, G is group number.
QLoRA ∆W = WBF16

down WBF16
up Y BF16 = XBF16 · doubleDequant(cFP32

1 , cFP8
2 ,WNF4) +

XBF16WBF16
down WBF16

up .
QA-LoRA ∆W = WdownWup Wdown ∈ Rd×r, Wup ∈ Rr×L, L is the quantization group number of W.
LoFTQ ∆W = SV D(W −Qt) Qt = qN

(
W −W t−1

downW
t−1
up

)
, qN is N -bit quantization function.

Kernel-mix ∆Wh =
(
BLoRA, B

h
)(Ah

LoRA
Ah

)
BLoRA is shared across all heads, Bh, Ah provide rank-r update in each head..

LoRA-FA ∆W = WdownWup = QRWup Wdown is frozen, and only Wup is updated.

RoCoFT ∆W = W0 +R
∆W = W0 + C

R and C are restricted weight matrices such that only at most r of the
rows or columns are non-zero.

Propulsion ∆W = (WX)⊙ Z W is frozen, X is input, and Z is propulsion parameters.

Table 4: Comparison of delta weight reparameterization across various PEFT methods. Representa-
tions of the baseline methods are taken from [739].

into learnable token embeddings, with complexity tied to the prompt length lp and number of layers
L. These methods allow for highly modular adaptation while keeping training costs manageable.

Structured fine-tuning approaches like LoRA and its variant LoRA-FA factorize weight updates into
low-rank matrices, reducing the number of trainable parameters to O(dr) or less. Adaptive rank
methods, such as AdaLoRA, dynamically adjust the rank during training, offering a flexible trade-off
between performance and efficiency, though at a slightly higher parameter count due to the inclusion
of r2 terms.

Hybrid approaches like LoHA further extend the expressiveness of LoRA by introducing hierarchi-
cal adaptation, doubling the parameter footprint (4dr) in exchange for better task generalization.
Similarly, RoCoFT applies a low-rank decomposition at either the row or column level of weight
matrices, maintaining very low complexity (O(d× r)) with no additional overhead beyond trainable
parameters.

Finally, Propulsion represents an extremely lightweight and scalable fine-tuning mechanism, intro-
ducing only O(d) space and time complexity, with both TTPs and APs capped at d. This makes it
particularly attractive for edge and low-resource deployment.

In addtion, Table 4 provides a comprehensive comparison of various PEFT methods based on
their reparameterization of the delta weight matrix ∆W . Each method uses different strategies for
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adjusting the weight updates during fine-tuning, optimizing parameter efficiency while maintaining
performance.

Overall, the table illustrates the diverse trade-offs between efficiency, modularity, and expressivity
across PEFT techniques, offering a toolkit of strategies tailored to specific deployment constraints
and task complexities.

9 Strengths and Weaknesses of PEFT

PEFT has emerged as a transformative approach in adapting large pre-trained models to downstream
tasks, offering a compelling balance between computational efficiency [325, 247, 788, 529, 215] and
task-specific performance. One of its primary strengths lies in its ability to significantly reduce com-
putational and memory costs by updating only a small subset of the model’s parameters or introducing
lightweight adapters, making it feasible to fine-tune large models on resource-constrained hardware
[327, 250, 775]. This efficiency extends to faster training times and lower energy consumption, which
is particularly advantageous in environmentally conscious applications. Additionally, PEFT mitigates
the risk of catastrophic forgetting by preserving the general knowledge encoded in the pre-trained
model, while still enabling effective transfer learning, especially in low-data regimes [327, 775].

However, PEFT is not without its limitations. It may underperform in tasks requiring significant
adaptation of the pre-trained model, as the constraints imposed by limited parameter updates can
restrict the model’s ability to fully capture task-specific nuances [402, 384, 813]. Furthermore, some
PEFT methods introduce architectural complexity, making implementation and debugging more
challenging compared to standard fine-tuning. The approach can also be sensitive to hyperparameters,
such as the size of adapter layers or the rank of low-rank approximations, necessitating extensive
experimentation to achieve optimal performance [421, 808]. Additionally, PEFT may struggle with
tasks that require a drastic shift from the pre-training Application, as it is most effective when the
downstream task is closely related to the original training data [523].

Despite these challenges, PEFT remains a powerful tool for scaling large models across diverse
applications, and ongoing research aims to address its limitations, such as improving flexibility for
diverse tasks and reducing hyperparameter sensitivity, to further enhance its utility in the field of
machine learning.

10 Discussion

Despite the remarkable progress of PEFT techniques in reducing computational and memory demands
for adapting large language and vision models, several pressing challenges remain unresolved.
Current methods often rely on heuristics rather than principled understanding, leading to inconsistent
performance across tasks, architectures, and modalities. The lack of theoretical grounding regarding
parameter sensitivity, the opaque nature of learned prompts and adapter modules, and the absence
of unified benchmarks hinder reproducibility and generalization. Moreover, most PEFT approaches
operate without consideration of task structure, domain knowledge, or semantic alignment—resulting
in adaptations that, while efficient, are often suboptimal or cognitively naive. These limitations
highlight the need for deeper analysis of model internals, architecture-aware design, and standardized
evaluation to realize the full potential of PEFT in real-world, multimodal, and evolving scenarios.

11 Future Research Directions

PEFT methods have emerged as essential tools for adapting large-scale foundation models under
computational and storage constraints, the current trajectory of research reveals several key areas
where further investigation is both necessary and promising. These directions are outlined below to
guide the evolution of PEFT toward greater generalizability, robustness, and theoretical maturity.

11.1 Theoretical Understanding of Parameter Influence

Most PEFT methods are grounded in empirical success rather than analytical rigor. Future research
must prioritize the development of theoretical frameworks that explain how small subsets of trainable
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parameters influence overall model adaptation. Concepts from information theory, such as mutual
information between adapted modules and output prediction, or from optimization theory, such as
curvature of the loss landscape around modular updates, could be leveraged to quantify adaptation
efficiency. A better theoretical grounding would not only enhance interpretability but also inform
principled design choices across diverse architectures.

11.2 Layer-wise Sensitivity and Structural Adaptation

In transformer-based architectures, not all layers contribute equally to downstream task performance.
Existing PEFT approaches often insert adapter modules or low-rank projections uniformly across
layers, which may be suboptimal. Future work should explore sensitivity-based placement strate-
gies—using tools such as Jacobian analysis or Fisher Information Matrix estimates—to identify
layers where fine-tuning yields the highest performance-to-parameter ratio. Additionally, research
should focus on adaptive placement strategies, where modules are dynamically activated based on
input complexity or layer activation statistics during training.

11.3 Task-Aware and Domain-Specific PEFT

While current PEFT methods are generally task-agnostic, real-world applications often involve
domain-specific constraints and task structures. For example, tasks in legal or medical NLP involve
complex semantic dependencies, while vision tasks in robotics may require temporally aligned
fine-tuning. Future PEFT frameworks should incorporate inductive biases tailored to task semantics,
perhaps through structure-aware prompts, hierarchical adapters, or task-conditioned reparameteriza-
tion schemes. Integrating symbolic reasoning elements, causal graphs, or domain ontologies may
also enhance generalization in low-data or high-stakes scenarios.

11.4 Generalization to Multimodal and Non-Transformer Architectures

Most PEFT techniques have been developed and tested primarily on large transformer-based LLMs.
However, an increasing number of vision models (e.g., CNN-Transformer hybrids) and multimodal
architectures (e.g., CLIP, Flamingo, Gato) demand adaptation strategies that account for modality
entanglement, asynchronous inputs, and stream-wise attention fusion. Future research should design
PEFT modules that maintain cross-modal coherence, minimize information bottlenecks, and support
modality-specific adaptation while preserving inter-modal alignment. Exploration of fine-tuning
strategies for non-transformer backbones, such as graph neural networks or recurrent models, also
remains largely uncharted.

11.5 Continual and Lifelong Learning Integration

PEFT methods are typically designed for static, single-task adaptation. However, real-world envi-
ronments demand continual adaptation to evolving tasks and distributions. Incorporating lifelong
learning principles—such as replay-based memory modules, regularization-based knowledge reten-
tion, or dynamically growing parameter banks—into PEFT frameworks would enable more resilient
and context-aware models. Sparse adapter stacking, delta compression, and orthogonal subspace
training are promising avenues for enabling memory-efficient continual PEFT without catastrophic
forgetting.

11.6 Interpretability and Explainability of PEFT Modules

The modular nature of PEFT methods presents an opportunity for improved interpretability, yet
this potential remains underexploited. Few studies have systematically investigated what adapter
layers or learned prompts actually encode. Future work should develop attribution techniques and
visualization tools to trace the flow of information through PEFT modules. Interpretable tuning may
involve aligning adapter activations with human-understandable concepts, analyzing prompt token
behavior across tasks, or quantifying attention shifts induced by fine-tuning. Such developments are
particularly crucial in applications where explainability is legally or ethically mandated.
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11.7 Privacy-Preserving and Federated PEFT

The intersection of PEFT with differential privacy and federated learning is a promising but under-
developed area. Given the proliferation of LLM deployment in privacy-sensitive contexts—such as
healthcare, finance, and education—future research must explore methods to fine-tune models without
centralized data access. Approaches like differentially private LoRA, secure adapter aggregation, or
decentralized prompt tuning may offer viable paths forward. These methods should aim to maintain
fine-tuning efficiency while rigorously protecting user data and ensuring compliance with regulatory
standards.

11.8 Standardization of Benchmarks and Evaluation Protocols

There is an urgent need for standardized, multimodal benchmark suites designed specifically for
evaluating PEFT methods. These should span diverse task types (e.g., classification, generation, rea-
soning), data regimes (low-resource, zero-shot, few-shot), and domains (general-purpose, biomedical,
legal). Additionally, evaluation protocols should include robustness tests under domain shift, noise
injection, and adversarial perturbations. Establishing such benchmarks will enhance reproducibility,
allow fair comparisons, and accelerate the iterative improvement of PEFT methodologies.

11.9 Hardware-Aware and Sustainable PEFT

As AI systems are increasingly deployed on edge devices and in environmentally sensitive settings,
PEFT research must align with the goals of hardware-awareness and energy efficiency. Techniques
should be optimized for specific accelerators (e.g., TPUs, NPUs, FPGAs), and evaluated not only on
accuracy and parameter count but also on latency, power consumption, and carbon footprint. Green
AI practices, including low-bit quantized PEFT modules or adaptive update schedules that terminate
early on easy samples, may contribute to more sustainable large-scale model use.

11.10 Meta-PEFT: Learning to Tune Efficiently

A promising meta-direction involves designing systems that automatically learn how to fine-tune
models efficiently. Meta-PEFT approaches may employ reinforcement learning, neural architecture
search, or gradient-based meta-learning to discover optimal PEFT strategies across tasks and models.
This could lead to generalizable policies for adapter placement, prompt design, or rank selection,
significantly reducing manual trial-and-error and improving portability across diverse domains.

12 Conclusion

As the scale and ubiquity of large language, vision, and multimodal models continue to expand, the
demand for computationally efficient and scalable fine-tuning strategies has become increasingly
urgent. PEFT techniques have emerged as a pragmatic and powerful response to these demands, en-
abling adaptation of large-scale models to diverse downstream tasks with minimal additional resource
overhead. This survey has provided a comprehensive synthesis of PEFT methodologies, categorizing
them into additive, selective, reparameterized, hybrid, and unified frameworks. By analyzing their
design principles, parameter behaviors, and architectural integration, we have highlighted the core
mechanisms that underlie their effectiveness.

We have also demonstrated the broad applicability of PEFT methods across language processing,
visual understanding, and generative modeling, emphasizing how these strategies bridge the gap
between performance and efficiency. Moreover, we have identified critical challenges in areas such as
interpretability, task generalization, continual learning, and theoretical grounding. Addressing these
challenges will be essential for building adaptive, robust, and sustainable AI systems.

Looking forward, the role of PEFT is poised to become even more central in future AI develop-
ment—particularly in settings where privacy, environmental constraints, or domain specificity limit
the feasibility of traditional fine-tuning. By distilling the current landscape and charting key research
directions, this work aims to serve as a foundational reference for researchers and practitioners
committed to advancing efficient, equitable, and accessible model adaptation in the era of foundation
models.
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[549] Moritz Reuss, Ömer Erdinç Yağmurlu, Fabian Wenzel, and Rudolf Lioutikov. Multimodal
diffusion transformer: Learning versatile behavior from multimodal goals. arXiv preprint
arXiv:2407.05996, 2024.

[550] RAW Rhodes. Policy networks. The Oxford handbook of public policy, 6:425–447, 2006.

[551] Arnaud Rosay, Florent Carlier, and Pascal Leroux. Feed-forward neural network for network
intrusion detection. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring),
pages 1–6. IEEE, 2020.

[552] Dan Roth and Wen-tau Yih. A linear programming formulation for global inference in natural
language tasks. In Proceedings of the eighth conference on computational natural language
learning (CoNLL-2004) at HLT-NAACL 2004, pages 1–8, 2004.

[553] Mikhail M Rovnyagin, Dmitry M Sinelnikov, Artem A Eroshev, Tatyana A Rovnyagina, and
Alexander V Tikhomirov. Optimizing cache memory usage methods for chat llm-models in
paas installations. In 2024 Conference of Young Researchers in Electrical and Electronic
Engineering (ElCon), pages 277–280. IEEE, 2024.

[554] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

[555] Victoria L Rubin, Yimin Chen, and Lynne Marie Thorimbert. Artificially intelligent conversa-
tional agents in libraries. Library Hi Tech, 28(4):496–522, 2010.

[556] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers,
and Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv
preprint arXiv:2010.11918, 2020.

[557] Bharat Runwal, Tejaswini Pedapati, and Pin-Yu Chen. From peft to deft: Parameter efficient
finetuning for reducing activation density in transformers. arXiv preprint arXiv:2402.01911,
2024.

[558] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[559] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115:211–252, 2015.

[560] Mingi Ryu. [RE] ALBERT: A Lite BERT for Self-supervised Learning of Language Represen-
tations. Unpublished Manuscript, 2021. https://github.com/dkssud8150/RE-ALBERT.

[561] Dov Sagi and Bela Julesz. " where" and" what" in vision. Science, 228(4704):1217–1219,
1985.

[562] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale, 2019.

[563] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[564] Alireza Salemi and Hamed Zamani. Comparing retrieval-augmentation and parameter-efficient
fine-tuning for privacy-preserving personalization of large language models. arXiv preprint
arXiv:2409.09510, 2024.

[565] David Sanders. Perception in robotics. Industrial Robot: An International Journal, 26(2),
1999.

[566] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. CoRR, cs.CL/0306050, 2003.

72

https://github.com/dkssud8150/RE-ALBERT


[567] V Sanh. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108, 2019.

[568] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa:
Commonsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

[569] Iqbal H Sarker. Machine learning: Algorithms, real-world applications and research directions.
SN computer science, 2(3):160, 2021.

[570] Iqbal H Sarker. Ai-based modeling: techniques, applications and research issues towards
automation, intelligent and smart systems. SN computer science, 3(2):158, 2022.

[571] Md Shahriare Satu, Md Hasnat Parvez, et al. Review of integrated applications with aiml
based chatbot. In 2015 International Conference on Computer and Information Engineering
(ICCIE), pages 87–90. IEEE, 2015.

[572] Eric Saund, David Fleet, Daniel Larner, and James Mahoney. Perceptually-supported image
editing of text and graphics. In Proceedings of the 16th annual ACM symposium on User
interface software and technology, pages 183–192, 2003.

[573] Saumya Saxena, Mohit Sharma, and Oliver Kroemer. Multi-resolution sensing for real-time
control with vision-language models. In 2nd Workshop on Language and Robot Learning:
Language as Grounding, 2023.

[574] Dana Schaa and David Kaeli. Exploring the multiple-gpu design space. In 2009 IEEE
International Symposium on Parallel & Distributed Processing, pages 1–12. IEEE, 2009.

[575] Sheila Schoepp, Masoud Jafaripour, Yingyue Cao, Tianpei Yang, Fatemeh Abdollahi, Shadan
Golestan, Zahin Sufiyan, Osmar R Zaiane, and Matthew E Taylor. The evolving landscape of
llm-and vlm-integrated reinforcement learning. arXiv preprint arXiv:2502.15214, 2025.

[576] Michael Scholkemper, Xinyi Wu, Ali Jadbabaie, and Michael T Schaub. Residual con-
nections and normalization can provably prevent oversmoothing in gnns. arXiv preprint
arXiv:2406.02997, 2024.

[577] Patrick Schramowski, Cigdem Turan, Nico Andersen, Constantin A Rothkopf, and Kristian
Kersting. Large pre-trained language models contain human-like biases of what is right and
wrong to do. Nature Machine Intelligence, 4(3):258–268, 2022.

[578] Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks, 2017.

[579] Arijit Sehanobish, Avinava Dubey, Krzysztof Choromanski, Somnath Basu Roy Chowdhury,
Deepali Jain, Vikas Sindhwani, and Snigdha Chaturvedi. Structured unrestricted-rank matrices
for parameter efficient fine-tuning. arXiv preprint arXiv:2406.17740, 2024.

[580] Md Shafikuzzaman, Md Rakibul Islam, Alex C Rolli, Sharmin Akhter, and Naeem Seliya. An
empirical evaluation of the zero-shot, few-shot, and traditional fine-tuning based pretrained
language models for sentiment analysis in software engineering. IEEE Access, 2024.

[581] Shahriar Shakil, Atik Asif Khan Akash, Nusrat Nabi, Mahmudul Hasan, and Aminul Haque.
Pithanet: a transfer learning-based approach for traditional pitha classification. International
Journal of Electrical & Computer Engineering (2088-8708), 13(5), 2023.

[582] Madhu Sharma and Cmaune Sharma. A review on diverse applications of case-based reasoning.
Advances in computing and intelligent systems: Proceedings of ICACM 2019, pages 511–517,
2020.

[583] Mohit Sharma, Claudio Fantacci, Yuxiang Zhou, Skanda Koppula, Nicolas Heess, Jon Scholz,
and Yusuf Aytar. Lossless adaptation of pretrained vision models for robotic manipulation.
arXiv preprint arXiv:2304.06600, 2023.

[584] Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis, and Nicolo
Fusi. Tag-llm: Repurposing general-purpose llms for specialized domains. arXiv preprint
arXiv:2402.05140, 2024.

73



[585] Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang,
Zhewei Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? arXiv
preprint arXiv:2107.06383, 2021.

[586] Zhengpeng Shi and Haoran Luo. Cre-llm: A domain-specific chinese relation extraction
framework with fine-tuned large language model. arXiv preprint arXiv:2404.18085, 2024.

[587] Zhengxiang Shi and Aldo Lipani. Dept: Decomposed prompt tuning for parameter-efficient
fine-tuning. arXiv preprint arXiv:2309.05173, 2023.

[588] K Kirk Shung, Michael Smith, and Benjamin MW Tsui. Principles of medical imaging.
Academic Press, 2012.

[589] Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan
Ung, Moya Chen, Kushal Arora, Joshua Lane, et al. Blenderbot 3: a deployed conversational
agent that continually learns to responsibly engage. arXiv preprint arXiv:2208.03188, 2022.

[590] Vaibhav Singh, Amrith Krishna, Karthika NJ, and Ganesh Ramakrishnan. A three-pronged
approach to cross-lingual adaptation with multilingual llms. arXiv preprint arXiv:2406.17377,
2024.

[591] Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela.
Masked language modeling and the distributional hypothesis: Order word matters pre-training
for little. arXiv preprint arXiv:2104.06644, 2021.

[592] Samuel Sledzieski, Meghana Kshirsagar, Minkyung Baek, Rahul Dodhia, Juan Lavista Ferres,
and Bonnie Berger. Democratizing protein language models with parameter-efficient fine-
tuning. Proceedings of the National Academy of Sciences, 121(26):e2405840121, 2024.

[593] Tony C Smith et al. Semantic role labeling via instance-based learning. In Proceedings of
the 2006 Conference on Empirical Methods in Natural Language Processing, pages 180–188,
2006.

[594] Cees GM Snoek and Marcel Worring. Multimodal video indexing: A review of the state-of-
the-art. Multimedia tools and applications, 25:5–35, 2005.

[595] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[596] Jesus Solano, Mardhiyah Sanni, Oana-Maria Camburu, and Pasquale Minervini. Sparsefit:
Few-shot prompting with sparse fine-tuning for jointly generating predictions and natural
language explanations. arXiv preprint arXiv:2305.13235, 2023.

[597] Chao Song, Zhihao Ye, Qiqiang Lin, Qiuying Peng, and Jun Wang. A framework to implement
1+ n multi-task fine-tuning pattern in llms using the cgc-lora algorithm. arXiv preprint
arXiv:2402.01684, 2024.

[598] Haobo Song, Hao Zhao, Soumajit Majumder, and Tao Lin. Increasing model capacity for free:
A simple strategy for parameter efficient fine-tuning. arXiv preprint arXiv:2407.01320, 2024.

[599] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[600] Wongkot Sriurai. Improving text categorization by using a topic model. Advanced Computing,
2(6):21, 2011.

[601] M. Steyvers, H. Tejeda, A. Kumar, et al. What large language models know and what people
think they know. Nature Machine Intelligence, 7:221–231, 2025.

[602] Asa Cooper Stickland and Iain Murray. Bert and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International Conference on Machine Learning, pages
5986–5995. PMLR, 2019.

74



[603] Junda Su, Zirui Liu, Zeju Qiu, Weiyang Liu, and Zhaozhuo Xu. In defense of structural sparse
adapters for concurrent llm serving. In Workshop on Efficient Systems for Foundation Models
II@ ICML2024, 2024.

[604] Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan, Yankai Lin, Huadong Wang, Kaiyue
Wen, Zhiyuan Liu, Peng Li, Juanzi Li, et al. On transferability of prompt tuning for natural
language processing. arXiv preprint arXiv:2111.06719, 2021.

[605] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
techniques for clip at scale. arXiv preprint arXiv:2303.15389, 2023.

[606] Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun
Liu. Human action recognition from various data modalities: A review. IEEE transactions on
pattern analysis and machine intelligence, 45(3):3200–3225, 2022.

[607] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
Mobilebert: a compact task-agnostic bert for resource-limited devices. arXiv preprint
arXiv:2004.02984, 2020.

[608] Jothi Prasanna Shanmuga Sundaram, Wan Du, and Zhiwei Zhao. A survey on lora networking:
Research problems, current solutions, and open issues. IEEE Communications Surveys &
Tutorials, 22(1):371–388, 2019.

[609] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and
memory efficient transfer learning. Advances in Neural Information Processing Systems,
35:12991–13005, 2022.

[610] Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neural networks with fixed sparse
masks. Advances in Neural Information Processing Systems, 34:24193–24205, 2021.

[611] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging
big-bench tasks and whether chain-of-thought can solve them. https://arxiv.org/abs/
2210.09261, 2022. arXiv:2210.09261.

[612] Kenji Suzuki. Overview of deep learning in medical imaging. Radiological physics and
technology, 10(3):257–273, 2017.

[613] Anushka Swarup, Avanti Bhandarkar, Olivia P Dizon-Paradis, Ronald Wilson, and Damon L
Woodard. Maximizing relation extraction potential: A data-centric study to unveil challenges
and opportunities. IEEE Access, 2024.

[614] Zar Nawab Khan Swati, Qinghua Zhao, Muhammad Kabir, Farman Ali, Zakir Ali, Saeed
Ahmed, and Jianfeng Lu. Brain tumor classification for mr images using transfer learning and
fine-tuning. Computerized Medical Imaging and Graphics, 75:34–46, 2019.

[615] Maite Taboada. Sentiment analysis: An overview from linguistics. Annual Review of Linguis-
tics, 2(1):325–347, 2016.

[616] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall,
Michael B Gotway, and Jianming Liang. Convolutional neural networks for medical image
analysis: Full training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312,
2016.

[617] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A
question answering challenge targeting commonsense knowledge. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4149–4158, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

[618] Zeqi Tan, Yongliang Shen, Xiaoxia Cheng, Chang Zong, Wenqi Zhang, Jian Shao, Weiming
Lu, and Yueting Zhuang. Learning global controller in latent space for parameter-efficient
fine-tuning. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 4044–4055, 2024.

75

https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2210.09261


[619] Ningyuan Tang, Minghao Fu, Ke Zhu, and Jianxin Wu. Low-rank attention side-tuning for
parameter-efficient fine-tuning. arXiv preprint arXiv:2402.04009, 2024.

[620] Yiwen Tang, Ray Zhang, Zoey Guo, Xianzheng Ma, Bin Zhao, Zhigang Wang, Dong Wang,
and Xuelong Li. Point-peft: Parameter-efficient fine-tuning for 3d pre-trained models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 5171–5179,
2024.

[621] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama
model, 2023.

[622] Oguzhan Tas and Farzad Kiyani. A survey automatic text summarization. PressAcademia
Procedia, 5(1):205–213, 2007.

[623] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10, 2009.

[624] Niall Taylor, Upamanyu Ghose, Omid Rohanian, Mohammadmahdi Nouriborji, Andrey
Kormilitzin, David Clifton, and Alejo Nevado-Holgado. Efficiency at scale: Investigating the
performance of diminutive language models in clinical tasks. arXiv preprint arXiv:2402.10597,
2024.

[625] Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language
model for science. arXiv preprint arXiv:2211.09085, 2022.

[626] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[627] GLM Team, A Zeng, B Xu, et al. Chatglm: a family of large language models from glm-130b
to glm-4 all tools. arxiv e-prints. arXiv preprint arXiv:2406.12793, 2024.

[628] Anshul Thakur, Vinayak Abrol, Pulkit Sharma, Tingting Zhu, and David A Clifton. Incremental
trainable parameter selection in deep neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 2022.

[629] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in c programs. In 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007), pages 356–369. IEEE, 2007.

[630] Allwyn Bat Thomas, Ananya Reetha Noble, Anna Wilson, Leya Elizabeth Sunny, and
Rini Thazhathoot Paul. Exploring lora for parameter-efficient fine-tuning of llms in en-
hanced algorithm-to-python-source-code translation task. In AIP Conference Proceedings,
volume 3280. AIP Publishing, 2025.

[631] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer
Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XI, volume 12356 of Lecture Notes in Computer Science, pages 776–794. Springer,
2020.

[632] Jörg Tiedemann. Parallel data, tools and interfaces in opus. In Lrec, volume 2012, pages
2214–2218. Citeseer, 2012.

[633] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[634] Hanh Thi Hong Tran, Nishan Chatterjee, Senja Pollak, and Antoine Doucet. Deberta beats
behemoths: A comparative analysis of fine-tuning, prompting, and peft approaches on legal-
lensner. In Proceedings of the Natural Legal Language Processing Workshop 2024, pages
371–380, 2024.

76



[635] V Javier Traver and Alexandre Bernardino. A review of log-polar imaging for visual perception
in robotics. Robotics and Autonomous Systems, 58(4):378–398, 2010.

[636] H Trung. Multimodal dialogue management-state of the art. Human Media Interaction
Department, University of Twente, 2:32, 2006.

[637] Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim
Alabdulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa,
et al. Siglip 2: Multilingual vision-language encoders with improved semantic understanding,
localization, and dense features. arXiv preprint arXiv:2502.14786, 2025.

[638] Oleksandr Tsymbal, Artem Bronnikov, and Andriy Yerokhin. Adaptive decision-making for
robotic tasks. In 2019 IEEE 8th International Conference on Advanced Optoelectronics and
Lasers (CAOL), pages 594–597. IEEE, 2019.

[639] Cheng-Hao Tu, Zheda Mai, and Wei-Lun Chao. Visual query tuning: Towards effective
usage of intermediate representations for parameter and memory efficient transfer learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7725–7735, 2023.

[640] Vaibhav V Unhelkar, Shen Li, and Julie A Shah. Decision-making for bidirectional communi-
cation in sequential human-robot collaborative tasks. In Proceedings of the 2020 ACM/IEEE
International Conference on Human-Robot Interaction, pages 329–341, 2020.

[641] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit
Yeung. Revisiting point cloud classification: A new benchmark dataset and classification
model on real-world data. arXiv preprint arXiv:1908.04616, 2019.

[642] Özlem Uzuner, Brett R South, Shuying Shen, and Scott L DuVall. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text. Journal of the American Medical Informatics
Association, 18(5):552–556, 2011.

[643] Maria Valera and Sergio A Velastin. Intelligent distributed surveillance systems: a review. IEE
Proceedings-Vision, Image and Signal Processing, 152(2):192–204, 2005.

[644] Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

[645] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Pietro Perona, and
Serge Belongie. Building a bird recognition app and large scale dataset with citizen scientists.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 595–604.
IEEE, 2015.

[646] A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[647] Neelay Velingker, Jason Liu, Amish Sethi, William Dodds, Zhiqiu Xu, Saikat Dutta, Mayur
Naik, and Eric Wong. Clam: Unifying finetuning, quantization, and pruning by chaining llm
adapter modules. In Workshop on Efficient Systems for Foundation Models II@ ICML2024,
2024.

[648] Vinoth Kumar Venkatesan, Mahesh Thyluru Ramakrishna, Anatoliy Batyuk, Andrii Barna,
and Bohdana Havrysh. High-performance artificial intelligence recommendation of quality
research papers using effective collaborative approach. Systems, 11(2):81, 2023.

[649] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: Lessons
learned from the 2015 mscoco image captioning challenge. IEEE transactions on pattern
analysis and machine intelligence, 39(4):652–663, 2016.

[650] L VISION and SACRI TODAY’S. Demystifying the development of an organizational vision.
Sloan management review, 1996.

77



[651] Kushala VM, Harikrishna Warrier, Yogesh Gupta, et al. Fine tuning llm for enterprise: Practical
guidelines and recommendations. arXiv preprint arXiv:2404.10779, 2024.

[652] Ellen M Voorhees et al. Overview of the trec 2003 robust retrieval track. In Trec, pages 69–77,
2003.

[653] Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen
model adaptation through soft prompt transfer. arXiv preprint arXiv:2110.07904, 2021.

[654] Danilo Vucetic, Mohammadreza Tayaranian, Maryam Ziaeefard, James J Clark, Brett H
Meyer, and Warren J Gross. Efficient fine-tuning of bert models on the edge. In 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1838–1842. IEEE, 2022.

[655] Ayham Wael and Amer Madi. Accelerating artificial intelligence: The role of gpus in deep
learning and computational advancements. East Journal of Engineering, 1(1):31–46, 2025.

[656] Marcel Wagenländer, Guo Li, Bo Zhao, Luo Mai, and Peter Pietzuch. Tenplex: Dynamic
parallelism for deep learning using parallelizable tensor collections. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems Principles, pages 195–210, 2024.

[657] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. Technical Report CNS-TR-2011-001, California Institute
of Technology, 2011.

[658] Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. Ace 2005 multilin-
gual training corpus. (No Title), 2006.

[659] Marilyn A Walker, Stephen J Whittaker, Amanda Stent, Preetam Maloor, Johanna Moore,
Michael Johnston, and Gunaranjan Vasireddy. Generation and evaluation of user tailored
responses in multimodal dialogue. Cognitive Science, 28(5):811–840, 2004.

[660] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pages 353–355, 2018.

[661] Alex Wang, Ian F Tenney, Yada Pruksachatkun, Katherin Yu, Jan Hula, Patrick Xia, Raghu
Pappagari, Shuning Jin, R Thomas McCoy, Roma Patel, et al. jiant 1.2: A software toolkit
for research on general-purpose text understanding models. Note: http://jiant. info/Cited by:
footnote, 4, 2019.

[662] Alex Hai Wang. Don’t follow me: Spam detection in twitter. In 2010 international conference
on security and cryptography (SECRYPT), pages 1–10. IEEE, 2010.

[663] Ben Wang. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language
Model with JAX. https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[664] Bokun Wang, Yang Yang, Xing Xu, Alan Hanjalic, and Heng Tao Shen. Adversarial cross-
modal retrieval. In Proceedings of the 25th ACM international conference on Multimedia,
pages 154–162, 2017.

[665] Boxiang Wang, Qifan Xu, Zhengda Bian, and Yang You. Tesseract: Parallelize the tensor
parallelism efficiently. In Proceedings of the 51st International Conference on Parallel
Processing, pages 1–11, 2022.

[666] De Wang, Danesh Irani, and Calton Pu. A social-spam detection framework. In Proceedings
of the 8th annual collaboration, electronic messaging, anti-abuse and Spam conference, pages
46–54, 2011.

[667] Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li, Sen Song, and Yang Liu. Open-
chat: Advancing open-source language models with mixed-quality data. arXiv preprint
arXiv:2309.11235, 2023.

[668] Guanhua Wang, Olatunji Ruwase, Bing Xie, and Yuxiong He. Fastpersist: Accelerating model
checkpointing in deep learning. arXiv preprint arXiv:2406.13768, 2024.

78

https://github.com/kingoflolz/mesh-transformer-jax


[669] Haifeng Wang, Hua Wu, Zhongjun He, Liang Huang, and Kenneth Ward Church. Progress in
machine translation. Engineering, 18:143–153, 2022.

[670] Haixin Wang, Jianlong Chang, Yihang Zhai, Xiao Luo, Jinan Sun, Zhouchen Lin, and Qi Tian.
Lion: Implicit vision prompt tuning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 5372–5380, 2024.

[671] Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, and Ting Liu. Hu-
atuo: Tuning llama model with chinese medical knowledge. arXiv preprint arXiv:2304.06975,
2023.

[672] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global repre-
sentations by penalizing local predictive power. Advances in neural information processing
systems, 32, 2019.

[673] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global repre-
sentations by penalizing local predictive power. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[674] Haowen Wang, Tao Sun, Kaixiang Ji, Jian Wang, Cong Fan, and Jinjie Gu. Orchmoe: Efficient
multi-adapter learning with task-skill synergy. arXiv preprint arXiv:2401.10559, 2024.

[675] Haoyu Wang, Tianci Liu, Ruirui Li, Monica Cheng, Tuo Zhao, and Jing Gao. Roselora: Row
and column-wise sparse low-rank adaptation of pre-trained language model for knowledge
editing and fine-tuning. arXiv preprint arXiv:2406.10777, 2024.

[676] Heng Wang and Cordelia Schmid. Action recognition with improved trajectories. In Proceed-
ings of the IEEE international conference on computer vision, pages 3551–3558, 2013.

[677] Heyuan Wang, Ziyi Wu, and Junyu Chen. Multi-turn response selection in retrieval-based
chatbots with iterated attentive convolution matching network. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pages 1081–1090,
2019.

[678] Jifeng Wang, Xiang Li, and Jian Yang. Stacked conditional generative adversarial networks for
jointly learning shadow detection and shadow removal. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 1788–1797, 2018.

[679] Junbo Wang, Wei Wang, Yan Huang, Liang Wang, and Tieniu Tan. M3: Multimodal memory
modelling for video captioning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7512–7520, 2018.

[680] Kaiye Wang, Qiyue Yin, Wei Wang, Shu Wu, and Liang Wang. A comprehensive survey on
cross-modal retrieval. arXiv preprint arXiv:1607.06215, 2016.

[681] Lijun Wang, Huchuan Lu, Yifan Wang, Mengyang Feng, Dong Wang, Baocai Yin, and Xiang
Ruan. Learning to detect salient objects with image-level supervision. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 136–145, 2017.

[682] Mengmeng Wang, Jiazheng Xing, Boyuan Jiang, Jun Chen, Jianbiao Mei, Xingxing Zuo,
Guang Dai, Jingdong Wang, and Yong Liu. A multimodal, multi-task adapting framework for
video action recognition. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pages 5517–5525, 2024.

[683] Qifan Wang, Yuning Mao, Jingang Wang, Hanchao Yu, Shaoliang Nie, Sinong Wang, Fuli
Feng, Lifu Huang, Xiaojun Quan, Zenglin Xu, et al. Aprompt: Attention prompt tuning for
efficient adaptation of pre-trained language models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 9147–9160, 2023.

[684] Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Guihong Cao, Daxin
Jiang, Ming Zhou, et al. K-adapter: Infusing knowledge into pre-trained models with adapters.
arXiv preprint arXiv:2002.01808, 2020.

79



[685] Runqian Wang, Soumya Ghosh, David Cox, Diego Antognini, Aude Oliva, Rogerio Feris, and
Leonid Karlinsky. Trans-lora: Towards data-free transferable parameter efficient finetuning.
arXiv preprint arXiv:2405.17258, 2024.

[686] Shuai Wang and Zhendong Su. Metamorphic testing for object detection systems. arXiv
preprint arXiv:1912.12162, 2019.

[687] Sinong Wang, Han Fang, Madian Khabsa, Hanzi Mao, and Hao Ma. Entailment as few-shot
learner. arXiv preprint arXiv:2104.14690, 2021.

[688] Tianshi Wang, Fengling Li, Lei Zhu, Jingjing Li, Zheng Zhang, and Heng Tao Shen. Cross-
modal retrieval: a systematic review of methods and future directions. Proceedings of the
IEEE, 2025.

[689] Xiao Wang, Jianing Li, Lin Zhu, Zhipeng Zhang, Zhe Chen, Xin Li, Yaowei Wang, Yonghong
Tian, and Feng Wu. Visevent: Reliable object tracking via collaboration of frame and event
flows. IEEE Transactions on Cybernetics, 54(3):1997–2010, 2023.

[690] Xunguang Wang, Zhenlan Ji, Pingchuan Ma, Zongjie Li, and Shuai Wang. Instructta:
Instruction-tuned targeted attack for large vision-language models. arXiv preprint
arXiv:2312.01886, 2023.

[691] Yang Wang and Chenghua Lin. Tougher text, smarter models: Raising the bar for adversarial
defence benchmarks. arXiv preprint arXiv:2501.02654, 2025.

[692] Yaqin Wang, Jin Wei-Kocsis, John A Springer, and Eric T Matson. Deep learning in audio
classification. In International Conference on Information and Software Technologies, pages
64–77. Springer, 2022.

[693] Yaqing Wang, Sahaj Agarwal, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan
Awadallah, and Jianfeng Gao. Adamix: Mixture-of-adaptations for parameter-efficient model
tuning. arXiv preprint arXiv:2205.12410, 2022.

[694] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu, and cpu platforms
for deep learning. arXiv preprint arXiv:1907.10701, 2019.

[695] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. arXiv preprint
arXiv:2109.00859, 2021.

[696] Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon
Kim. Multitask prompt tuning enables parameter-efficient transfer learning. arXiv preprint
arXiv:2303.02861, 2023.

[697] Zhenzhi Wang, Limin Wang, Tao Wu, Tianhao Li, and Gangshan Wu. Negative sample
matters: A renaissance of metric learning for temporal grounding. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pages 2613–2623, 2022.

[698] Ziyi Wang, Xumin Yu, Yongming Rao, Jie Zhou, and Jiwen Lu. P2p: Tuning pre-trained
image models for point cloud analysis with point-to-pixel prompting. Advances in neural
information processing systems, 35:14388–14402, 2022.

[699] Mayur Wankhade, Annavarapu Chandra Sekhara Rao, and Chaitanya Kulkarni. A survey
on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review,
55(7):5731–5780, 2022.

[700] Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability
judgments. Transactions of the Association for Computational Linguistics, 6:625–641, 2018.

[701] Pengfei Wei, Yiping Ke, and Chi Keong Goh. A general domain specific feature transfer frame-
work for hybrid domain adaptation. IEEE Transactions on Knowledge and Data Engineering,
31(8):1440–1451, 2018.

80



[702] Yunchao Wei, Yao Zhao, Canyi Lu, Shikui Wei, Luoqi Liu, Zhenfeng Zhu, and Shuicheng
Yan. Cross-modal retrieval with cnn visual features: A new baseline. IEEE transactions on
cybernetics, 47(2):449–460, 2016.

[703] Ralph Weischedel et al. Ontonotes release 5.0. LDC2013T19, 2013. 2.9M words, multilingual
corpus with NER and coreference annotations.

[704] Adhika Pramita Widyassari, Supriadi Rustad, Guruh Fajar Shidik, Edi Noersasongko, Abdul
Syukur, Affandy Affandy, and De Rosal Ignatius Moses Setiadi. Review of automatic text
summarization techniques & methods. Journal of King Saud University-Computer and
Information Sciences, 34(4):1029–1046, 2022.

[705] Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and
emotions in language. Language resources and evaluation, 39:165–210, 2005.

[706] Kimball Wiles and John T Lovell. Supervision for Better Schools. ERIC, 1975.

[707] Victor Wiley and Thomas Lucas. Computer vision and image processing: a paper review.
International journal of artificial intelligence research, 2(1):29–36, 2018.

[708] Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Marilyn Walker, Heng Ji, and Amanda
Stent, editors, Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers), pages 1112–1122, New Orleans, Louisiana, June 2018. Association for Computational
Linguistics.

[709] Alphus D Wilson. Diverse applications of electronic-nose technologies in agriculture and
forestry. Sensors, 13(2):2295–2348, 2013.

[710] Andrew P Witkin and Jay M Tenenbaum. On the role of structure in vision. In Human and
machine vision, pages 481–543. Elsevier, 1983.

[711] Dieter Wolff. Integrating language and content in the language classroom: Are transfer of
knowledge and of language ensured? ASp. la revue du GERAS, 41-42:35–46, 2003.

[712] BigScience Workshop, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana
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Dataset Domain Year Task Type I/O Format Size Train/Test

20 Newsgroups [471] NLP 1999 Text Classification Text → Category 20K 11K / 7.5K
CoNLL03 [566] NLP 2003 NER Text → Entity tags 2,302 946 / 231
CoNLL04 [552] NLP 2004 Relation extraction Text → BIO tags 1,437 8,936 / 1,671
Caltech101 [167] CV 2004 Image Classification Images → Class 9,144 -
SST-2 [595] NLP 2005 Sentiment Analysis Text → Binary 215K 67K / 1.8K
MRPC [140] NLP 2005 Paraphrase Detection Sentence pairs → Binary 5,800 3,669 / 1,724
ACE2005 [658] NLP 2005 Information Extraction Text → Entities 599 529 / 40
SRL WSJ & Brown [65] NLP 2005 Semantic Role Labeling Text → Predicate-args 75K -
PASCAL VOC [159] CV 2005–12 Object Detection Images → Boxes/labels 11,530 5,717
WMT [319] NLP 2006- Machine Translation Text → Text - -
MPQA [705] NLP 2006 Opinion Mining Text → Text 535 -
Common Crawl [172] NLP 2008 NLP Pretraining Web text → Text 386 TiB -
Oxford Flowers [491] CV 2008 Fine-grained Class. Images → Labels 8,189 7.17K / 1.02K
Common Crawl [172] NLP 2008 NLP Pretraining Web text → Text 386 TiB -
CIFAR-10/100 [331] CV 2009 Image Classification RGB → Labels 60K 50K / 10K
STL-10 [110] CV 2011 Image Classification RGB → Labels 13K 5K / 8K
SUN397 [726] CV 2010 Scene Classification RGB → Labels 108,753 -
i2b2 2010 RE [642] NLP 2010 Relation Extraction Clinical → Relations 877 394 / 477
Semeval-2010 [314] NLP 2010 Semantic Role Text → Labels 284 144 / 100
SBU [500] CV 2011 Image Captioning Images → Captions 1M -
COPA [190] NLP 2011 Causal reasoning Premise → Answer 1,000 500 / 500
IMDb [440] NLP 2011 Sentiment analysis Text → Binary 50K 25K / 25K
CUB-200-2011 [657] CV 2011 Fine-grained Class. Images → Labels 11,788 5,994 / 5,794
Stanford Dogs [398] CV 2011 Fine-Grained Class. Images → Labels 20,580 14.4K / 6.17K
SVHN [485] CV 2011 Digit recognition Images → Digits 600K -
OxfordPets [511] CV 2012 Fine-Grained Class. RGB → 37 breeds 7,390 -
ImageNet1K [131] CV 2012-17 Image classification RGB → 1000 classes 1.43M 1.28M / 100K
WebQ [38] NLP 2013 Question Answering Questions → KB Entity 6,642 3,778 / 2,032
OntoNotes [703] NLP 2013 NER, Coreference Text → BIO-format 2.95M -
DUT [748] CV 2013 Salient Detection RGB → Binary masks 5,168 -
Yelp Polarity [758] NLP 2015 Sentiment Analysis Text Reviews → Sentiment Labels 560K 38K
CNN/DailyMail [578] NLP 2015 Abstractive Summarization News Articles → Summaries 313K 287K
WebNLG [708] NLP 2017 NLG RDF → Text 13.2K -
STS-B [66] NLP 2017 Similarity Sent. pairs → Score 8.6K 5.7K / 1.4K
HS [128] NLP 2017 Hate Speech Detection Tweets → Labels 25K 19.8K / 4.8K
WikiSQL [809] NLP 2017 Text-to-SQL Query + Table → SQL 80.7K 56.4K / 15.9K
ARC [106] NLP 2018 MC QA Q + MC → Answer 7.8K -
GLUE [660] NLP 2018 NLU Sentences → Labels - -
OBQA [467] NLP 2018 Commonsense QA MC → Answer 6K 5K / 500
ARC-Easy [106] NLP 2018 MC QA MC → Answer 5.2K 2.3K / 2.4K
ARC-Challenge [106] NLP 2018 MC QA MC → Answer 2.6K 1.1K / 1.2K
MultiRC [304] NLP 2018 Multi-Sent. RC Para. → MC 10K 6K
XSum [480] NLP 2018 Abstr. Summar. News → Summ. 226.7K 204K / 11.3K
CoLA [700] NLP 2018 Sent. Accept. Sent. → Binary 10.7K 8.6K
UCF101 [599] Vision 2018 Action Rec. Video → Labels - -
SciTail [307] NLP 2018 Text Entail. Prem.-Hyp. → Binary 27K 10.1K / 16.9K
SQuAD 2.0 [541] [540] NLP 2018 QA Passage + Q → Ans. 150K+ 130.3K / 8.9K
PIQA [46] NLP 2019 MC QA Q → Ans. 19K 16K / 3K
Winogrande [562] NLP 2019 Reasoning Fill-in-the-blank → Option 44K -
OSCAR [501] NLP 2019 Pre-training Text → Text 50K -
SuperGLUE [660] NLP 2019 NLU Text → Text - -
codeSearchNet [261] Code 2019 - Code snippets - 2M
AmazonQA/Products [202] NLP 2019 QA Qs → Ans 923K 395M / 20K
CSQA [617] NLP 2019 QA Q + Ctx → MC Ans. 12.2K Qs 9.7K / 1.1K
SAMSum [189] NLP 2019 Dial. Summ. Dialogues → Summary 16.4K 14.7K / 819
WiC [526] NLP 2019 Word-in-Context Text → Binary label 7.5K 5.4K / 1.4K
Hyperpartisan [309] NLP 2019 Binary Clf. News → Label 754K 600K / 4K
PAWS [794] NLP 2019 Para. Ident. Sent. pairs → Label 108.5K 49.4K / 8K
WoW [138] NLP 2019 Knowl.-driven Dial. Gen. Hist. + Topic → Response - -
CUB-200-2011 [657] CV 2011 Fine-grained Classification Images → Bird Species Labels 11.8K 6K / 5.8K
ELEVATOR [394] Multimodal 2021 Entity Linking Text+Image → Entities+Attributes 10K 7K / 1.5K / 1.5K
TB-1k [414] CV 2021 Medical Classification Chest X-rays → Labels 1K 800 / 200
BoolQ [106] NLP 2019 Boolean QA Question → Yes/No 15.9K 9.4K / 3.3K / 3.2K

Table 5: Comprehensive overview of datasets used for PEFT methods across various domains
including NLP, Computer Vision, Multimodal, and Language Models.
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Dataset Domain Year Task Type I/O Format Size Train/Test

ro-en MT 2016 Machine Translation Romanian → English 614K 610K / 2K / 2K
de-en MT 2014 Machine Translation German → English 4.55M 4.54M / 3K / 2.2K
Ha–En MT 2021 Machine Translation Hausa → English 50K 45K / 2.5K / 2.5K
(De-En) MT 2019 Machine Translation German → English 3.9M 3.9M / 3K / 3K
Fr–De MT 2020 Machine Translation French → German 2.8M 2.8M / 3K / 3K
Fr–Es MT 2018 Machine Translation French → Spanish 2M 2M / 3K / 3K
News Commentary [632] MT 2017 Machine Translation Multilingual → Translations 370K 90% / 5% / 5%
AmazonQA [203] NLP 2019 Product QA Product info → Answers 1.4M 80% / 10% / 10%
GPT-3.5 [757] NLP 2022 Language Generation Text prompts → Generated text N/A Benchmark evals
SRL WSJ & Brown [593] NLP 2005 Semantic Role Labeling Text → Argument structures 75K 21/23
aPR-Instruction [363] Programming 2023 Program Repair Buggy code + instructions → Fixed code 75K 60K / 7.5K / 7.5K
TinyAgent NLP 2023 Agent Task Completion Task descriptions → Actions 10K 8K / 1K / 1K
AddSub [472] Math 2014 Math Word Problems Math problems → Numerical answers 395 Cross-validation
SingleEq [321] Math 2016 Algebraic Problems Equations → Solutions 508 80% / 20%
CB NLP 2018 Natural Language Inference Premise-hypothesis → Labels 250 200 / 50
Flan v2 NLP - Instr. Tune Text → Text - -
BBH [611] NLP 2022 QA Qs → Ans. 6.5K -
Flan v2 NLP - Instr. Tune Text → Text - -
BBH [611] NLP 2022 QA Qs → Ans. 6.5K -
M2D2 [545] Multimodel 2022 LM Text → Tokens 8.5B -
Alpaca [621] NLP 2023 Instr. Follow Text → Text 52K 52K / -
GPT-4 Alpaca [516] NLP 2023 Instr. Tune Instr. → Resp. 52K -
Dolly [36] NLP 2023 Instr. Follow Prompt → Resp. 15K -
Orca [476] NLP 2023 Reasoning Prompt → Step-wise 1.6M -
GPT-4-Turbo [153] Multi 2023 - - 128K -
AI4Bharat Naamapadam [462] NLP - NER Text → Tags 400K -
AmericasNLI [154] NLP - NLI Text → Label - -
SIQA [568] NLP - QA Text → MC Ans. 33.4K -
TREC [373] NLP - QC Text → Label 4.5K 5.5K / 500
ScienceQ [691] NLP - Sci-QA Text → Choice - -
Wikitext2 [461] NLP - LM Text → Tokens 2M -
Penn Treebank [448] NLP - LM Text → Tokens 1M 38K / 5.5K
VQA [192] v2.0 Multimodal 2015 Visual QA Image → Text 265K -
VisDA-C [519] Multimodal 2017 Domain Adaptation RGB Images → Class Labels 280K 152K / 55K
ImageNet-Sketch [672] Multimodal 2019 Image Classification Sketch Images → Class Labels 51K -
DocVQA [451] Multimodal 2020 Document VQA Document Images → Text Answer 62.8K 39.5K / 5.2K
FGVC [446] Multimodal - Fine-grained Classification Aircraft Images → Class Labels 10.2K 3.3K / 3.3K
IWSLT Multimodal - - - → - - -
Caltech101 [167] Vision 2004 Image Class., Obj. Rec. Images → Class Labels 9.1K -
Oxford102 [713] CV 2008 Fine-grained Cls. JPEG → 102 lbls 8.2K 7.2K / 1K
CIFAR-10 [331] CV 2009 Img Cls. Img → 10 lbls 60K 50K / 10K
CIFAR-100 [331] CV 2009 Img Cls. Img → 100/20 lbls 60K 50K / 10K
CIFAR-10-LT [331] CV 2009 Img Cls. (LT) Img → 100/20 lbls 60K 50K / 10K
STL-10 [109] CV 2010 Img Cls. Img → 10 lbls 13K 5K / 8K
SUN397 [726] CV 2010 Scene Cls. Img → 397 lbls 109K -
SBU [500] CV 2011 Img Captioning Img → Caption 1M -
Stanford Dogs [306] CV 2011 Fine-grained Cls. Img → 120 dog breeds 20.6K 14.4K / 6.2K
SVHN [484] CV 2011 Digit Recog. Img → Digit lbls 600K -
OxfordPets [511] CV 2012 Fine-grained Cls. + Seg. Img → 37 breeds + masks 7.4K -
ImageNet1K [559] CV 2012–17 Img Cls. + Loc. Img → 1K lbls 1.43M 1.28M / 100K
ImageNet100 [558, 631] CV 2012 Img Cls. Img → 100 lbls 132K 127K
Stanford Cars [330] CV 2013 Fine-grained Cls. Img → 196 car models 16.2K 8.1K / 8.0K
DTD [102] CV 2014 Texture Cls. Img (300x300) → 47 textures 5.6K 40 train / rest test
Food101 [51] CV 2014 Food Cls. Img → 101 classes 101K 75.8K / 25.3K
PASCAL Context [475] CV 2014 Scene analysis Img → Pixel-wise lbls 10.1K 10.1K
Pascal Context-59 [475] CV 2014 Seg. Images → 59 Labels 10.1K -
Clothing1M [727] CV 2015 Class. Images → Noisy 1M 50k / 10k
MICCAI 2015 Abdomen [341] CV 2015 Seg. 3D CT scans → Organs (13) 30 / 20 -
ModelNet40 [723] CV 2015 3D Class. Mesh models → 40 classes 12.3K 9.8K / 2.5K
NABirds [645] CV 2015 Fine-grained Class. Bird images → 555 classes 48.6K 23.9K / 24.6K
VQA v2.0 [192] CV 2017 QA Image → Text 265K -
DUT [681] CV 2017 Object Detection Images → Binary masks 5.2K 10.6K / 5K
COCO Stuff [59] CV 2017 Seg. Images → Stuff + Things 164K 118K / 41K
ADE20K 150 [811] CV 2017 Seg. Images → 150 classes 25K 20.2K / 3.4K
ADE20K-847 [811] CV 2017 Seg. Images → 847 classes 25K 20.2K / 3.4K
RESISC45 [91] CV 2017 Scene Class. 256x256 images → 45 classes 31.5K -

Table 6: Comprehensive overview of datasets used for PEFT methods across various domains,
including NLP, Computer Vision, Multimodal, and Language Models.
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Dataset Domain Year Task Type I/O Format Size Train/Test

Kinetics-400 [299] CV 2017 Action Class. Video clips → 400 labels 650K -
Something-v2 [191] CV 2017 Action Class. Short video clips → 174 labels 221K 169K / 27K
VisDA-C [519] CV 2017 Domain Adapt. Images → Domain Class 280K 152K / 55K
EuroSAT [226] CV 2018 Land Use Class. Satellite images (64x64) → 10 labels 27K 24.3K / 2.7K
iNaturalist [35] CV 2018 Species Class. Wildlife images → 8,142 species 612K 437K / 149K
Taskonomy [776] CV 2018 Multi-Task Vision Indoor images → depth, seg., normals 4M 4M
ScanObjectNN [641] CV 2019 3D Obj. Class. Point clouds → 15 labels 15K 11.4K
ImageNet-Sketch [673] CV 2019 Image Class. Sketches → labels 50.9K -
ImageNet-A [230] CV 2019 Image Class. Real-world images → labels 7.5K -
VOT22RGBD [558] CV 2019 RGB-T Tracking RGB+Thermal → BBoxes 234 -
IMD20 [493] CV 2020 - - 35K -
COD10K [163] CV 2020 Camouflaged Det. RGB → Masks 10K -
CAMO [346] CV 2020 Camouflaged Seg. RGB → Binary Masks 1.25K 1K / 250
ORBIT [450] CV 2021 Few-shot Obj. Recog. Mobile Vids → Labels 2.7K 70 / 46 users
DepthTrack [429] CV 2021 RGB-D Tracking RGB+D → BBoxes 150 80 / 35
IconQA [423] CV 2021 VQA Icons → Answers 645K -
ImageNet-R [228] CV 2021 Image Class. Rendered → Labels 30K -
LasHeR [358] CV 2021 RGB-T Tracking RGB+Thermal → BBoxes 730K -
Pix2Struct [348] CV 2022 VisLang. Understanding Screenshots → Text - -
VisEvent [689] CV 2023 RGB+Event Tracking Text → Tracks 820 500 / 320
Fru92 [241] CV 2017 Fruit Cls. Fruit imgs → Labels 69.6K 55.7K / 13.9K
Metaworld [767] CV 2019 Robot Tasks Sim states → Actions 481.5K 80 / 20 %
Franka-Kitchen [74] CV 2020 Robot Control Kitchen obs. → Actions 566 80 / 20 %
Long-tailed [438] CV 2019 Imbalanced Cls. RGB imgs → Labels 100K 80 / 10 / 10 %
Veg200 [241] CV 2017 Veg Cls. Veg imgs → Labels 91.1K 72.9K / 18.2K
CottonLeafDisease [45] CV 2024 Plant Disease Cls. Cotton imgs → Disease 3K 80 / 20 %
Robust 04 [652] IR 2004 Info Retrieval Text docs → Relevance 528K TREC cross-val
Tufano [239] IR 2019 Code Repair Java → Transformed code 58.3K 58.3K / 6.5K / 6.5K
OpenImages V6 [337] CV 2022 Visual Recognition RGB imgs → Labels 200K 160K / 40K
Firefly [253] CV 2022 Text-to-Image Text → Images 125M Primarily train
OPUS-100 [492] Multilingual 2022 Machine Translation Text → Text 55M 1K/pair
ScanObjectNN [811] CV 2019 3D Object Classification Point Clouds → Class Labels 15 2.0K/0.9K
Vizwiz [204] CV 2018 VQA for the Blind Img + Q → Ans 31.2K 20.5K/4.3K/6.3K
Flickr30k [437] CV 2014 Image Captioning Img → Text 31.8K 29.8K/1K/1K
OKVQA [385] CV 2019 VQA w/ Knowledge Img + Q → Ans 14.1K 9K/5K
OCR-VQA [470] CV 2019 OCR-based VQA Img + Q → Ans 207.6K 186K/21K
LibriSpeech [506] Audio 2015 Speech-to-Text Audio (16kHz) → Text 1,000h 960h + dev/test sets
ImageNet-C [229] CV 2019 Image Cls Img → Label 50K Eval only
DomainNet-126 [518] CV 2019 Domain Adaptation Img → Label 586.6K 70%/ 30%
ISTD [678] CV 2018 Shadow Detection Img → Clean Img + Mask 1.9K 1.3K/540
PascalCtx-459 [475] CV 2014 Semantic Seg. Img → Pixel Labels 10.1K 5K/5.1K
CRer CV 2021 Crop Disease Detect. Img → Label/Mask 3K 80%/ 20%
CASIA [759] CV 2010–18 Face Recog. Face Img → ID 494.4K 90%/10%
IMD20 [439] CV 2020 Face Recog. Face Img → ID 34K 70%/30%
CUHK [371] CV 2012 Person Re-ID Img → ID 14.1K 1.4K/100 IDs
CHAMELEON [249] CV 2018 Camouflaged Obj Det. Img → Mask 76 Test only
Kinetics-700 [63] CV 2020 Action Recog. Video → Action 650K 600K/50K
DF-20M mini[525] CV 2022 DeepFake Detect. Face Img/Vid → Real/Fake 2–3M 80%/20%
RIGA+ Medical 2019 Retinal Segmentation Fundus Img → Mask 750 650/100
SCGM[487] Medical 2017 Spinal Cord Seg. MRI → Mask 80 60/20

Table 7: Comprehensive overview of datasets used for PEFT methods across various domains
including NLP, Computer Vision, Multimodal, and Language Models.
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Year Model Application PEFT Method Datasets

2025 [630] Mistral 7B [274] Code conversion system LoRA APPS, Conala, CodeAlpacaPy
2025 [185] BERT [136], mT5 [537],

mGPT [5]
Low-resource sentiment analysis,
NER, QA

Full-Finetune, LoRA, AdaLoRA,
DoRA

Persian NLP

2025 [273] GLM4-9B [150] Language understanding,
sentiment analysis

MoE-LoRA, X-LoRA, TAAS-Net,
IA3, LoRA

GLUE, IMDB, Agnews

2025 [178] LLaMA [633], Gemma
[626], GPT-4o [5]

Immigration law and insurance LoRA, QLoRA, DoRA, Prompt
Tuning

InsuranceQA, USCIS data

2025 [13] DistilBERT [567],
RoBERTa [413], LLaMa-7B
[633]

Common sense reasoning LoRAShear, LLM-Pruner,
LoRAPrune, LoRA variants

BoolQ, PIQA, HellaSwag

2024 [124] LLaMA [633], RoBERTa
[413], TinyLlama [787]

Token prediction, pre-training Full-Rank, GaLore variants, LoRA,
ReLoRA

C4, GLUE, TinyAgent

2024 [590] Llama-2 [633], GIZA++
[496], xlm-roberta [115]

Cross-lingual transfer Handholding ICL/PEFT variants Amazon Massive

2024 [212] LLaMA-7B [633],
Mistral-7B [274]

API prediction, QA tasks LoRA, AdapterH, MEFT, FT NaturalQuestion, SQuAD

2024 [618] DeBERTaV3, Llama/2
[633], GPT-3.5 [408]

NLU, generation, reasoning GloC, SoRA, AdaLoRA, Adapter
variants

GLUE benchmarks

2024 [1] Vicuna-7b/13b [807] Text classification PEFT+ICL, ICL, LoRA, 0-shot SST2, TREC, AG News
2024 [744] BLOOM [428], TigerBot

[86], Mistral [274]
Cross-lingual vocabulary LoRA with LAPT OSCAR, CC-100

2024 [597] ChatGLM-6B [627] Medical NER, text tasks CGC-LoRA, LoRAHub,
MOE-LoRA

PromptCBLUE, Firefly

2024 [48] LLaMA-1/2/3 [152, 633],
Mistral [274]

Quantized language generation LR-QAT, QAT, LoRA, PEFT SlimPajama, WikiText-2

2024 [208] Mamba, Mamba-2 [194] Natural language tasks MPFT+LoRA, MPFT MMLU
2024 [520] Llama-2 [633] Text Reranking Q-PEFT variants (MSS, B25,

Contriever)
WebQ, TriviaQA

2024 [458] Mistral-7B [274],
ChatGPT-4 [5]

Log parsing LoRA, PEFT LogPai

2024 [165] BERT [136], GPT variants
[808, 408]

FL finetuning in edge servers FedPipe, LoRA, FedAdapter 20NEWS, E2E

2024 [388] GPT variants [408, 808] Split learning LLM finetuning FedLoRA, CenLoRA, SplitLoRA E2E
2024 [325] BERT/LLaMa variants

[413, 633]
Language understanding, QA LoRA, Adapter, tuning methods GLUE, SQuAD, BoolQ

2024 [266] Mistral-7B [274],
Llama-2-7B [633]

LLM personality manipulation PEFT, IKE PersonalityEdit

2024 [312] GPT-Neo [182], GPT-J
[100], LLaMA [633]

Task-specific adaptation PEQA, PEFT+PTQ variants, LoRA Wikitext2, Alpaca

2024 [738] Llama-2-7b [633] Translation, summarization NEFT, FT variants, LoRA News Commentary
2024 [716] RoBERTa [413] Classification, NER FT, Adapter, WARP, InfoPrompt CoLA, SST-2, ACE2005
2024 [408] BERT [136], GPT2 [408] Language understanding CLS-FT, PET-FT, P-tuning LAMA, SuperGLUE
2024 [164] InCoder [173], CodeGen

[489], Llama2 [633], Code
Llama [554], CodeT5 [695],
CCT5 [381]

Code Change Tasks LoRA, Prefix-tuning MCMD, CodeSearchNet

2024 [209] Openchat8B [667] Single and Multi-Downstream
Tasks

DoRA, LoRAMoE, LoRA,
MixLoRA, MixLoRA-Dy, MoLA,
SLIM

OBQA, SIQA, BOOLQA,
CSQA, HellaSwag,
WinoGrande, ARC-e, ARC-c,
MMLU, GSM8K, PIQA

2024 [443] T5 [537], BART [357], OPT
[791], BLOOM [428],
Llama 2 [633]

Data to text generation QLoRA, Full FT E2E, ViGGo, WikiTableText,
DART, WebNLG

2024 [19] Llama2-7b, Llama2-3b
[633]

Factuality, reasoning,
multilinguality, coding tasks

SpIEL-MA, SpIEL-AG, IA3, LoRA,
Full FT

Flan v2, GPT4-Alpaca, Tulu v2

2024 [786] DialoGPT [793], RoBERTa
[413], LLaMA2-7B [633],
LlaMA2-13B [633]

Personalized response generation LoRA AmazonQA/Products, Reddit,
MedicalDialogue

2024 [362] CodeLlama-7B [554],
DeepSeek-Coder-Base-6.7B
[198] [43], CURE [197],
RewardRepair [756],
Recorder [821],
INCODER-1B,
INCODER-6B [173]

Automated Program Repair FMFT, IA3, LoRA, p-tuning,
Prefix-tuning

APR-Instruction dataset

2024 [647] T5-BASE [537],
GEMMA-2B [626]

Natural language tasks CLAM-3, CLAM-2, VeRA, LoHA,
LoRA, IA3, QIA3, CLAM-Q→3,
CLAM-PQ→3, QVeRA, QLoHA,
QLoRA, PLoRA

GLUE, SuperGLUE

2024 [762] Gemma-7B [626], Llama
2-7B, Llama 2-13B [633]

Question answering (QA),
multi-hop reasoning,
counterfactual reasoning

LOFIT, ITI, RepE, 0-shot TruthfulQA, MQuAKE,
CLUTRR

Table 8: Parameter-Efficient Fine-Tuning (PEFT) Methods in NLP Models (2024-2025)
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2024 [732] LlaMA-2 7B [633],
LlaMA-2 13B [633],
Gemma 2B [626]

Question-answering, sentence
level tasks, instruction tuning

PEDRO, BitFit, IA3, SSP, AdaLoRA,
LoRA, Learned-Adapter,
Housbly-Adapter, LPT, P-tuning v2,
Full-FT

SQuAD, SuperGLUE (BoolQ,
COPA, and ReCoRD), GLUE
(SST-2, RTE, QNLI), Alpaca
dataset, MT-Bench, MMLU,
BBH

2024 [464] OPT-13B [791],
LLaMA30B, LLaMA-2-70B
[633]

Co-serving system for token
generation

HuggingFace (HF) PEFT, S-LoRA,
LoRA, IA3, Adapter

Chatbot instruction prompts,
ChatGPT Prompts, WebQA,
Alpaca, PIQA

2024 [557] RoBERTaLarge [413],
BERTBASE [136] [324],
T5SMALL, T5BASE [537],
Flan-T5-base, Flan-T5-xl
[101], OPT [791], GPT2
[408] [808] [408], ViT [146]

Sentiment classification,
paraphrase detection, natural
language inference, linguistic
acceptability, semantic textual
similarity, question answering

DEFT, ADA-DEFT, PEFT,
ADA-PEFT, LoRA, Adapter,
Prefix-Tuning, Prompt-Tuning

MNLI, QQP, QNLI, SST-2,
STS-B, MRPC, RTE, SQuAD

2024 [181] OPT6.7B [791],
BLOOM-7B [428],
LLaMA-7B [633]

QA, multichoice science questions,
problem compilation and
concluding tasks

DLoRA, FT OBQA, PIQA, SIQA,
Winograde, BoolQ, HellaSwag,
ARC-easy, ARC-challenge

2024 [584] Galactica [625], Text+Chem
T5 [97], LlaSMol [764],
LLaMA [633], Tag-LLaMA
[633]

Language domain, protein
sequences and SMILES molecule
representations, drug discovery

Linear Probing, Prompt Tuning,
LoRA, TagLLM

OPUS-100, Flores-101,
binding_affinity, Therapeutics
Data Commons benchmark,
SMILES, TDC benchmark

2024 [195] RoBERTa-Large [413],
OPT-1.3B, OPT-6.7B [791]

Natural language understanding,
QA tasks

LoRA, Full-FT, Adapter, LayerDrop,
Offsite-Tuning, LLM-Pruner

GLUE, SuperGLUE,
OpenBookQA, PIQA,
ARC-Easy, ARC-Challenge,
SciQ, WebQuestions

2024 [651] Llama 2 Chat 7B, Llama 2
Chat 13B, Llama 2 Chat
70B [633]

Proprietary documents and code
repositories preparation

LoRA, QLoRA Common crawl, The Pile, Dolly,
Orca, Alpaca, Vicuna

2024 [364] MISTRAL-7B [274],
DEEPSEEK-CODER-
BASE-6.7B [43] [198],
LLAMA3-8B [152],
LLAMA2-7B,
LLAMA2-13B [152] [633]

Question classification GMT, One-off Drop, SFT, HFT,
Random Mask

Magicoder-Evol-Instruct-110K,
MetaMathQA, GSM8k, MATH,
TÜLU V2

2024 [753] LLaMA [633], GPT-J [100]
[408], BLOOMz [479],
LLaMA3 [152]

Common sense reasoning LoRA, LoRA + IST, Full
Fine-tuning, Series Adapter, Parallel
Adapter

BoolQ, PIQA, SIQA,
HellaSwag, WinoGrande,
ARC-e, ARC-c, OBQA,
GSM8K, AQuA, MAWPS,
SVAMP

2024 [624] TinyBERT [277],
MobileBERT [607],
DistilBERT [567], standard
BERT [136], Llama-2-7b
[633]

Clinical decision-making tasks LoRA, IA3, Full FT MIMIC-III MP, MIMIC-III LoS,
MIMIC-III ICD-9 Triage, I2B2
2010 RE,2010,2012,2014

2024 [743] LLaMA-2-13B [633],
BLOOM-7B [428]

Token generation LoRA, Soft Prompt Wikitext2

2024 [327] RoBERTa-base,
RoBERTa-large [413],
DeBERTaV3-base [220],
BART-large [357],
BLOOMz [479], LLaMA7B
[633], LLaMA13B [633],
GPT-J6B [100] [408]

Common sense reasoning and
mathematical reasoning

LoRA, AdaLoRA, Prefix,
Propulsion, Bitfit, (IA)3, Prompt
Tuning

GLUE, SQuAD, XSum,
CNN/DailyMail

2024 [564] FlanT5-XXL [101] Text classification and generation
for privacy-preserving
personalization of LLM

PEFT, RAG, PEFT+RAG LaMP benchmark

2024 [375] Llama-2 [633], Falcon [14] Robust emotion recognition LoRA IEMOCAP
2024 [502] T5-Base [537], BART-Large

[357], T5-Large
Sentiment analysis, similarity and
paraphrase, natural language
inference tasks for
resource-constrained edge devices

LoRA, Adapter, Full FT GLUE

2024 [181] OPT6.7B [791],
BLOOM-7B [428],
LLaMA-7B [633]

QA, problem compilation and
concluding tasks, multi-choice
science questions on edge devices

DLoRA OBQA, PIQA, SIQA,
Winograde, HellaSwag,
ARC-easy, ARC-challenge

2024 [603] LLama2-7B [633] Generative text using concurrent
LLM serving

LoRA, BOFT, S-LoRA,
SpartanServe

Personalized text data of varying
lengths

2024 [586] Baichuan2-13B [747] Domain-specific Chinese relation
extraction

LoRA FinRE, SanWen

Table 9: Parameter-Efficient Fine-Tuning (PEFT) Methods in NLP Models (2024-2025)
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2023 [683] T5-Base, T5-Large, T5-XL
[537]

Natural language understanding
tasks

FT, PT, Prompt Tuning, XPrompt,
ResPrompt, APROMPT

SuperGLUE

2023 [78] BERT [324], RoBERTa
[413], ALBERTAxxlarge-v2
[560]

Natural language understanding
tasks in few shot and fully
supervised settings

P-Tuning, P-Tuning v2, PTP+RM,
PTP+RG, PTP+A2T, PTP+PGD,
PET Best

SuperGLUE, FewGLUE

2023 [94] T5 [537] Natural language understanding Full FT, Prompt Tuning, P-Tuning,
SMoP

SuperGLUE

2023 [587] T5-Base [537],
CLIP-T5[535]

Natural language processing
(NLP), visual question-answering
task, image caption generation

LoRA, FT, Adapters, BitFit, PT,
SPoT, ATTEMPT, MPT, DEPT

GLUE, SuperGLUE,
WinoGrande, Yelp-2, SciTail,
PAWS-Wiki, VQA, MSCOCO

2023 [773] T5 v1.1 + LM adaptation Instruction tuning T0, (IA)3, LoRA, MoV, MoLoRA ANLI, CB, RTE, WSC, WiC,
COPA, WNG, HS

2023 [426] GPT-2, GPT-3, GPT-3.5,
GPT-4 [536][408][5],
DialoGPT [793], GODEL
[515], Blenderbot [589],
ChatGPT, DOHA [527], T5
[537]

Toxicity reduction, lexically
constrained generation,
open-ended generation, dialogue
safety control, and knowledge
grounded dialogue

IPA, IPA*, PPLM, GeDi,
DEXPERTS, DAPT, PPO, QUARK

RealToxicityPrompts, XSum,
CommonGen, ASAFETY, WoW

2023 [343] RoBERTa-Large [413] Natural language understanding LoRA, FFT, BitFit, Adapters, MaM,
S-MaM, U-MaM, WARP, S-BitFit,
U-BitFit

GLUE

2023 [378] RoBERTa-Large [413] Natural language understanding
and translation tasks

LoRA, Full FT, Linear FT, Linear
FTnorm, Diff Pruning, FISH Mask,
Adapter, Pfeiffer Adapter, BitFit,
Prefix Tuning, MAM Adapter, PaFi

GLUE, VariousGLUE

2023 [125] T5-Large [537] Sequence labeling, relation
extraction and joint entity relation
extraction task

TANL, ASP, Fixed FISH, FISH-DIP,
DygiePP

CoNLL’03, OntoNotes,
CoNLL’04, ACE2005,
MultiWoz 2.1, CoNLL’05 SRL
WSJ and Brown

2023 [531] FLAN-T5 Generation and classification tasks LoRA, Full FT, IA3, BitFit, Prompt
Tuning

AG News, CoLA, E2E, NLG,
SAMSum

2023 [351] T5 [537] Classification, question answering,
summarization and speech
recognition

Parallel Adapter, CoDA, Prefix
Tuning, Sequential Adapter

C4, LibriLight, Pix2Struct,
OCR-VQA, DocVQA,
Screen2Words, MNLI, RTE,
BoolQ, SQuAD, XSum,
LibriSpeech

2023 [98] GPT-2 Language modeling Single Adapter, AdapterSoup,
Oracle, Hierarchy adapter

M2D2, C4

2023 [224] BERT-Base, RoBERTa-Base Sentiment analysis,
question-answering, natural
language inference, and
commonsensereasoning

FT, AdapterFusion, Adapter, MerA MRPC, SST-2, MNLI

2023 [365] Longformer-base,
RoBERTa-base

Long sequence language tasks Prefix-Propagation, FT, PT,
Prefix-tuning

ArXiv, 20-newsgroups,
Hyperpartisan, WikiHop

2023 [796] BERT-base, BERT-large,
RoBERTa-large,
DeBERTa-xlarge

Natural language understanding
and named entity recognition tasks

FT, PT, APT BoolQ, COPA, RTE, WiC, WSC,
CoNLL03, CoNLL04,
OntoNotes

2023 [177] jiant [661] Natural language understanding LoRA, Random, Mixout, BitFit,
MagPruning, Adapter, DiffPruning,
ChildPruning, SAM

GLUE, SuperGLUE

2023 [788] DeBERTaV3-base [220],
BART-large [357]

Natural language understanding,
question answering, natural
language generation

LoRA, AdaLoRA, Full FT, BitFit,
HAdapter, PAdapter

GLUE, SQuADv1, SQuADv2,
XSum, CNN/DailyMail

2023 [139] DeBERTaV3-base [220],
RoBERTa-large [413]

Natural language understanding LoRA, SoRA GLUE

2023 [746] LlaMA2-7B [633] Commonsense reasoning and out
of distribution

MAP, MC Drop, Ckpt Ens,
Ensemble, LLLA, LA

Winogrande-small (WG-S),
Winogrande-medium (WG-M),
ARC-Challenge (ARC-C),
ARC-Easy (ARC-E), openbook
QA (OBQA), BoolQ, MMLU

2023 [255] FLAN-T5 [101] Multiple-choice questions from a
variety of domains

LoRA, FFT, IA3 Big-Bench Hard (BBH)

2023 [401] ChatGPT [5], Huatuo [671] LLM-driven medical applications
and LoRA

LoRA, P-Tuning, Task-Arithmetic,
LoRAHub, MOELoRA

PromptCBLUE

2023 [75] T5-base/3b [537], RoBERTa
[413], BART [357]

Natural language understanding
and generation tasks

LoRA, Adapter, BitFit, Prefix, PA,
S4

GLUE, XSum, WMT 2016 en-ro

Table 10: Parameter-Efficient Fine-Tuning (PEFT) Methods in NLP Models (2023)
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2023 [813] BERTbase [324] Text classification tasks LoRA, FFT, Prefix, AdaMix, Serial,
UniPELT, Parallel, MAM,
AutoPEFT

GLUE, SuperGLUE

2023 [254] LLaMA [633], BLOOMz
[479], GPT-J [100]

Arithmetic reasoning and
commonsense reasoning

LoRA, Prefix, Series, Parallel MultiArith, GSM8K, AddSub,
AQuA, SingleEq, SVAMP,
BoolQ, PIQA, SIQA,
HellaSwag, WinoGrande,
ARC-e, ARC-c, OBQA

2023 [800] T5-Base, T5-Small,
T5-Large [537]

Multi-task learning for natural
language understanding

Adapter, FT, PT, SPoT, HF, ATP, HD,
MPT, PHA

CoLA, SST-2, STS-B, MRPC,
QQP, MNLI, QNLI, RTE,
SciTail, BoolQ, WiC, CB, WSC

2023 [741] ALBERT [340],
DistilBERT-base [567],
BERT-base [136],
RoBERTa-large [413],
LLaMA-7B (INT4) [633]

News classification, topic
classification, QA using federated
fine-tuning of LLMs

LoRA, Adapter, BitFit, Full-FT AGNEWS, YAHOO,
YELP-Polarity, SQuAD-v1.1

2022 [434] T5-Large, T5-XL, and
T5-XXL [537]

Natural language understanding Fine-Tuning, P-Tuning,
Prefix-Tuning, Prompt-Tuning,
XPROMPT

SuperGLUE

2022 [724] RoBERTa [413] and EFL
[687]

Natural language understanding Transformer fine-tuning, Prompt
tuning, Adapter, S-IDPG-PHM,
S-IDPG-DNN, M-IDPG-PHM-GloV,
M-IDPG-PHM, M-IDPG-DNN,
Compacter, P-Tuningv2

MPQA, Subj, CR, MR, SST-2,
QNLI, RTE, MRPC, STS-B,
QQP

2022 [406] RoBERTaLARGE [413],
DeBERTaLARGE [221],
GPT2LARGE [408]

Single-sentence and sentence-pair
classification and PTM tasks

LoRA, Adapter, AdapterDrop, BitFit,
Prompt Tuning, P-tuning v2,
S-IDPG-PHM, LPT w/ NPG, LPT w/
MPPG, LPT w/ APPG, LPT w/o PG

SST-2, MPQA, MR, Subj,
TREC, MNLI, MRPC, QNLI,
QQP, RTE

2022 [251] T5-large [537] Natural language understanding LoRA, Fine-tune, BitFit, Low Rank
Adapter, Adapter, LNFit, S3PET

GLUE, SUPERGLUE

2022 [693] RoBERTa-large [413],
BERT-base [136]

Supervised and few-shot NLU and
NLG tasks

Full Fine-tuning, Pfeiffer Adapter,
Houlsby Adapter, LoRA, AdaMix
Adapter, BitFit, Prefix-tuning,
UNIPELT, Lin Adapter, AdaMix
LoRA

MNLI, QNLI, SST2, QQP,
MRPC, CoLA, RTE, STS-B

2022 [395] T0, T5 [537], GPT-3 [408] Few-shot classification tasks T-Few, PET, BitFit, Human baseline RAFT
2022 [288] TwinBERT [425], ColBERT

[305]
Document Reranking Full FT, LFT, Prompt-tuning,

Prefix-tuning, LoRA, LoRA+,
Prefix-tuning → LoRA, LoRA →
Prefix-tuning, SS Prefix-tuning, SS
LoRA

Robust04, ClueWeb09b,
MS-MARCO

2022 [644] RoBERTa [413],
GPT-Medium

Natural language understanding
and language generation

LoRA, Fine Tune, FLOP, DyLoRA GLUE, E2E, DART, WebNLG

2022 [175] BERT-base [136],
BERT-large [136],
RoBERTa-base,
RoBERTa-large [413]

Added token-dependent biases to
the shifts by proposing
AdapterBias for PLMs

Full-FT, Adapters, Diff-pruning,
BitFit, LoRA

GLUE

2021 [447] BERT-base [136],
BART-large [357]

Natural language understanding LoRA, FT, BitFit, Adapter,
Prefix-tuning, UNIPELT

GLUE

2021 [372] GPT-2 [408], BART [357] Natural language generation tasks FT-TOP2, FINE-TUNE, ADAPTER,
PREFIX, SOTA

E2E, WebNLG, DART

2021 [407] BERT-large [136],
RoBERTa-large [413],
GLMxlarge, GLMxxlarge
[150]

Model scaling and NLU tasks FT, PT, PT-2, MPT-2 BoolQ, CB, COPA, MultiRC,
ReCoRD, RTE, WiC, WSC,
CoNLL03, OntoNotes 5.0,
CoNLL04, SQuAD 1.1 dev,
SQuAD 2.0 dev, CoNLL12,
CoNLL05, WSJ, CoNLL05
Brown

2021 [354] T5 [537], GPT-3 [408] Question answering (QA) and
paraphrase detection in zero-shot
settings

Prefix tuning, Prompt tuning SuperGLUE

2021 [653] T5 [537] Natural language understanding
tasks using single and multitask
training

PROMPTTUNING,
MODELTUNING, SPoT,
MULTI-TASKMODELTUNING

GLUE, SUPERGLUE

2021 [604] RoBERTa [413], T5 [537] Sentiment analysis, natural
language inference, ethical
judgment, paraphrase
identification, QA, Summarization

Prompt tuning, TPT, Random
Prompt, Distance Minimizing, Task
Tuning

IMDB, SST-2, laptop, restaurant,
Movie, Tweet, MNLI, QNLI,
SNLI, deontology, justice, QQP,
MRPC, SQuADNQ-Open,
Multi-News, SAMSum

2021 [532] BARTBASE, BARTLARGE
[357]

Text classification, question
answering, conditional generation,
etc.

Fine-tuning, Prompt Tuning, IPT CrossFit Gym

2021 [610] BERTLARGE [136],
ResNet-34

Natural language understanding,
distributed training, efficient
checkpointing

Dense Fine-tuning, Random Mask,
Bit-Fit, Diff Pruning, FISH Mask

GLUE, CIFAR-10

Table 11: Parameter-Efficient Fine-Tuning (PEFT) Methods in NLP Models (2021-2023)
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2021 [18] mBERT [737] [136],
XLM-R [115]

Zero-shot cross-lingual transfer LT-SFT, RAND-SFT, MAD-X,
BITFIT, LT-SFT TA-ONLY, MAD-X
TA-ONLY

Universal Dependencies 2.7,
MasakhaNER, CoNLL 2003,
AmericasNLI, MultiNLI

2021 [442] T5 [537] Natural language understanding HYPERFORMER, Adapters GLUE
2021 [742] BERTLARGE [136],

XLNetLARGE,
RoBERTaLARGE [413],
ELECTRALARGE [104]

Single-sentence and a pair of
sentence classification tasks

Vanilla Fine-tuning,
CHILD-TUNING, Weight Decay,
Top-K Tuning, Mixout, RecAdam,
R3F

GLUE

2021 [775] BERT [136], RoBERTa
[413]

Sentence level and token level
NLP tasks

Full-FT, BitFit GLUE, PTB POS-tagging

2021 [186] Transformer [646] Machine translation scratch (100%), src,tgt (8%),
src,tgt+body (75%), src,tgt+xattn
(17%), src,tgt+randxattn (17%)

Ro–En, Ja–En, De–En, Ha–En,
Fr–Es, Fr–De

2021 [247] GPT-2, GPT-3 [408] Natural language to SQL queries,
natural language inference,
conversation summarization,
natural language generation tasks

LoRA, FT, BitFit, Adapter,
Prefix-layer tuning,
Prefix-embedding tuning

E2E, WikiSQL, MultiNLI,
SAMSum

2021 [227] T5 [537] Natural language understanding
tasks

ADAPTER, PFEIFFER-ADAPTER,
ADAPTERDROP,
ADAPTER-LOWRANK, PROMPT
TUNING, INTRINSIC-SAID,
BITFIT, PHM-ADAPTER,
COMPACTER

GLUE, SuperGLUE

2021 [822] BLEU [510] Multilingual machine translation Bilingual, Multilingual, Knowledge
Distillation, Serial, CIAT-basic,
CIAT-block, CIAT

IWSLT2, OPUS-100, WMT

2021 [217] BARTLARGE [357],
mBARTLARGE [410],
RoBERTaBASE [413]

Machine translation, text
summarization, language
understanding, text classification

LoRA, Parallel adapter, Full-FT,
Bitfit, Adapter, Prefix, PA, MAM
adapter, Pfeiffer adapter, Prompt
tuning, Prefix tuning

XSum, WMT 2016 en-ro, MNLI,
SST2

2020 [522] BERT-baseuncased [136],
RoBERTa-base [413]

Commonsense reasoning,
sentiment analysis, natural
language inference, sentence
relatedness

AdapterFusion, Single-Task
Adapters, Multi-Task Adapters, Fine
Tuning, Fusion w/ ST-A, Fusion w/
MT-A

Hellaswag, Winogrande,
CosmosQA, CSQA, SocialIQA,
IMDb, SST, MNLI, SciTail,
SICK, RTE, CB, MRPC, QQP5,
Argument, BoolQ

2020 [199] BERTLARGE [136],
RoBERTa [413], XLNet
[752]

Natural language understanding,
question answering

LoRA, Full finetuning, Adapters,
Non-adaptive diff pruning, Diff
pruning

GLUE benchmark, SQuAD

2020 [7] RoBERTa [413], BERT
[136], BART [357], Electra,
Alberta [340], XLNet, T5
[537], XLM-R [115]

Sentence prediction tasks Fine Tuning, SAID, DID MRPC, QQP

2019 [244] BERT [136] Text classification tasks Adapters GLUE, SQuAD

Table 12: Parameter-Efficient Fine-Tuning (PEFT) Methods in NLP Models (2019-2021)
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2025 [387] FaceT-B, PLFace Face recognition DPEFT MS1MV3,
CASIA-WebFace-masked

2024 [279] ViT-B/16 [146] Image classification VPT-Deep, Full FT, Linear probing,
VPT-Shallow, Adapter, AdaptFormer,
LoRA, NOAH, Convpassshare,
Convpassattn, Convpass

VTAB-1K

2024 [761] Swin-L, Swin-B, Swin-L
[415]+Cascade Mask RCNN

Dense predictions in computer
vision

Full FT, Fixed FT, Bitfit,
Norm-Tuning, Partial-1, Adapter,
LoRA, AdaptFormer, LoRand,
E3VA, E3VA+, E3VA++

MS COCO, PASCAL VOC and
ADE20K

2024 [67] ViT-B [146] SAM [315] Medical image segmentation Ladder-Side Tuning MICCAI 2015 Multi-Atlas
Abdomen Labeling Challenge

2024 [733] Segformer [728], Swin
Transformer [415]

Multitask dense scene
understanding

Single-task Full Fine-tuning,
Fine-tuning Decoders, Multi-task
Full Fine-tuning, Multiple Bitfit,
Multiple Relative bias, Multiple
LoRA, Multiple Adapter, Multiple
Low-rank adapter, Shared BitFit,
Shared Relativebias, Shared LoRA,
Shared Adapter, Shared Low-rank
adapter, Hyperformer, Polyhistor,
Polyhistor-lite, VMT-Adapter,
VMT-Adapter-Lite

PASCAL Context

2024 [670] ResNet-50, ResNet-101
[219], ViT [146], Swin
Transformer [415]

Image classification, long-tail
distribution, few-shot learning

Retraining, Head-tuning, FT,
Adapter, Bias, VPT, LION

CIFAR10, CIFAR100,
ImageNet100, Flower, Stanford
Dogs, Stanford Cars, Clothing

2024 [176] ViT-B/16 [146], Swin-B
[415]

Visual recognition, object counting
or depth prediction, domain
generalization

BitFit, VPT, LST, AdaptFormer,
LoRA, NOHA, FacT, SSF, DTL,
DTL+, DTL+*

VTAB-1K, Aircraft, Pets,
Food-101, Cars and Flowers102

2024 [34] ViT-S(DINO) [146],
ViT-S(DeiT) [146]

Few-shot image classification Full FT, Bias, Adapter, LoRA,
Ladder, Prompt-Shallow,
Prompt-Deep, eTT, LN-TUNE,
ATTNSCALELITE, ATTNSCALE

META-DATASET and ORBIT

2024 [620] Point-BERT [136],
Point-MAE [31],
PointM2AE [31]

3D shape classification Full Fine-Tuning, Prompt Tuning,
Adapter Tuning, LoRA, Bias Tuning,
Point-PEFT

ScanObjectNN, ModelNet40

2024 [592] ESM2 PPI prediction, multiplicity and
symmetry prediction task

FT, PEFT, LoRA PPI data, Homooligomer
Symmetry data

2024 [816] LLaVA-1.5(7B, 13B) [396],
ShareGPTv4(7B) [79],
Qwen-VL-Chat(7B) [29]

Visual question answering, visual
reasoning, image caption using
multimodal LLM

Adapter, LoRA, IA3, Prefix ScienceQA, Vizwiz, IconQA,
Flickr30k, OKVQA, OCRVQA,
VQAv2

2023 [639] ViT-B/16, self-supervised
(MAE), CLIP [535]

Visual recognition tasks Linear-probing, Fine-tuning, VPT,
VQT

VTAB-1k

2023 [740] CLIP ViT-L/14 Open vocabulary semantic
segmentation

SimSeg, OvSeg, MaskCLIP, SAN COCO Stuff, Pascal VOC,
Pascal Context-59, Pascal
Context-459, ADE20K150,
ADE20K-847

2023 [729] DiT Class-conditioned image
generation

Full Fine-tuning, Adapter, BitFit,
Visual Prompt Tuning (VPT), LoRA,
DiffFit

Food101, SUN397, DF-20M
mini, Caltech101,
CUB-200-2011, ArtBench-10,
Oxford Flowers, Stanford Cars

2023 [225] ViT-B-224/32 via
unsupervised pretraining
(CLIP), Supervised ViT

Image classification Fine-tuning ImageNet-1k

2023 [72] Vision transformers,
hierarchical swin
transformers [415]

Visual classification task BitFit, VPT-Shallow, VPT-Deep,
Adapter, AdapterFormer, LoRA,
NOAH, Full FT, Linear probing,
SSF, FacT-TT, FacT-TK, EFFT

VTAB-1K

2023 [583] ViTs [146], NFNets [52],
and ResNets [219]

Manipulation task Full FT, Adapters, Pretrained Feat.
(DR)

Metaworld, Franka-Kitchen,
RGB-Stacking task suites

2023 [422] LLaMA-Reviewer,
CodeReviewer and AUGER

Automating code review tasks Prefix tuning, LoRA CRer, Tufano

2023 [405] SETR [347] Detection tasks Full-tuning, OnlyDecoder, VPT,
AdaptFormer, EVP

CASIA, IMD20, SBU, ISTD,
CUHK, DUT, COD10K,
CHAMELEON, CAMO

2023 [430] ViT-L/14, ViT-B/16 [146] Image and video classification,
semantic segmentation

VPT, Adapter, AdapterFormer,
LoRA, NOAH, Full FT, Linear
probing, SSF, ReAdapter

VTB-1k, Something-Something
V2, ADE20K

2023 [275] ViT-B/16 [146] Image and visual classification BitFit, Prefix tuning, VPT, Adapter,
AdapterFormer, Full FT, Linear
probing, U-Tuning

CIFAR-100, FGVC

Table 13: Parameter-Efficient Fine-Tuning (PEFT) Methods in Vision Models (2023-2024)
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2023 [216] ViT-B/16 [146] Recognition tasks MLP-3, PROMPT-SHALLOW,
PROMPT-DEEP, ADAPTER,
ADAPTFORMER, NOAH,
SPT-ADAPTER, LINEAR,
PARTIAL-1, BIAS, LORA,
SPT-LORA, SPT-ADAPTER
(FULL), VPT

CUB-200-2011, NABirds,
Oxford Flowers, Stanford Cars,
Stanford Dogs, VTAB-1k

2023 [71] ResNet-18, ResNet-50 [219] Transfer learning tasks RLMVP, FLM-VP, ILM-VP Flowers102, DTD, UCF101,
Food101, GTSRB, SVHN,
EuroSAT, OxfordPets,
StanfordCars, SUN397,
CIFAR10/100, ABIDE

2023 [183] ViT-B/16 [146] Continual learning tasks Sequential finetuning, LAE,
Joint-FT, Prompt Tuning, Prefix
Tuning, LoRA, Adapter

CIFAR100, ImageNet-R

2023 [278] ViT-B/16 [146] Classification tasks BitFit, VPT-Shallow, VPT-Deep,
Adapter, AdapterFormer, LoRA,
NOAH, Full FT, Linear probing,
FacT-TT, FacT-TK

VTAB-1K

2023 [780] Point-BERT [136],
Point-MAE [31], ACT [145]

Object classification, few-shot
learning, part segmentation

Full FT, IDPT, VPT ScanObjectNN, ModelNet40

2023 [820] RGB-based foundation
tracking model

Multimodal tracking Full FT, ViPT, Prompt-shaw,
Prompt-deep, ViT-shaw

Depthtrack, VOT22RGBD,
RGBT234, LasHeR, VisEvent

2022 [90] ViT [146] Object detection, instance
segmentation, and semantic
segmentation

PVT-Tiny, PVTv2-B, ViT, ViTDet,
ViT-Adapter

COCO, ADE20K

2022 [193] ResNet18, ResNet50 and
ResNet152 [219], VGG16
and VGG19, SELDnet

Image classification and sound
event detection tasks

PHResNet, PHVGG16, PHSELDnet SVHN, CIFAR10, CIFAR100,
ImageNet, L3DAS21 challenge
Task 2

2022 [376] ViT-B/16 [146], Swin
Transformer [415],
ConvNeXt-B [416],
AS-MLP-B [194]

Image classification tasks Full fine-tuning, linear probing,
Adapter, Bias, VPT, SSF

FGVC, VTAB-1k, CIFAR-100,
ImageNet-1K

2022 [141] ViT [146] Long-tailed image classification
tasks

Linear Probe, Full fine-tune, LPT CIFAR100-LT, Places-LT,
iNaturalist2018

2022 [276] Resnet-50 [219], SimCLR
[82]

General classification, fine-grain
classification tasks

BiT, TUP, SimCLR-LP, DnA,
DnA-MoCo

iNaturalist, CIFAR100,
EuroSAT, Food101

2022 [252] Ushape [161] segmentation
model

Medical image segmentation Intra-Domain, DA, Self-Training,
BEAL, DoCR, U-D4R, FSM,
ProSFDA

RIGA+, SCGM

2022 [81] ViT-B/16 [146],
ImageNet-21k, MAE,
VideoMAE

Image and video recognition tasks Full FT, Linear probing, VPT (Visual
Prompt Tuning), AdaptFormer-1,
AdaptFormer-4, AdaptFormer-64

CIFAR-100, Street View House
Numbers (SVHN), Food-101,
SSv2, HMDB51

2022 [272] ViT [146], Swin
Transformer [415]

Recognition tasks Full FT, Mlp-3, Linear Probing,
Partial-1, Sidetune, Bias, Adapter,
VPT-shallow, VPT-deep

VTAB-1k

2022 [504] ViT-B/16 [146] Video action recognition Full FT, PartialFine-tuning,
TemporalFine-tuning, PromptTuning,
AttentionalPooling, LinearProbing,
Adapter, ST-Adapter

Kinetics-400,
Something-Something-v2
(SSv2), Epic-Kitchens-100
(EK100)

2022 [698] ResNet [219], ConvNeXt
[416], Vision Transformer
and Swin Transformer [415]

Image classification, part
segmentation tasks

P2P Prompting ModelNet40, ScanObjectNN,
ShapeNetPart

2020 [785] ResNet [219] Incremental learning,
reinforcement learning, computer
vision, imitation learning, NLP
question answering, single-task
transfer learning

Scratch, FT, Elastic Weight
Consolidation (EWC), Parameter
Superposition (PSP), Progressive
Neural Network (PNN), Piggyback
(PB), Residual Adapters (RA),
Side-tuning

iCIFAR and iTaskonomy,
SQuAD v2, Taskonomy

Table 14: Parameter-Efficient Fine-Tuning (PEFT) Methods in Vision Models (2022-2020)
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