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Abstract: Real-world robotic agents must act under partial observability and long1

horizons, where key cues may appear long before they affect decision making.2

Standard recurrent or transformer models struggle: context windows truncate his-3

tory, and naive memory extensions fail under scale and sparsity. We propose EL-4

MUR (External Layer Memory with Update/Rewrite), a transformer architecture5

with structured external memory. Each layer maintains memory embeddings, in-6

teracts with them via bidirectional cross-attention, and updates them through an7

Least Recently Used (LRU) memory module using replacement or convex blend-8

ing. This design extends effective horizons up to 100,000 times beyond the context9

length. On synthetic benchmarks and robotic manipulation tasks from MIKASA-10

Robo with sparse rewards, ELMUR consistently outperforms other strong base-11

lines, achieving robust long-term recall and showing promising results where prior12

models struggle. Our results show that structured external memory is a simple and13

effective recipe for scalable decision making under partial observability.14

Keywords: Memory, Robotics, POMDP15

1 Introduction16

Imagine a robot preparing a meal: it chops vegetables, adds spices, and simmers a sauce, only to17

forget it already added salt. This illustrates partial observability — the world rarely provides all18

necessary information. Humans overcome this with seamless recall, a skill robotics urgently needs.19

Robotics is at a crossroads. While robots excel in controlled environments, their competence often20

collapses over longer horizons. They forget fleeting but essential clues — a tool placed aside, an21

ingredient already added. Recurrent or transformer models with limited memory fail under the22

scale and sparsity of real-world tasks. The most promising direction lies in hybrid architectures,23

combining transformers with persistent memory.24

Reinforcement Learning (RL) [1] is the standard paradigm, but real-world trial-and-error demands25

huge interaction budgets and raises safety concerns. Simulation is cheaper, but the sim-to-real gap26

remains. Offline RL learns from pre-collected data, avoiding active interaction, yet both online and27

offline RL usually assume dense step-by-step rewards. In practice, rewards are sparse: often only a28

binary success signal is available.29

Imitation Learning (IL) addresses this by learning directly from expert demonstrations. Its simplest30

form, Behavior Cloning (BC), reduces control to supervised learning. Recent Vision-Language-31

Action (VLA) models map images and instructions to actions from large datasets. However, trans-32

formers in VLAs are restricted by a fixed context window, which causes three fundamental chal-33

lenges: (i) extending context length without quadratic costs, (ii) mitigating forgetting from truncated34

windows, and (iii) supporting decision making under partial observability by retaining task-relevant35

information over long horizons. This motivates our central question: how can we equip IL policies36

with efficient long-term memory to solve long-horizon, partially observable tasks?37
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Figure 1: ELMUR overview. Each transformer layer is augmented with an external memory track
that runs in parallel with the token track. Tokens attend to memory through a mem2tok block, while
memory slots are updated from tokens through a tok2mem block. A Least Recently Used (LRU)
policy selectively rewrites memory slots via full replacement or convex blending, ensuring bounded
yet persistent storage. This design enables precise token↔memory interaction and long-horizon
recall beyond the native attention window.

To address this challenge, we introduce ELMUR (External Layer Memory with Update/Rewrite), a38

transformer architecture where each layer is equipped with a structured external memory (Figure 1).39

ELMUR integrates three key ideas: (i) layer-local memory embeddings that persist across seg-40

ments, (ii) cross-attention blocks for token–memory interaction (tok2mem, mem2tok), and (iii)41

an LRU memory module that rewrites embeddings via replacement or convex blending, balancing42

plasticity and stability. This design extends recall up to 100,000× beyond the attention window,43

enabling efficient long-horizon reasoning in robotics, where long contexts are infeasible.44

We evaluate ELMUR on synthetic and robotic benchmarks designed to test memory, including visual45

tabletop manipulation with sparse binary rewards. In all cases, ELMUR surpasses strong baselines,46

achieving state-of-the-art results in long-horizon reasoning, selective memory, and generalization47

under partial observability.48

Our contributions:49

• We propose ELMUR, a transformer architecture with external layer-local memory and50

bidirectional token↔memory cross-attention – Section 4.51

• We design an LRU-based update rule that rewrites memory through replacement and52

convex blending, ensuring bounded yet persistent storage – Section 4.6.53

• We show empirically that ELMUR scales memory capacity up to 100,000× the atten-54

tion length and achieves state-of-the-art performance on synthetic and robotic benchmarks,55

including sparse-reward tabletop manipulation – Section 5.56

2 Related Work57

Memory in Deep Learning. Research on memory in deep learning explicit stores and implicit58

mechanisms. Explicit stores provide read–write access and structured retrieval [2, 3, 4, 5, 6]. Im-59

plicit mechanisms compress history into hidden states or dynamical systems, as in LSTMs and their60

variants [7, 8], linear-attention Transformers [9], RWKV [10], and state-space families [11, 12].61

Beyond the fixed self-attention window of the Transformer [13], many extensions have been pro-62

posed to mitigate the limitation of finite context. A broad family of approaches extends effective63

horizons using caches, compression, or external memory modules [14, 15, 16, 17, 18, 19, 20, 21, 22].64

These methods differ in how they manage past information—whether through segment-level recur-65

rence, hierarchical compression, or associative retrieval—but all aim to overcome the hard cutoff66

imposed by standard transformers. Recent work on test-time memorization [23] further explores67

adaptive long-term memory learned dynamically during inference.68
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Memory in Reinforcement Learning. In RL partial observability makes memory essential. One69

line of work develops spatial and episodic buffers such as Neural Map [24], Hierarchical Chunk At-70

tention Memory [25], and Stable Hadamard Memory [26], alongside taxonomies for evaluation [27].71

Another line adapts sequence models for control: Gated TrXL [28], Approximate Gated Linear72

Attention (AGaLiTe) [29] scales long horizons, and AMAGO-2 [30] demonstrates meta-RL capa-73

bilities. Finally, explicit external memory has been added to transformers: the Recurrent Action74

Transformer with Memory (RATE) [31] preserves information across segments, while Fast-and-75

Forgetful Memory [32] applies controlled decay and Re:Frame [33] retrieves relevant subsequences76

from an associative index.77

We propose the ELMUR model: a transformer where each layer is paired with a structured external78

memory and explicit read–write operations. Unlike methods that simply cache past states or apply79

lossy compression, ELMUR maintains layer-local memory embeddings, updates them with an LRU-80

based mechanism balancing stability and plasticity, and grounds access in relative temporal biases.81

This design enables robust long-horizon reasoning under partial observability, while avoiding the82

inefficiency and brittleness of prior memory extensions.83

3 Background84

Partially Observable Markov Decision Processes (POMDPs). Many real-world robotic and85

control tasks involve partial observability, where the agent does not have direct access to the system86

state [34]. This setting is modeled as a partially observable Markov decision process (POMDP),87

defined as the tuple (S,A,O, T, Z,R, ρ0, γ), with latent state space S, action space A, and obser-88

vation space O. The transition dynamics are defined as T : S × A → ∆(S), where T (s′ | s, a)89

denotes the probability of reaching state s′ when action a is applied in state s. The observation90

function is Z : S × A → ∆(O), where Z(o | s′, a) denotes the likelihood of observing o after91

reaching state s′ under action a. The reward function is R : S ×A → R, the initial state distribution92

is ρ0 ∈ ∆(S), and γ ∈ (0, 1) is the discount factor.93

In fully observable MDPs, the optimal policy depends only on the current state, π∗(at | st). In94

POMDPs, however, the agent cannot access st directly. Instead, the optimal policy must condition95

on the full history ht = (o0, a0, o1, a1, . . . , ot), yielding π∗(at | ht). A sufficient statistic of ht is96

the belief state bt ∈ ∆(S), defined as bt(s) = Pr(st = s | ht). Exact belief updates are typically97

infeasible in high-dimensional domains such as robotics.98

A practical alternative is to approximate the history with a learned memory state mt =99

fϕ(mt−1, ot, at−1), πθ :M→ ∆(A), πθ(at | mt), where fϕ is a recurrent or memory-augmented100

update rule (e.g., RNNs, transformers with external memory). In the fully observable case, the101

memory state reduces to the true state, mt ≡ st, and the POMDP reduces to a standard MDP.102

4 Method103

Many real-world decision-making tasks involve long horizons and partial observability, where key104

information may appear thousands of steps before it is needed. Standard transformers are con-105

strained by a fixed attention window: longer contexts incur quadratic cost, while truncation causes106

forgetting. Recurrent models help but suffer from vanishing information and instability. Efficient107

long-term reasoning thus requires an explicit mechanism to store and retrieve task-relevant informa-108

tion across very long trajectories.109

To this end, we propose ELMUR (External Layer Memory with Update/Rewrite), a GPT-style110

transformer decoder augmented with structured external memory. Unlike architectures that simply111

cache hidden states, ELMUR equips each layer with its own memory track and explicit read–write112

operations, enabling persistent storage and selective updating. This design directly addresses the113

challenges of long-horizon reinforcement learning under partial observability, where dependencies114

extend far beyond the context length of standard transformers.115
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Algorithm 1 ELMUR layer (per segment i, per layer ℓ)
Require: Token states h ∈ RB×L×d, memory state (m, p) with memory tensor m ∈ RB×M×d and

memory anchors p ∈ ZB×M , absolute token times t ∈ Z0+, where T - context length; M -
number of memory slots; B - batch size; d - model dimension.

Ensure: Updated token states h′, updated memory state (m′, p′)
1: // Input embedding (before first layer)
2: h← ObsEncoder(o) ▷ project observations o into hidden state h
3: // Token track (per layer)
4: h← AddNorm

(
h+ SelfAttention(h; causal mask)

)
5: Bread ← RelativeBias(t, p) ▷ read bias, tokens→memory
6: h← AddNorm

(
h+CrossAttention(Q=h,K=m,V=m; non causal, Bread)

)
7: h← AddNorm

(
h+TokenFFN(h)

)
8: h′ ← h
9: // Output decoding (after final layer)

10: a← ActionHead(h′) ▷ map final hidden state h′ into action distribution
11: // Memory track
12: Bwrite ← −Bread ▷ reversed relative bias
13: u← AddNorm

(
m+CrossAttention(Q=m,K=h′, V=h′; non causal mask, Bwrite)

)
14: ũ← AddNorm

(
u+MemoryFFN(u)

)
15: (m′, p′)← LRU Update(m, p, ũ, t0=t1) ▷ t1: newest absolute time in segment i
16: return (h′, (m′, p′))

4.1 ELMUR Overview116 Algorithm 2 LRU Update
Require: Current memory (m, p) (may be

uninitialized), candidate update ũ, newest
anchor time t0, blend λ ∈ [0, 1], init scale σ

Ensure: Updated memory (m′, p′)
1: (Initialization) if m, p uninitialized then
2: m← N (0, σ2I) ▷ initial slots
3: p← −1 array ▷ sentinel anchors
4: end if
5: empty← (p < 0)
6: if any empty then
7: write mask← one hot(first empty)
8: α← 1.0
9: else

10: j⋆ ← argmin p ▷ oldest anchor
11: write mask← one hot(j⋆)
12: α← λ
13: end if
14: blend← αũ+ (1− α)m
15: m′ ← select(write mask, blend, m)
16: p′ ← select(write mask, t0, p)
17: return (m′, p′)

As shown in Figure 1, ELMUR is organized117

into two tracks: the token track, which en-118

codes observations and produces actions, and119

the memory track, which maintains a memory120

store and processing across segments. This two121

tracks interact bidirectionally: tokens read from122

memory through a cross-attention block and,123

symmetrically, write their representations back124

through another. Both operations are guided by125

special relative biases computed from the ab-126

solute timestep of each token and the anchor127

of the corresponding memory slot, defined as128

the last timestep when that slot was updated.129

When writing, new entries fill available slots;130

if none are free, the least recently used slots131

are refreshed via convex combinations of old132

and new content, providing controlled forget-133

ting. Memory is updated recurrently across tra-134

jectory segments: each segment is processed in135

order, and its final hidden states update the memory before passing it forward. In this way, ELMUR136

builds and maintains temporally grounded memory that supports long-horizon reasoning. The fol-137

lowing subsections describe each stage of ELMUR, and the complete procedure is summarized in138

Algorithm 1.139

4.2 Segment-Level Recurrence140

Long trajectories cannot be fed to a transformer in full: self-attention scales quadratically with141

sequence length. Splitting trajectories into shorter segments reduces the context size, but creates a142

new problem: how to transmit information across segment boundaries without large caches or lossy143
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Figure 2: LRU-based memory management in
ELMUR. Each layer maintains M memory slots,
initialized with random vectors (green). As new
segments arrive, tokens write updates into empty
slots (purple) by full replacement. Once all slots
are filled, the least recently used slot is refreshed
via a convex update that blends new content with
the previous memory. Anchors below each row
indicate the timestep of the most recent update.
This scheme ensures bounded capacity while pre-
serving long-horizon information.

compression. Segment-level recurrence ad-144

dresses this by making the transformer oper-145

ate as an RNN over segments, sequentially146

processing segments while carrying a memory147

state forward [14, 17].148

We adopt this paradigm but realize the carried149

memory state as layer-local external memory150

rather than cached hidden activations. Each151

layer maintains a persistent memory that (i) is152

read by tokens of the current segment and (ii)153

is updated from those tokens before moving to154

the next segment. This yields stable training155

(no backprop through the entire trajectory), low156

memory use, and minimal information break157

between segments.158

Let a trajectory of length T be o1:T =159

(o1, . . . , oT ) and fix context length L. Par-160

tition into S = ⌈T/L⌉ contiguous segments161

Si = (o(i−1)L+1, . . . , omin(iL,T )), i = 1, . . . , S. Each layer holds memory slots m, updated at162

the end of segment i − 1 and reused at segment i (see Figure 1). The token track for segment i163

attends to the detached previous memory, h(i) = TokenTrack
(
Si, sg(m i−1)

)
,, where sg(·) stops164

gradients across segments. After processing Si, the memory is rewritten from h(i) via the write path165

(tok2mem) and the LRU update rule (Section 4.6), yielding m i that is passed to the next segment.166

Thus, ELMUR implements segment-level recurrence with explicit, structured memory instead of167

hidden-state caches.168

4.3 Token Track169

The token track in ELMUR autoregressively models dependencies within the current context and170

integrates them with external memory. Standard transformers rely only on self-attention inside a171

fixed window, which limits access to distant information. In ELMUR, the token track augments this172

local modeling by retrieving relevant content from memory, so that predictions can depend on both173

recent context and long-past events.174

Within each segment, the token track first encodes local dependencies through self-attention and175

then enriches these representations by reading from the memory via the mem2tok block. In this176

way, tokens can directly access task-relevant information stored many segments earlier, overcoming177

the cutoff imposed by the finite context window.178

Encoded observations are first processed with self-attention using relative positional encodings [14]179

and a causal mask: hsa = AddNorm(x+ SelfAttention(x)). Unlike Transformer-XL, ELMUR180

does not cache hidden states across segments; long-term dependencies are managed entirely by the181

external memory. The hidden states then enter the mem2tok block, a cross-attention module where182

tokens act as queries and memory slots provide keys and values:183

hmem2tok = AddNorm(hsa +CrossAttention(Q = hsa, K, V = m)) . (1)

This block uses a non-causal mask, allowing tokens unrestricted access to memory, and applies a rel-184

ative bias reflecting the temporal distance between tokens and memory anchors (see subsection 4.5).185

Finally, outputs are refined by a feed-forward network with residual connection and normalization:186

h = AddNorm(hmem2tok + FFN(hmem2tok)) , (2)

and the final-layer states are passed to an action head to produce the predicted action.187
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4.4 Memory Track188

While the token track enables tokens to read from memory, long-horizon reasoning also requires189

writing new information back. Without an explicit write mechanism, the model would either forget190

past events or accumulate unstructured caches that quickly become inefficient. The memory track191

addresses this by providing a controlled way for tokens to update persistent memory, ensuring that192

salient information is retained across segments while older or less useful content can be overwritten.193

Each transformer layer in ELMUR maintains its own memory matrix. After processing a segment,194

tokens contribute updates to this memory through the tok2mem block. The resulting updates are195

refined and then integrated using an LRU module, which guarantees bounded yet persistent storage.196

Formally, each layer stores memory slots m ∈ RM×d. Token representations are passed into the197

tok2mem block, a cross-attention module where memory slots act as queries and token states as keys198

and values: mtok2mem = AddNorm(m+CrossAttention(Q = m, K, V = h)). As in mem2tok,199

a non-causal mask is used, but the relative bias is reversed, encouraging tokens to update slots200

anchored near their own timestep. The updates are then refined by a feed-forward network with201

residual connection and normalization: mnew = AddNorm(mtok2mem + FFN(mtok2mem)).202

Finally, mnew is integrated with existing slots via the LRU mechanism (see Figure 2, Algorithm 2),203

which fills free slots or refreshes the least recently used ones by convex blending. This ensures that204

memory remains bounded yet persistently updated with the most relevant information.205

4.5 Relative Bias in Cross-Attention206

When memory spans multiple segments, absolute positions alone are insufficient: the same token207

index may correspond to very different points in the overall trajectory. Without a proper temporal208

signal, the model cannot reliably decide which memory slots to read from or update. To maintain209

consistency across arbitrarily long sequences, we need a mechanism that encodes relative distances210

between tokens and memory entries.211

ELMUR introduces a learned relative bias that conditions cross-attention scores on the temporal212

offset between a token’s timestep and the anchor of a memory slot (the last time the slot was213

updated). This allows the model to favor temporally close interactions while still permitting ac-214

cess to distant information. Concretely, we add a relative bias Brel to the cross-attention logits:215

Attn(Q,K) = QK⊤
√
dh

+ Brel. In the mem2tok path (reading), the bias emphasizes nearby slots,216

promoting retrieval from recent memory while keeping older slots accessible. In the tok2mem path217

(writing), the bias is inverted, directing updates toward slots aligned with the writing tokens. By218

grounding access in relative rather than absolute time, ELMUR generalizes beyond the fixed context219

window and maintains temporally coherent memory interactions across long horizons (see Figure 1).220

4.6 Memory Management with LRU221

External memory must remain bounded: storing every token across long trajectories is infeasible.222

At the same time, simply discarding old information risks catastrophic forgetting. A principled223

mechanism is therefore needed to decide which slots to update, overwrite, or preserve as new content224

arrives.225

ELMUR introduces a Least Recently Used (LRU) block (Figure 2, Algorithm 2) that manages a fixed226

set of M slots in each layer. Each slot stores both a vector and an anchor indicating the timestep227

of its most recent update. By always refreshing the least recently used slot, the block guarantees228

bounded capacity while maintaining relevant long-term context.229

At training start, initialization samples memory embeddings from N (0, σ2I) and marks them230

empty, making them the first to be overwritten. While empty memory embeddings remain, full231

replacement inserts new memory vectors directly, ensuring fresh content without blending. Once232

all memory embeddings are filled, the block switches to convex update, where the least recently233
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Table 1: Comparison of success rates (mean ± standard error) on MIKASA-Robo tasks. Results
are averaged over 3 runs and validated on 100 seeds. ELMUR consistently outperforms baselines,
demonstrating stronger memory in robotic manipulation. For transformer models (RATE, DT, EL-
MUR), context length was set to one third of the maximum episode length.

Task RATE DT BC-MLP CQL-MLP DP ELMUR (ours)
RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01 0.89±0.07
RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02 0.19±0.03
RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01 0.23±0.02
TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02 0.78±0.03

used memory embedding (oldest anchor) is updated by234

m i+1
j = λmnew + (1− λ)mi

j , (3)

with λ ∈ [0, 1] controlling the trade-off between overwriting and retention.235

Through this policy, ELMUR fully utilizes capacity before overwriting and applies gradual blend-236

ing when replacement becomes necessary, preserving long-horizon information on arbitrarily long237

trajectories while keeping memory strictly bounded.238

By integrating token-level processing with an explicit memory system, ELMUR achieves three prop-239

erties: (i) temporally grounded read–write access via relative-bias cross-attention, (ii) bounded yet240

flexible capacity through the LRU-based memory manager, and (iii) scalable long-horizon learning241

enabled by segment-level recurrence.242

5 Experiments243

9 30 90 150 300 600 900 1200 2400 4800 9600

Validation Sequence Length

9
30

90
15
0

30
0

60
0

90
0Tr

ai
ni

ng
 S

eq
ue

nc
e 

L
en

gt
h

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Figure 3: Generalization of ELMUR across T-
Maze sequence lengths. Each cell shows success
rate (mean ± standard error) for a given pair of
training and validation sequence lengths. Results
demonstrate perfect transfer: models trained on
shorter sequences retain 100% performance when
evaluated on sequences up to 9600 steps. Each
training length was divided into three segments of
equal length during training.

We evaluate ELMUR on synthetic [35] and244

robotic benchmarks [36] designed to probe245

long-horizon memory under partial observabil-246

ity. Our goals are threefold: (i) to test whether247

ELMUR retains information across horizons248

far beyond its context window, (ii) to assess249

generalization across sequence lengths, and250

(iii) to demonstrate effectiveness in robotic251

manipulation tasks with sparse rewards. We252

compare against strong baselines, including253

transformer-based models: Decision Trans-254

former (DT) [37] and Recurrent Action Trans-255

former with Memory (RATE) [31]; state-space256

models (DMamba) [38]; and imitation or of-257

fline RL methods: Behavior Cloning (BC), Conservative Q-Learning (CQL) [39], and Diffusion258

Policy (DP) [40].259

5.1 Memory-intensive environments260

Passive T-Maze. The Passive T-Maze [35] features a corridor ending in a junction with two goals.261

At the start, one goal is randomly revealed, and the agent must recall this cue after traversing the262

corridor to choose the correct branch. Observations are vectors; actions are discrete. Rewards are263

sparse, provided only upon reaching the correct goal. The task tests whether the model can retain264

early cues across long delays.265

MIKASA-Robo benchmark. We further evaluate on the MIKASA-Robo benchmark [36], which266

provides robotic tabletop manipulation tasks designed for memory evaluation. Each environ-267

ment simulates a 7-DoF arm with a two-finger gripper. Observations are paired RGB images268

(3 × 128 × 128) from a static and wrist camera; actions are continuous (7 joints + gripper). Re-269

wards are binary, given only on task success. We study two families of MIKASA-Robo tasks: (i)270

RememberColor[3,5,9]-v0, where the agent must recall the color of a hidden cube after a delay271

with distractors, and (ii) TakeItBack-v0, where the agent first moves a cube to a goal, then must272

return it once the goal changes.273
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Figure 4: Success rate on the Passive T-Maze task as a function of inference corridor length. Shaded
areas denote mean ± standard error of the mean over 4 independent runs, each evaluated on 100
random seeds. ELMUR achieves a 100% success rate up to corridor lengths of one million
steps. In this figure, the context length is L = 10 with S = 3 segments; thus ELMUR carries
information across horizons 100,000 times longer than its context window.
5.2 Discussion of Results274

Our experiments highlight ELMUR’s ability to handle long-horizon dependencies under partial ob-275

servability.276

T-Maze. ELMUR achieves 100% success on corridors up to one million steps (Figure 4), despite a277

context of only L = 10 tokens and S = 3 segments during training. Competing transformers (DT,278

TrXL, RMT, RATE) fail once horizons exceed their context, and state-space models (DMamba)279

collapse entirely. This shows that segment-level recurrence with layer-local memory enables quali-280

tatively stronger generalization, solving the memory bottleneck rather than just extending the cutoff.281

As shown in Figure 3, ELMUR trained on short contexts (3 or 30 steps) transfers perfectly to se-282

quences up to 9600, maintaining 100% success. This demonstrates robust scaling and the ability to283

extrapolate/interpolate beyond training lengths.284

MIKASA-Robo. On robotic manipulation (Table 1), ELMUR outperforms DT, RATE, DP, and of-285

fline RL methods (CQL, BC). Gains are largest in temporally demanding tasks: in TakeItBack-v0,286

ELMUR nearly doubles the next-best success rate, while in the RememberColor family it remains287

stable as distractors increase, unlike baselines. Selective rewriting via the LRU module proves criti-288

cal for balancing stability and plasticity.289

These results show that ELMUR’s design — external memory, relative-bias cross-attention, and290

LRU updates — yields robust long-horizon reasoning, effective decision making under sparse re-291

wards, and scalable memory for robotics.292

6 Limitations293

Despite strong long-horizon performance, ELMUR has several limitations. First, memory man-294

agement relies on a simple LRU policy with fixed blending, which may overwrite useful content295

if memory size, segment length, or blend rate are poorly chosen. Second, cross-attention between296

tokens and memory adds cost proportional to memory size per layer; while cheaper than extending297

the token window, it still increases inference time for larger models. Third, evaluation is limited298

to synthetic and simulated tabletop tasks under imitation learning with sparse rewards; online RL299

stability, safety, and real-robot trials are not explored.300

7 Conclusion301

We introduced ELMUR, a transformer with layer-local external memory, relative-bias cross-302

attention for temporally grounded read/write, and an LRU-based update that balances stability and303

plasticity. ELMUR extends horizons far beyond the attention window, processing sequences up304

to 100,000 times longer than its context, and achieves state-of-the-art results on MIKASA-Robo,305

consistently surpassing strong baselines. Looking forward, we identify three directions: learning306

the memory controller (adaptive allocation, content-aware eviction, sparse writes) instead of fixed307

LRU, and developing hierarchical or multimodal memory to integrate visual, language, and propri-308

oceptive cues. We hope ELMUR provides a practical recipe for transformer policies with scalable309

memory in real-world sequential decision making.310
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