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Abstract001

Assessing higher-order thinking skills in large002
language models (LLMs) remains a fundamen-003
tal challenge, especially in tasks that go beyond004
surface-level accuracy. In this work, we pro-005
pose THINK (Testing Higher-order Notion of006
Knowledge), a multi-agent, feedback-driven007
evaluation framework grounded in Bloom’s008
Taxonomy. THINK frames reasoning assess-009
ment as an iterative task of problem generation,010
critique, and revision, encouraging LLMs to011
"think-aloud" through step-by-step reflection012
and refinement. This enables a systematic eval-013
uation of both lower-order (e.g., remember, un-014
derstand) and higher-order (e.g., evaluate, cre-015
ate) thinking skills. We apply THINK to seven016
state-of-the-art LLMs and perform a detailed017
cognitive analysis of their outputs. Results re-018
veal that while models reliably perform lower-019
order categories well, they struggle with apply-020
ing knowledge in realistic contexts and exhibit021
limited abstraction. Structured feedback loops022
significantly improve reasoning performance,023
particularly in higher-order thinking. Qualita-024
tive evaluations further confirm that THINK-025
guided outputs better align with domain logic026
and problem structure. The code of our frame-027
work, available at this anonymous link, pro-028
vides a scalable methodology for probing and029
enhancing LLM reasoning, offering new di-030
rections for evaluation grounded in learning031
science.032

1 Introduction033

“Education is not the learning of facts,034

but the training of the mind to think.”035

— Albert Einstein036

Assessing and enhancing large language models037

(LLMs) to support higher-order thinking (HOT)038

skills has become an emerging research focus (Latif039

et al., 2024; Xiao et al., 2025). As students in-040

creasingly rely on LLMs for flexible and accessible041

Bad Questions
with Solutions

New Questions
with Solutions 

(Based on Pre-Knowledge)

Bad Questions
with Solutions

> Feedback-Driven Learning

New Questions
with Solutions Based on

Suggestions

It lacks...What if..
It can add..

Zero Shot Adaption Higher-Order Thinking Adaptation

Great Sugeestions!
Based on ... I will

improve...
Should I adapt this

word or not?

> No Visible Reasoning Steps

Figure 1: A figure shows the "think-aloud" process
through iterative revision and reflection, a more robust
assessment of HOT skills in LLMs.

learning support, these models are being used as 042

tutors to generate and solve complex mathemati- 043

cal problems that demand human-like HOT skills 044

(Borge et al., 2024). All learners can progressively 045

acquire HOT skills (Zohar and Dori, 2003), but the 046

development requires continuous practice and guid- 047

ance from knowledgeable and supportive educators 048

(Saifer, 2018). One approach is the use of high- 049

quality questions to cultivate HOT skills, thereby 050

facilitating the assessment and promotion of stu- 051

dents’ cognitive development (Yao et al., 2021). 052

Although recent studies have explored how to 053

use LLMs to classify, generate, and solve math 054

problems aligned with Bloom’s taxonomy (He 055

et al., 2023; Scaria et al., 2024a), none of them 056

focus on the process of refining and regenerating 057

problems, which limits our exploration and im- 058

provement of LLMs’ HOT skills. Benchmarks 059

like BIG-Bench Hard (Suzgun et al., 2022) aggre- 060

gate performance across heterogeneous tasks, po- 061

tentially masking critical differences in a model’s 062

proficiency at various cognitive levels (Srivastava 063

et al., 2022). Moreover, LLMs often struggle with 064

advanced reasoning processes (Collins et al., 2022), 065

such as "thinking one step ahead" or adopting a the- 066

ory of mind (ToM) perspective (Holterman and 067

1

https://anonymous.4open.science/r/THiNK-8F48


van Deemter, 2023) to anticipate the types of prob-068

lems that stimulate students’ creativity or critical069

thought.070

In this study, we focus on the cognitive task071

of refining and regenerating mathematical word072

problems (MWPs) as a process central to HOT073

skills (Widana, 2017), through refining initial at-074

tempts into more sophisticated outcomes iteratively075

(Fazey, 2010). Crafting high-quality MWPs to har-076

monize between abstract numerical reasoning, real-077

world context, and educational goals challenges078

the model to mimic and apply HOT skills (Testolin,079

2024; Widana et al., 2018). As illustrated in Figure080

1, we hypothesize that if an LLM can revise MWPs081

through iterative feedback integrations, it will re-082

veal its underlying HOT skills through machine083

think-aloud. The think-aloud protocol is a widely084

used approach in cognitive psychology and learn-085

ing sciences, in which participants articulate their086

thought processes in engaging real-time experimen-087

tal tasks (Wolcott and Lobczowski, 2021). Now, re-088

searchers have used this approach in prompt frame-089

works (Chu et al., 2025).090

To this end, we introduce THINK: Testing091

Higher-order Notion of Knowledge, a novel frame-092

work that aims to assess and improve the HOT capa-093

bilities of LLMs through the lens of mathematical094

problem generation. Unlike prior frameworks that095

rely primarily on accuracy-based metrics (Scaria096

et al., 2024b), THINK employs parallel evaluation097

agents grounded in Bloom’s Taxonomy to assess098

models’ capacity to iteratively review and revise099

flawed problems in response to structured feed-100

back. This approach reflects real-world learning101

processes and provides a theoretically grounded,102

automated approach for probing the cognitive depth103

of LLMs, bridging natural language processing and104

educational theory. In summary, our contributions105

are threefold:106

1. We present a multi-agent, feedback-driven107

evaluation framework grounded in educa-108

tional theory. This novel framework empow-109

ers automated, structured evaluation of LLM110

reasoning and is further validated through111

qualitative evaluations by a human expert.112

2. We introduce an iterative question refinement113

task to systematically probe a range of cog-114

nitive skills, from basic comprehension (e.g.,115

remembering and understanding) to higher-116

order reasoning (e.g., evaluating and creat-117

ing), including the generation of improved 118

problems. 119

3. We conduct extensive experiments with mul- 120

tiple LLMs and establish a first-of-its-kind 121

analysis of their reasoning performance across 122

Bloom’s levels, revealing key insights into 123

their cognitive strengths and limitations. 124

2 Related Work 125

2.1 Cognitive Views on LLMs 126

Understanding the human-like cognitive capabili- 127

ties of LLMs is essential in evaluating their poten- 128

tial for human-like linguistic abilities (Niu et al., 129

2024), including critical analysis and creative think- 130

ing. Existing studies have benchmarked LLMs 131

across various cognitive dimensions, identifying 132

similarities and divergences from human cogni- 133

tion. Srinivasan et al. (2023) pioneered the use of 134

prototype analysis and understanding of proverbs 135

to examine the commonsense reasoning of LLM. 136

LLMs also demonstrate intuitive biases in psycho- 137

logical tests such as the Cognitive Reflection Test 138

(Hagendorff et al., 2023) and show layer-specific 139

alignment with neural signals in fMRI data (Zhang 140

et al., 2024). Yet, key gaps remain, as LLMs 141

often struggle with structured reasoning and in- 142

ductive judgment, diverging from human-like pat- 143

terns (Lamprinidis, 2023). Although techniques 144

like chain-of-thought (CoT) prompting (Wei et al., 145

2022) can enhance model reasoning, they remain 146

insufficient to capture higher-order cognition on 147

a scale (Prystawski et al., 2022). Thus, current 148

evaluation paradigms are heavily based on heuris- 149

tics and lack standardized frameworks. This study 150

addresses these limitations by examining whether 151

LLMs can generalize beyond surface-level pattern 152

matching to support deeper metacognitive compe- 153

tence. 154

2.2 Math Word Problem Generation 155

Existing MWP generation methods fall into four 156

categories (i.e., template-based, rewriting-based, 157

neural network-based, and LLM-based) (Kang 158

et al., 2025). Template-based approach uses ab- 159

stract skeletons, rewriting-based method modifies 160

problem narrative descriptions and contexts, and 161

neural network-based models the MWP genera- 162

tion end-to-end from topics and equation (Koncel- 163

Kedziorski et al., 2016; Polozov et al., 2015; Zhou 164

and Huang, 2019). These methods either fail to cap- 165

ture temporal efficiency and cognitive progression 166
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during the generation process, or make it challeng-167

ing to evaluate human-like reasoning (Amirizani-168

ani et al., 2024). MWP generation can be used to169

explore more efficient proxy tasks as potential solu-170

tions. To address these shortcomings, we propose171

a feedback-driven, multi-agent framework based172

on LLMs to refine and regenerate flawed MWPs173

into high-quality ones with accurate answers. It174

naturally aligns with cognitive frameworks like175

Bloom’s Taxonomy, demands structured reasoning,176

and has been employed in prior research (Scaria177

et al., 2024b) to investigate LLMs’ abilities in gen-178

eralization and metacognitive abilities.179

3 THINK180

Our THINK framework is grounded on educa-181

tional foundations and designed to assess the ex-182

tent to which current LLMs demonstrate HOT183

skills. In this section, we present the theoretical184

underpinnings that map constructs of human HOT185

skills onto LLMs’ higher-order reasoning, along-186

side pipeline details.187

3.1 Educational Foundations for Evaluation188

Rather than evaluating LLMs solely based on189

surface-level correctness, our goal is to assess190

whether they can reason, generalize, and reflect191

in ways that align with human cognitive develop-192

ment (Ragab et al., 2024). Therefore, we draw on193

several key theories from the learning sciences and194

incorporate them into our THINK framework.195

Bloom’s Taxonomy for LLMs The revised196

Bloom’s Taxonomy (Krathwohl, 2002) categorizes197

cognitive processes into a hierarchical structure198

comprising lower-order thinking (LOT) skills (i.e.,199

remembering, understanding, and applying) and200

HOT skills (i.e., analyzing, evaluating, and creat-201

ing). The HOT skills of LLMs have been widely202

explored (Haase et al., 2025; Zhao et al., 2024)203

with research focusing on tackling complex tasks204

that challenge human performance. Although not205

exactly equivalent to human-like cognition, some206

scholars suggest that with sufficient interaction,207

LLMs could develop enhanced general intelligence208

and potentially advance toward a theory of mind or209

even rudimentary forms of consciousness (y Arcas,210

2022).211

Vygotsky’s Zone of Proximal Development212

(ZPD) and Inquiry-based Learning According213

to Vygotsky and Cole (1978), the ZPD refers to the214

gap between the tasks that a learner can complete 215

on their own and those they can successfully tackle 216

when given targeted assistance from instructors 217

(Shabani et al., 2010). Applied to LLMs, appropri- 218

ate prompts are similar to the guidance of teachers, 219

which can better instruct LLMs to think about dis- 220

assembly and improvement, thereby triggering the 221

HOT skills. Inquiry-based learning (Pedaste et al., 222

2015) emphasizes active engagement of learners in 223

formulating questions and seeking answers. The 224

ability to ask meaningful questions signals a tran- 225

sition from surface-level recall to deeper cogni- 226

tive engagement (Yim and Su, 2025). Under this 227

framework, the question generation serves as a mea- 228

sure of HOT skills and a mechanism to promote 229

metacognitive reflection. We examine whether 230

LLMs can simulate such inquiry behaviors, using 231

their generated math questions as a proxy for rea- 232

soning depth. 233

3.2 Framework Implementation 234

The overview of THINK is shown in Figure 2, 235

which includes the data preparation stage, multi- 236

agent evaluation structure, quality assessment pro- 237

tocols, and iterative revision loops, aiming to sup- 238

port comprehensive analysis of LLMs’ cognitive 239

performance. 240

3.2.1 Data Preparation 241

The foundation of our evaluation framework is built 242

upon a curated collection of low-quality mathemat- 243

ical problems. Let D = {p1, p2, ..., pm} denote 244

our dataset of m mathematical problems, where 245

each problem pi consists of a question qi and its 246

solution si, i.e., pi = (qi, si). We construct D 247

from two primary sources. The first subset, Dbad, 248

contains m1 = 20 poorly constructed problems 249

crawled from social media platforms (e.g., Reddit, 250

Twitter). These examples exhibit deficiencies in 251

pedagogical soundness and fail to satisfy core qual- 252

ity criteria. The second subset, Dsyn_bad, comprises 253

100 synthetically generated questions produced by 254

GPT-4O using prompts detailed in Appendix B.1. 255

These questions mimic the structural weaknesses 256

of Dbad by deliberately omitting the “Five Keys” 257

components, defined in Appendix A.1. 258

3.2.2 Multi-Agent Evaluation Structure 259

Algorithm 1 details the implementation of this 260

framework, which employs a parallelized multi- 261

agent system A = {A1, A2, ..., A7}, where each 262

agent Aj for j ∈ {1, ..., 6} corresponds to a spec- 263
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Q: A student has test scores of 80, 85, 90 in
math. The teacher says, the average of your
last two...

A: No able to sovle it. If  the fourth score is
x, then (90+x) / 2 = 88 ...

Flawed Math problems      

Q: A student is preparing for a final math exam. The
student has test scores of 80, 85, and 90...

A: Let the score of the final exam be x. The average
of the last two tests is given by (90 + x) / 2 = 87 ...

New Problem & Solution      

Think-Aloud
“FIVE KEYS”

Q: A young chef is preparing for a cooking
competition. The chef has received scores of 75,
80, and 85 in the preliminary rounds ...

A: No able to sovle it. If  the fourth score is x,
then (90+x) / 2 = 88. Solving for y, we get 85 + y
= 164, so y = 79. Now, the average of all four ...

Succeed Problem       
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Improvement Suggestions:
1: "The new problem attempts to apply
mathematical concepts related to ...",
2: "Ensure that the conditions provided in the
problem lead to a solvable equation.",
3. "Consider a scenario where a student is
calculating their final grade based on a new test
score, with realistic averages."

Checking threshold

Conversation History

LLMs

Question Generation

Figure 2: Overview of the THINK. The pipeline begins with flawed math problems that are iteratively refined.
The core multi-agent evaluation stage uses six Bloom-aligned agents and one heuristic agent to assess quality,
providing scores and targeted feedback. Guided by the "Five Keys" and prior suggestions, LLMs revise or generate
new problems via a think-aloud process. A quality threshold determines success or triggers further refinement.

ified cognitive level in Bloom’s Taxonomy, and264

A7 represents a holistic language and pedagogical265

evaluation. Given a problem pi ∈ D, each agent266

Aj generates the tuple:267

Aj(pi) = (PSj(pi), CSj(pi))268

where PSj(pi) ∈ [0, 100] is the performance score269

and CSj(pi) ∈ [0, 100] is the confidence score.270

The detailed prompts of each agent are provided271

in Appendix B.2. These are produced using CoT272

prompting, encouraging explicit, step-wise reason-273

ing (Wei et al., 2022) aligned with the agent’s cogni-274

tive level. In addition, the holistic evaluation agent275

A7 further outputs an improvement suggestion:276

A7(pi) = (PS7(pi), CS7(pi), IS(pi))277

where IS(pi) provides structured feedback on how278

to improve the problem. The prompt used by the279

holistic agent is provided in Appendix B.3. This280

feedback assesses whether the problem satisfies281

the "Five Keys" components, evaluates lexical and282

syntactic complexity, and identifies ambiguities or283

unsolvable elements. It examines the alignment be-284

tween the problem and its proposed solution strat-285

egy (See Figure 2).286

3.3 Quality Assessment Protocol287

We define three core metrics to assess the quality288

evolution from a given problem pi to its revised289

version, collectively capturing correctness, inter-290

agent consistency, and confidence:291

Pass Rate (PR):

PR(pi) =
1

|A|

|A|∑
j=1

1(PSj(pi) > τ) 292

where τ is the predefined passing threshold. Fol- 293

lowing Zheng et al. (2023), we adopt a reference- 294

guided rating approach in which each agent assigns 295

a performance score based on specific evaluation 296

criteria. The pass rate reflects the proportion of 297

agents who consider the problem sufficiently well- 298

constructed to meet their level-specific standards. 299

Agent Agreement (AA):

AA(pi) = κ · ({bj(pi) | j ∈ {1, ..., |A|}}) 300

with bj(pi) = 1(PSj(pi) > τ) as a binary in- 301

dicator. κ(·) denotes Cohen’s Kappa coefficient, 302

quantifying the agreement between agents beyond 303

chance and reflecting evaluation consistency (Co- 304

hen, 1960). 305

Average Confidence (AC):

AC(pi) =
1

|A|

|A|∑
j=1

CSj(pi) 306

This aggregates how confident the agents are in 307

their evaluations. It serves as an indicator of relia- 308

bility, consistent with findings from recent work on 309

trust calibration in LLM outputs (Jung et al., 2024). 310
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Algorithm 1 THINK Framework

Require: Problem set D = {p1, . . . , pm}, agents
A = {A1, . . . , A7}, threshold τ , weights
(α, β, γ), maximum iterations R

Ensure: Improved problem set Dimproved, final
cognitive performance scores Qfinal

1: Dimproved ← ∅, Qfinal ← ∅
2: for each pi ∈ D do
3: r ← 0, success← False
4: while r < R and not success do
5: Evaluate pi using all agents A to obtain

scores (PS,CS) and feedback IS
6: Compute PR(pi), AA(pi), AC(pi), and

composite quality score Q(pi)
7: if Q(pi) > τ then
8: success← True
9: else

10: ▷ Refine via feedback→ Think-aloud
11: pi ← LLM(pi, IS)
12: r ← r + 1
13: end if
14: end while
15: Add final version of pi to Dimproved
16: Add final Q(pi) to Qfinal
17: end for
18: return Dimproved, Qfinal

Success Criterion: We combine the three met-311

rics into a composite quality score:312

Q(pi) = α · PR(pi) + β ·AA(pi) + γ ·AC(pi)313

In our setting, α = 0.5, β = 0.3, and γ = 0.2 are314

weights determined by expert tuning. Finally, a315

problem is deemed successful if:316

Success(pi) = 1(Q(pi) > 85)317

We choose these three metrics to assess prob-318

lem quality from different dimensions: PR mea-319

sures correctness across cognitive dimensions, AA320

checks for consistent evaluation beyond random321

agreement, and AC incorporates evaluators’ confi-322

dence in their judgments. Hence multi-agent struc-323

ture provides a robust assessment, which is essen-324

tial for evaluating higher-order reasoning.325

3.4 LLM Think-aloud and Pipeline Overview326

The structured pipeline enables LLMs to refine327

flawed math problems using agent-generated feed-328

back iteratively. Grounded in the educational the-329

ories discussed in Section 3.1, the process incor-330

porates a think-aloud protocol (Wolcott and Lobc- 331

zowski, 2021), a widely used approach in cogni- 332

tive psychology and learning sciences, in which 333

participants articulate their thought processes in 334

real time while engaging in experimental tasks, 335

particularly those involving learning and problem 336

solving. In this study, LLMs act as participants 337

in self-reflective revisions and demonstrate their 338

thinking processes based on agent feedback. When 339

a problem pi fails to meet the quality threshold, it 340

undergoes iterative refinement. The holistic agent 341

A7 provides structured feedback IS(pi), which is 342

returned to the LLM to generate an improved ver- 343

sion of the problem. The revised problem is then 344

re-evaluated by all agents. This loop continues for 345

up to R iterations until the quality score exceeds 346

the threshold. The algorithm details are provided 347

in Algorithm 1. Each iteration promotes improve- 348

ment in question quality, also allowing us to exam- 349

ine the LLM’s reasoning and revision behaviors. 350

This enables a deeper analysis of both lower- and 351

higher-order thinking capabilities. 352

4 Experiment 353

We present experiments conducted with the 354

THINK framework using the dataset introduced in 355

Section 3.2.1, a curated collection of web-crawled 356

and synthetic flawed math problems designed to 357

assess LLMs’ reasoning and revision capabilities. 358

4.1 Metrics 359

Cognitive Performance via Bloom’s Evaluation 360

The cognitive performance of LLM is evaluated us- 361

ing Bloom’s taxonomy within our multi-agent eval- 362

uation framework, with each agent denoted as A1 363

through A6. Beyond raw performance, we analyze 364

score improvements across iterations as a proxy for 365

the model’s revision ability and depth of reasoning. 366

Given the potential unreliability of subjective per- 367

formance scores, we incorporate an additional final 368

quality check aligned with the objective scoring 369

protocol described below. To further ensure the re- 370

liability of the framework, we conduct a qualitative 371

comparison between zero-shot question revisions 372

and those guided by THINK. 373

Quality Performance Evaluation We define 374

two metrics to evaluate the effectiveness of the iter- 375

ative refinement process within the THINK frame- 376

work. 377

RoundsToPass Denoted as Rpass(pi), this metric 378

measures the efficiency of the refinement loop by 379
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Model Remembering Understanding Applying Analyzing Evaluating Creating Avg.

GPT-4O 86.92 ↑ 26.92 82.96 ↑ 5.79 76.71 ↓ 0.46 83.50 ↑ 4.21 83.54 ↑ 2.92 82.62 ↑ 4.21 82.71 ↑ 3.51

GPT-4O-MINI 85.21 ↑ 15.12 82.96 ↑ 0.71 74.50 ↓ 5.88 82.88 ↓ 1.38 83.08 ↓ 1.88 82.42 ↓ 0.54 81.51 ↑ 1.91

GPT-3.5-TURBO 82.29 ↑ 12.96 81.25 ↑ 1.29 71.83 ↓ 6.12 81.12 ↑ 0.54 80.92 ↓ 0.54 80.25 ↑ 0.92 79.61 ↑ 2.41

QWEN2.5-14B-IT 90.92 ↑ 42.50 74.92 ↑ 2.42 71.54 ↑ 0.71 81.25 ↑ 7.46 81.88 ↑ 6.17 77.83 ↑ 5.92 79.39 ↑ 2.49

QWEN2.5-7B-IT 91.96 ↑ 34.25 72.54 ↓ 0.54 68.54 ↓ 5.79 76.96 ↓ 0.21 78.38 ↑ 0.33 73.88 ↓ 0.12 77.38 ↑ 0.18

MISTRAL-8B-IT 91.62 ↑ 35.79 67.96 ↓ 3.21 66.92 ↓ 6.21 74.75 ↑ 0.50 76.21 ↓ 0.33 70.33 ↓ 3.04 74.30 ↓ 2.90

LLAMA-3.1-8B-IT 90.42 ↑ 30.38 71.58 ↓ 3.75 69.04 ↓ 6.58 78.08 ↑ 1.83 77.58 ↓ 0.75 75.08 ↓ 0.21 76.80 ↓ 0.40

Average 88.48 ↑ 28.42 76.02 ↑ 0.96 71.15 ↓ 4.19 79.22 ↑ 1.71 80.80 ↑ 1.45 77.20 ↑ 1.30 78.81 ↑ 1.16

Table 1: Model performance across the six cognitive levels defined by Bloom’s Taxonomy. Each cell reports
the average score for the corresponding cognitive category, with ↑ and ↓ indicating the relative improvement or
decline compared to the previous round, based on the model’s revision. Bold and underline highlight the best and
second-best performances.

recording the number of iterations required for a380

problem pi to exceeds the quality threshold τ :381

Rpass(pi) = min
{
r ∈ [1, R] | A(p(r)i ) > τ

}
,382

where A(p
(r)
i ) is the quality score at iteration r, R383

is the max number of allowed refinement rounds.384

AvgQualityScore Denoted as Qavg, this metric385

captures the average quality across all refinement386

steps:387

Qavg =
1

N

N∑
i=1

(
1

Ri

Ri∑
r=1

A(p
(r)
i )

)
,388

Together, these metrics provide a holistic view of389

the model’s iterative reasoning behavior, including390

its ability to improve question quality, engage with391

structured feedback, and maintain consistency in392

producing high-quality outputs.393

4.2 Evaluated Models and Settings394

We evaluate a set of off-the-shelf LLMs us-395

ing THINK framework to probe their capacity396

for higher-order reasoning capabilities. We in-397

clude four open-source models: LLAMA-3.1-8B-398

IT (Llama, 2024), Mistral-8B-IT (Jiang et al.,399

2023), QWEN2.5-7B-IT, and QWEN2.5-14B-IT400

(Qwen2.5, 2025); and three closed-source models:401

GPT-3.5-TURBO, GPT-4O-MINI, and GPT-4O402

(OpenAI, 2024). Notably, GPT-4O is used to im-403

plement the multi-agent roles within our pipeline,404

with the temperature set to 0, following its strong405

cognitive reasoning performance in the current406

benchmark (Huang et al., 2024). All open-source407

models are run on two NVIDIA A6000 GPUs408

(32GB), and the experiments involving OpenAI409

models incur a cost of approximately $300.410

Model Rpass(pi) Qavg (%)

GPT-4O 2.35 82.46 ↑ 0.10
GPT-4O-MINI 2.57 78.68 ↑ 0.01
GPT-3.5-TURBO 2.60 73.46 ↑ 0.02

QWEN2.5-14B-IT 2.08 77.10 ↑ 0.11
QWEN2.5-7B-IT 2.12 72.47 ↑ 0.05
MISTRAL-8B-IT 2.04 72.05 ↑ 0.06
LLAMA-3.1-8B-IT 2.17 71.11 ↑ 0.03
Average 2.27 75.76 ↑ 0.05

Table 2: Performance of LLMs on iterative refinement
tasks. Rpass(pi) is the average number of refinement
rounds required for problem pi to exceed the quality
threshold. Qavg represents the final quality score after all
refinement steps. ↑ indicates the relative improvement
in quality score compared to the last iteration.

4.3 Experimental Results 411

Table 1 and Table 2 show the performance of LLMs 412

on the THINK framework, covering both cognitive 413

skill levels defined by Bloom’s Taxonomy and met- 414

rics for iterative refinement. We highlight several 415

observations as follows: 416

LLMs Underperform in Mid-Level Cognitive 417

Domains Table 1 shows that LLMs achieve con- 418

sistently high scores in lower-order reasoning tasks 419

such as Remembering and Understanding, indicat- 420

ing strong capabilities in information recall and 421

paraphrasing. However, there is a marked per- 422

formance drop in the Applying category, which 423

requires transferring learned concepts to a real- 424

world scenario. Nearly all models exhibit degra- 425

dation in this dimension, suggesting that while 426

LLMs are effective at surface-level understand- 427

ing, they struggle to deploy knowledge in practical 428

6



Version Question Solution
Original An orchestra of 120 players takes 40 minutes to

play Beethoven’s 9th Symphony. How long would
it take for 60 players to play the symphony?

(Implied): Assumes inverse proportionality,
suggesting it would take 80 minutes for 60 players.

Zero-shot A school band with 120 members plays a song that
lasts 40 minutes. If the same song is played by a
band with 60 members, how long will the
performance last?

It will still take 40 minutes for 60 band members to
perform the song.

THINK-Guided An orchestra of 120 musicians performs
Beethoven’s 9th Symphony in 40 minutes.
Assuming equal contribution, how long would it
take 60 musicians to complete the same symphony?

Since performance duration does not depend on the
number of musicians (as long as all parts are
covered), it would still take 40 minutes for 60
musicians.

Table 3: Comparison of the original flawed problem and its improved versions via zero-shot prompting and the
THINK framework, demonstrating enhanced domain-appropriate reasoning. Sampled from QWEN2.5-14B-IT.

or problem-solving contexts. Even GPT-4O, the429

top-performing model, demonstrates a noticeable430

decline in this category, crafting a cognitive gap431

between comprehension and execution.432

LLMs Are Not Always Reliable Across Domains433

Many models display inconsistencies across all434

cognitive levels, demonstrating an uneven devel-435

opment of cognitive capabilities. For example,436

MISTRAL-8B-IT achieves 91.62 in Remembering437

but drops sharply to 66.92 in Applying and 70.33 in438

Creating, reflecting surface-level fluency that does439

not generalize to tasks requiring flexible reason-440

ing or creativity. In contrast, GPT-4O maintains a441

relatively narrow performance band, showing that442

sophisticated models benefit more from structured443

revision and are more capable of consistent reason-444

ing across cognitive levels. Additionally, Table 2445

shows that closed-source models outperform open-446

source ones in terms of final output quality. This447

may be attributed to more extensive training data448

and better instruction tuning, which help closed-449

source models generate more coherent, human-like450

questions.451

However, illustrated in Table 2, we observe that452

LOT skills, e.g., Remembering, are easy for LLMs453

to perform and improve through revision. Particu-454

larly, open-source models show strong gains in this455

category across rounds, indicating that LLMs are456

highly responsive to structured feedback when deal-457

ing with rote or surface-level tasks. This pattern458

aligns with the characteristics of "System 1" cogni-459

tion, which reflects that the THINK framework is460

able to isolate and evaluate effectively.461

Smaller Models Are Efficient But Limited in462

Quality Ceiling Table 2 reveals an interesting463

trend in refinement efficiency. Models with smaller464

parameter counts, e.g., MISTRAL-8B-IT, achieve465

Figure 3: Comparison between HOT and LOT. The
scale is the sum of scores across corresponding levels.

lower average Rpass values, indicating faster con- 466

vergence during iterative revision. However, this 467

efficiency often comes at the cost of lower final 468

quality scores, reflecting a trade-off between revi- 469

sion speed and output quality. These findings sug- 470

gest that while smaller models may adapt feedback 471

quicker, larger models exhibit a greater capacity 472

for sustained, high-quality refinement. 473

Feedback-driven Learning Enhances Higher- 474

Order Thinking As shown in Table 1, perfor- 475

mance in higher-order cognitive categories, includ- 476

ing Analyzing, Evaluating, and Creating, often 477

outperforms that in mid-level categories. For ex- 478

ample, QWEN2.5-14B-IT scores above 77 in all 479

higher-order dimensions. This suggests that the 480

feedback-driven learning is particularly effective in 481

improving deeper reasoning abilities that may not 482

be captured in single-turn evaluations, highlight- 483

ing its value in diagnosing higher-order cognitive 484

competencies. 485

Critically, as illustrated in Figure 3, the closed- 486

source model shows promising results in HOT 487
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skills. This reinforces that advanced, instruction-488

tuned models are better positioned to engage with489

feedback-driven reasoning tasks. These models490

may have implicitly learned to perform tasks aimed491

at HOT during training on feedback, an advantage492

that becomes visible only under frameworks like493

THINK.494

Qualitative Assessment of THINK-guided En-495

hancement Quality Table 3 presents a represen-496

tative example evaluated across three conditions:497

the original flawed question, a zero-shot variant us-498

ing only the “Five Keys” prompt (Appendix A.2),499

and the output generated by the THINK frame-500

work. Qualitative analysis of the outputs was fur-501

ther conducted, with detailed evaluations summa-502

rized in Table 4 and full annotations provided in503

Appendix C.504

The comparison reveals that both zero-shot and505

THINK-guided responses improve over the origi-506

nal, but the THINK framework leads to more con-507

sistent gains in contextual reasoning and concep-508

tual accuracy. In particular, it correctly identifies509

that the duration of a musical performance is in-510

variant to ensemble size, avoiding the erroneous511

inverse proportionality assumption present in the512

original and baseline outputs. In other words, zero-513

shot models fail to identify inconsistencies between514

problem conditions and real-world environments,515

leading to misleading improvements in problem516

generation.517

Moreover, the THINK-guided output engages518

HOT skills. While the baseline reflects misapplied519

procedural logic, and the zero-shot version resolves520

surface-level errors, the THINK response exhibits521

abstraction and analysis consistent with upper lev-522

els of Bloom’s taxonomy. It unpacks implicit as-523

sumptions, maintains narrative plausibility, and ap-524

plies structurally coherent reasoning. These results525

indicate that the THINK framework enhances not526

only accuracy but also the depth and generalizabil-527

ity of model reasoning.528

Conclusion529

In this work, we introduce THINK, a multi-530

agent evaluation and feedback-driven framework531

grounded in educational theory, to diagnose and im-532

prove higher-order thinking skills in large language533

models. THINK systematically generates, cri-534

tiques, and revises mathematical problems aligned535

with Bloom’s Taxonomy, allowing detailed analy-536

sis of model reasoning beyond standard accuracy537

metrics, enabling us to measure model performance 538

on applying, analyzing, and creating, not just recall. 539

Evaluation of seven LLMs reveals a persistent HOT 540

skills gap: models perform well on lower-order 541

tasks, but score significantly lower on practical ap- 542

plication and concept creation. Our framework mit- 543

igates this gap via structured feedback cycles and 544

demonstrates that closed-source models currently 545

outperform open-source ones in reasoning quality. 546

Qualitative analysis confirms that THINK-guided 547

outputs exhibit deeper conceptual alignment and 548

domain fidelity. 549

By making models “think-aloud” through itera- 550

tive critique, THINK offers a scalable, principled 551

approach for the community to both measure and 552

advance LLM cognition, paving the way for more 553

robust reasoning capabilities in educational and 554

real-world applications. Future work could extend 555

THINK in several promising directions, including 556

exploring cross-domain transfer by applying our 557

framework to other reasoning tasks beyond math- 558

ematics, and integrating THINK into human eval- 559

uation workflows to support the development of 560

more effective human-AI collaborative reasoning 561

systems in educational contexts. 562

Limitation 563

This study does face certain limitations as it is a pre- 564

liminary framework. While our framework demon- 565

strates strong potential, several aspects warrant fur- 566

ther exploration. The current study relies on a cu- 567

rated set of flawed mathematical problems, which 568

may limit the diversity of error types encountered 569

in broader settings. Future work could benefit from 570

incorporating more varied, real-world data to en- 571

hance generalizability. Additionally, although the 572

evaluation rubric was designed to be lightweight 573

and prompt-efficient, more comprehensive scoring 574

frameworks could offer deeper insights into rea- 575

soning quality and consistency. At the same time, 576

this study did not recruit external experts for output 577

verification, which may reduce the reliability of 578

THINK in practical applications. Finally, THINK 579

aims to improve HOT skills performance, there is a 580

risk that optimization toward rubric-aligned outputs 581

could encourage overfitting to evaluative heuristics. 582

To mitigate this, we emphasize diverse tasks and 583

maintain transparency about rubric design. Broader 584

adoption should be accompanied by careful vali- 585

dation to avoid reinforcing narrow benchmarks of 586

“correctness” in open-ended reasoning tasks. 587

8



Ethical Considerations588

This study involves the evaluation of large language589

models using synthetic and publicly available math-590

ematical problem data. No personally identifiable591

information or human subject data were used in592

model evaluation.593
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Appendix819

A Think-aloud Structure820

A.1 The Five Keys Components of MWP821

We introduce a practical decomposition of cognitive rigor in math problem design, termed the “Five822

Keys” components. This schema is rooted in educational research on instructional design and cognitive823

development (Airasian, 2001; Radmehr and Drake, 2018), and is aligned with the Revised Bloom’s824

Taxonomy to ensure both depth of knowledge and metacognitive engagement.825

This decomposition provides a structured lens for evaluating whether a math problem—and by extension,826

an LLM’s solution process—demonstrates authentic HOT skills. Rather than emphasizing rote correctness,827

each component targets different facets of complex reasoning, enabling a multi-dimensional assessment828

of LLM behavior within the THINK framework.829

1. Math Concepts and Domains: This dimension identifies the core mathematical ideas underlying830

a task, such as algebraic structures, number theory, or geometry. By analyzing which concepts are831

invoked, we assess the knowledge dimension activated during problem-solving and whether the LLM832

navigates these domains coherently.833

2. Prerequisite Skills: This component captures the foundational knowledge—both conceptual and834

procedural—that a learner or model must possess to attempt a solution. These skills serve as proxies835

for prior knowledge and inform whether the LLM draws upon relevant background competence.836

3. Mathematical Representations: These include formal expressions (e.g., symbolic notation, equa-837

tions), diagrams, or stepwise procedures. Representations are critical for logical coherence and838

traceability in reasoning. Evaluating this component helps identify whether an LLM applies opera-839

tions in a structured and intelligible manner.840

4. Alternative Values: This refers to variations in the input parameters of a problem that preserve841

its underlying structure. A model’s ability to adapt its reasoning across such variants reflects842

generalization ability—an essential attribute of HOT.843

5. Narrative Stories: Embedding problems in real-world or socio-cultural contexts situates abstract844

mathematical reasoning within meaningful scenarios. This component supports engagement and845

contextual transfer, and allows us to probe whether the LLM can maintain reasoning integrity when846

the task is couched in diverse narrative frames.847

By formally integrating these components into our evaluation, we enable a principled analysis of LLM848

reasoning behaviors. Each element supports the dual objectives of cognitive rigor and metacognitive849

awareness, offering a richer and more educationally grounded alternative to traditional correctness-based850

metrics. The “Five Keys” thus serve as a pedagogical bridge between human-centered learning sciences851

and machine learning evaluation, reinforcing the interpretability and validity of the THINK framework.852
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A.2 Five Keys Prompt Details 853

Five Keys Improvement

You are a mathematical problem-maker, and at the same time an expert in cognitive science, psychology, philosophy and
education. As an LLM you can generate contents related to requirements, and now your purpose is to self-reflect on the process of
your math problem generation process, analyzing what you have done.

Remember, this is your problem generation outcome last time. Think aloud as you work on the instructions:

1. Analyze the generated problem of the last round. You should try to understand and retrieve the specific mathematical
information in it such as facts, patterns, objects, or contextual information, and decipher these meanings.
2. Use cognitive skills essential for processing and applying information effectively. It includes understanding and organizing
information, analyzing relationships, drawing conclusions, and distinguishing nuances. Additionally, you should evaluate ideas
critically.
3. Generate mathematical expressions for the new problems. These new expressions should have the same form as the given
expressions in the previous generated math problem. They must have the same complexity as well. Choose values to substitute
into the expression, and calculate the outputs.
4. Generate stories for these mathematical expressions with the appropriate questions based on the chosen values. The generated
stories must be a mathematical word problem with the corresponding expressions. The story must be creative and unique.
5. Following and combining the previous steps, and you will generate a new creative version of the given math problem. Review
the generated new version math problem, ensuring all the criteria are satisfied and double check it.

Provide your evaluation in JSON format with these exact keys:
{{
"question": "The complete question text",
"solution": "The detailed solution approach"
}}

Please also address these improvement suggestions {json.dumps(improvement_suggestions, indent=2)}
854

B THINK framework details 855

B.1 Synthetic Bad-quality Question Prompt 856

Bad-quality Question Generator

You are an expert in creating intentionally flawed math questions. Your task is to generate a single math question that has one or
more of the following issues:
1. Ambiguous wording or missing critical information
2. Unrealistic assumptions or scenarios
3. Multiple possible interpretations
4. Contradictory information
5. Unclear requirements or expectations

The question should follow this format:
{{
"ID": null,
"question": "The question text",
"LaTeX question": "The question text with LaTeX
formatting",
"solution": "Explanation of why the question is flawed and what information is missing or ambiguous",
"mathConcept1": "Main math concept (e.g., Arithmetic and Algebra)",
"mathConcept2": "Sub-concept (e.g., Algebraic expressions)",
"mathConcept3": "",
"Difficulty": "N/A or Easy/Medium/Hard",
"Grade": "9 12 or 6 8 or College",
"Resource": "GPT"
}}

Make sure the question has a clear flaw that makes it difficult to solve or has multiple valid interpretations.
857
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B.2 Multi-Agent Evaluation Prompts - A1, A2, ..., A6858

Remembering - level 1

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Remembering" level skills of a math
problem generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Step 1: Identify "Big Five" Components. Extract these from both problems: 1) math concepts and domains, 2) required skills to
solve the problem, 3) math expressions as sequence of operations, 4) values that substitute into expressions, and 5) creative and
unique narrative story based on real-life socio-cultural experiences.
Step 2: Remembering. Compare the five components in both problems. The score should represent how well the math problem
generator remembers and retains critical information and components from the old problem in the new version.
Step 3: Levels of Remembering.
- Strong Remembering (80-100): If all math concepts, required skills, math expressions, and the narrative story in the new
problem are almost the same as in the old problem, assign a performance_score between 80 and 100.
- Medium Remembering (60-80): If two out of the following four components are similar between the new and old problems
(math concepts, required skills, math expressions, and the narrative story), assign a performance_score between 60 and 80.
- Low Remembering (<60): If less than two of these components are shared, assign a performance_score between 0 and 60. Note
that the ’values’ component is not considered in this step for partial similarity.
Step 4: Confidence Score and Suggestion. Reflect on your confidence level in making this judgment and assign a confidence_score
between 0 and 100. Provide actionable and specific suggestions to enhance the problem as improvement_suggestions.

**Details for Comparison:**
- **Previous Problem:**: {last_question_details}
- **Previous Expected Solution:**{last_question_expected_solution}
- **New Problem:** {new_question_details}
- **New Expected Solution:**{new_question_expected_solution}

**Result Format:**
Provide your evaluation in JSON format with these exact keys:
{{ "performance_score": 0-100,
"confidence_score": 0-100 }}

859

Understanding - level 2

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Understanding" level skills of a math
problem generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Step 1: Identify "Big Five" Components. Extract these from both problems: 1) math concepts and domains, 2) required skills to
solve the problem, 3) math expressions as sequence of operations, 4) values that substitute into expressions, and 5) creative and
unique narrative story based on real-life socio-cultural experiences.
Step 2: Understanding. Compare the five components to assess whether the generator effectively modifies the problem across
seven subcategory operations: interpreting, exemplifying, classifying, summarizing, inferring, comparing, and associating.
Step 3: Levels of Understanding.
- Strong Understanding (80–100): Demonstrates a deep grasp of the five components, identifying at least three operations among
the seven.
- Medium Understanding (60–80): Reflects surface-level changes, identifying at least one operation among the seven.
- Low Understanding (<60): Shows minimal variation, with errors and inconsistencies. The new problem fails to demonstrate the
generator’s ability across the seven operations.
Step 4: Confidence Score and Suggestion. Reflect on your confidence level in making this judgment and assign
a confidence_score between 0 and 100. Provide actionable and specific suggestions to enhance the problem as
improvement_suggestions.

**Details for Comparison:**
- **Previous Problem:**: {last_question_details}
- **Previous Expected Solution:**{last_question_expected_solution}
- **New Problem:** {new_question_details}
- **New Expected Solution:**{new_question_expected_solution}

**Result Format:**
Provide your evaluation in JSON format with these exact keys:
{{
"performance_score": 0-100,
"confidence_score": 0-100
}}

860
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Applying - level 3

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Applying" level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.
Step 2: Applying. Look for evidence that the generator applies constructed knowledge to both familiar (executing) and unfamiliar
(implementing) tasks.
Step 3: Levels of Applying:
- Strong Applying (80–100): Demonstrates effective knowledge application and introduces useful variation or improvement.
- Medium Applying (60–80): Applies prior knowledge in familiar form with limited creativity.
- Low Applying (<60): Mostly replicates prior problem without deeper application.
Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**
- **Previous Problem:**:
{last_question_details}
- **Previous Expected Solution:**
{last_question_expected_solution}
- **New Problem:**
{new_question_details}
- **New Expected Solution:**
{new_question_expected_solution}

**Result Format:**
Provide your evaluation in JSON format with these exact keys:
{{
"performance_score": 0-100,
"confidence_score": 0-100
}}

861

Analyzing - level 4

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Analyzing" level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Please follow these steps:

Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.
Step 2: Analyzing. Look for signs that the problem generator breaks down elements, highlights distinctions, and reorganizes
structure.
Step 3: Levels of Analyzing:
- Strong Analyzing (80–100): Breaks down and reorganizes structure effectively to highlight deeper relationships.
- Medium Analyzing (60–80): Identifies structure but without major transformation.
- Low Analyzing (<60): Surface-level manipulation or copy with minimal analysis.
Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**
- **Previous Problem:**: {last_question_details}
- **Previous Expected Solution:**{last_question_expected_solution}
- **New Problem:** {new_question_details}
- **New Expected Solution:**{new_question_expected_solution}

**Result Format:**
Provide your evaluation in JSON format with these exact keys:
{{
"performance_score": 0-100,
"confidence_score": 0-100
}}

862
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Evaluating - level 5

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Evaluating" level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Please follow these steps:

Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.
Step 2: Evaluating. Examine whether the generator makes justified choices, defends reasoning, and prioritizes design decisions.
Step 3: Levels of Evaluating:
- Strong Evaluating (80–100): Provides justified changes and demonstrates prioritization in design logic.
- Medium Evaluating (60–80): Modifies problem with some justifications or preference reasoning.
- Low Evaluating (<60): Minor edits without clear evaluation or rationale.
Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**
- **Previous Problem:**: {last_question_details}
- **Previous Expected Solution:**{last_question_expected_solution}
- **New Problem:** {new_question_details}
- **New Expected Solution:**{new_question_expected_solution}

**Result Format:**
Provide your evaluation in JSON format with these exact keys:
{{
"performance_score": 0-100,
"confidence_score": 0-100
}}

863

Creating - level 6

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Creating" level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Please follow these steps:

Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.
Step 2: Creating. Assess whether the generator develops original content by synthesizing and inventing meaningful structure or
context.
Step 3: Levels of Creating:
- Strong Creating (80–100): Constructs novel and effective problem with well-integrated ideas.
- Medium Creating (60–80): Makes some changes or combinations with partial novelty.
- Low Creating (<60): Mostly rearranges or copies with minimal originality.
Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**
- **Previous Problem:**: {last_question_details}
- **Previous Expected Solution:**{last_question_expected_solution}
- **New Problem:** {new_question_details}
- **New Expected Solution:**{new_question_expected_solution}

**Result Format:**
Provide your evaluation in JSON format with these exact keys:
{{
"performance_score": 0-100,
"confidence_score": 0-100
}}

864
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B.3 Holistic Evaluation Agent - A7 865

Holistic Evaluation - General Quality

You are an expert evaluator assessing Math Problem Quality and Math Language Quality in the educational question generation
research context.
Please evaluate the quality of the following math word problem by analyzing its big five components and linguistic features.
Identify and categorize any linguistic-level errors (e.g., ambiguity, unanswerability, or linguistic complexity) and assess the
problem’s solution strategy.

**Details for Comparison:**
- **Previous Problem:** {last_question_details}
- **Previous Expected Solution:** {last_question_expected_solution}
- **New Problem:** {new_question_details}
- **New Expected Solution:** {new_question_expected_solution}

**Step 1: Big Five Components Extraction**
1) Math concepts and domains
2) Required skills to solve the problem
3) Math expressions as sequence of operations
4) Values that substitute into expressions
5) The narrative story based on real-life socio-cultural experiences

**Step 2: Lexical and Syntactic Complexity Analysis**
- Type-Token Ratio (TTR)
- Yngve Score
- Frazier Score
- Frazier–Roark Score
- Developmental Level
- Syntactic Frequency
- Mean Dependency Distance (MDD)
- Sentence Length

**Step 3: Error Identification and Classification**
- Ambiguity
- Unanswerability
- Rationality

**Step 4: Solution Strategy Analysis**
- One-Step or Multi-Step
- Comprehension Challenges from Multi-Step Reasoning

**Step 5: Improvement Suggestions**
Suggestions should address:
- Ambiguous phrasing
- Unanswerable problems
- Linguistic complexity
- Structure consistency and narrative realism

**Step 6: Performance Score Calculation (0–100)**
1. Lexical and Syntactic Complexity
2. Error Count and Severity
3. Clarity and Solvability
4. Answerability Penalty
5. Structural Consistency and Creativity

**Scoring Guidance:**
- 90–100: Clear, simple, and error-free problem.
- 70–89: Minor complexity or errors that slightly impact clarity.
- 50–69: Moderate complexity and multiple identifiable issues.
- 0–49: Significant errors, ambiguity, or unanswerable conditions.

**Result Format:**
Please return your evaluation in the following JSON format:
{{
"performance_score": 0-100,
"confidence_score": 0-100,
"improvement_suggestions": ["suggestion1", "suggestion2"]
}}

866
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C Human Expert Quality Evaluation867

Evaluation
Component

Zero-shot Qwen2.5-14B THINK-Guided Qwen2.5-14B Comparison & Insight

Math Concepts and
Domains

Implies inverse proportionality
between number of musicians
and performance time, akin to
shared work problems in algebra.

Recognizes invariance of musical
performance duration, aligning
with real-world temporal
constraints rather than
mathematical proportional
reasoning.

The baseline activates
inappropriate algebraic domain
reasoning, while the
instruction-tuned version
correctly disengages from it,
reflecting conceptual coherence.

Prerequisite Skills Requires procedural knowledge
of ratio and unit manipulation
but misapplies them due to the
incorrect premise.

Requires conceptual
understanding of real-life
constraints rather than
computation.

The instruction-tuned version
activates domain-appropriate
prior knowledge, indicating
better alignment with relevant
mental schemas.

Mathematical
Representations

Suggests (implicitly) a
proportional formula: (120
musicians × 40 minutes) ÷ 60 =
80 minutes. No explicit
expression, but logic implies
computation.

No symbolic expression: relies
on verbal conceptual reasoning
that performance time is
independent of musician count if
ensemble is complete.

The baseline attempts structured
reasoning but misapplies it; the
tuned version avoids misleading
formalism, showing better
traceability and logic.

Alternative Values Fails to generalize: if given
different but equivalent values,
the baseline would still apply
faulty proportional logic.

Generalizes correctly: the model
recognizes that performance
duration is invariant under
alternative numbers of musicians,
assuming parts are covered.

Instruction tuning enhances
generalization across input
permutations that preserve the
core problem structure.

Narrative Stories Uses a formal orchestra setting
but leverages it in a way that
misleadingly maps to
mathematical workload sharing.

Uses a school band narrative,
maintaining realism while
correctly situating the
mathematical logic within a
consistent real-world constraint.

The instruction-tuned model
better integrates narrative realism
and reasoning integrity,
supporting engagement without
conceptual distortion.

Bloom’s Taxonomy
Level

Apply (misapplied): Requires
calculation, but the wrong
concept leads to incorrect
problem-solving.

Understand / Analyze: Requires
unpacking implicit assumptions
and applying invariant reasoning
to a familiar context.

The instruction-tuned version
ascends Bloom’s hierarchy,
requiring abstract thinking and
transfer, not mechanical
execution.

Table 4: Comparative analysis of baseline and instruction-tuned QWEN2.5-14B-IT models across multiple
evaluation dimensions, highlighting improved contextual reasoning and domain-appropriate knowledge application.
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