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Abstract

Assessing higher-order thinking skills in large
language models (LLMs) remains a fundamen-
tal challenge, especially in tasks that go beyond
surface-level accuracy. In this work, we pro-
pose THINK (Testing Higher-order Notion of
Knowledge), a multi-agent, feedback-driven
evaluation framework grounded in Bloom’s
Taxonomy. THINK frames reasoning assess-
ment as an iterative task of problem generation,
critique, and revision, encouraging LLMs to
"think-aloud" through step-by-step reflection
and refinement. This enables a systematic eval-
uation of both lower-order (e.g., remember, un-
derstand) and higher-order (e.g., evaluate, cre-
ate) thinking skills. We apply THINK to seven
state-of-the-art LLMs and perform a detailed
cognitive analysis of their outputs. Results re-
veal that while models reliably perform lower-
order categories well, they struggle with apply-
ing knowledge in realistic contexts and exhibit
limited abstraction. Structured feedback loops
significantly improve reasoning performance,
particularly in higher-order thinking. Qualita-
tive evaluations further confirm that THINK-
guided outputs better align with domain logic
and problem structure. The code of our frame-
work, available at this anonymous link, pro-
vides a scalable methodology for probing and
enhancing LLM reasoning, offering new di-
rections for evaluation grounded in learning
science.

1 Introduction

“Education is not the learning of facts,
but the training of the mind to think.”

— Albert Einstein

Assessing and enhancing large language models
(LLMs) to support higher-order thinking (HOT)
skills has become an emerging research focus (Latif
et al., 2024; Xiao et al., 2025). As students in-
creasingly rely on LLMs for flexible and accessible
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Figure 1: A figure shows the "think-aloud" process

through iterative revision and reflection, a more robust
assessment of HOT skills in LLMs.

learning support, these models are being used as
tutors to generate and solve complex mathemati-
cal problems that demand human-like HOT skills
(Borge et al., 2024). All learners can progressively
acquire HOT skills (Zohar and Dori, 2003), but the
development requires continuous practice and guid-
ance from knowledgeable and supportive educators
(Saifer, 2018). One approach is the use of high-
quality questions to cultivate HOT skills, thereby
facilitating the assessment and promotion of stu-
dents’ cognitive development (Yao et al., 2021).
Although recent studies have explored how to
use LLMs to classify, generate, and solve math
problems aligned with Bloom’s taxonomy (He
et al., 2023; Scaria et al., 2024a), none of them
focus on the process of refining and regenerating
problems, which limits our exploration and im-
provement of LLMs’ HOT skills. Benchmarks
like BIG-Bench Hard (Suzgun et al., 2022) aggre-
gate performance across heterogeneous tasks, po-
tentially masking critical differences in a model’s
proficiency at various cognitive levels (Srivastava
et al., 2022). Moreover, LLMs often struggle with
advanced reasoning processes (Collins et al., 2022),
such as "thinking one step ahead" or adopting a the-
ory of mind (ToM) perspective (Holterman and
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van Deemter, 2023) to anticipate the types of prob-
lems that stimulate students’ creativity or critical
thought.

In this study, we focus on the cognitive task
of refining and regenerating mathematical word
problems (MWPs) as a process central to HOT
skills (Widana, 2017), through refining initial at-
tempts into more sophisticated outcomes iteratively
(Fazey, 2010). Crafting high-quality MWPs to har-
monize between abstract numerical reasoning, real-
world context, and educational goals challenges
the model to mimic and apply HOT skills (Testolin,
2024; Widana et al., 2018). As illustrated in Figure
1, we hypothesize that if an LLM can revise MWPs
through iterative feedback integrations, it will re-
veal its underlying HOT skills through machine
think-aloud. The think-aloud protocol is a widely
used approach in cognitive psychology and learn-
ing sciences, in which participants articulate their
thought processes in engaging real-time experimen-
tal tasks (Wolcott and Lobczowski, 2021). Now, re-
searchers have used this approach in prompt frame-
works (Chu et al., 2025).

To this end, we introduce THINK: Testing
Higher-order Notion of Knowledge, a novel frame-
work that aims to assess and improve the HOT capa-
bilities of LLMs through the lens of mathematical
problem generation. Unlike prior frameworks that
rely primarily on accuracy-based metrics (Scaria
et al., 2024b), THINK employs parallel evaluation
agents grounded in Bloom’s Taxonomy to assess
models’ capacity to iteratively review and revise
flawed problems in response to structured feed-
back. This approach reflects real-world learning
processes and provides a theoretically grounded,
automated approach for probing the cognitive depth
of LLMs, bridging natural language processing and
educational theory. In summary, our contributions
are threefold:

1. We present a multi-agent, feedback-driven
evaluation framework grounded in educa-
tional theory. This novel framework empow-
ers automated, structured evaluation of LLM
reasoning and is further validated through
qualitative evaluations by a human expert.

2. We introduce an iterative question refinement
task to systematically probe a range of cog-
nitive skills, from basic comprehension (e.g.,
remembering and understanding) to higher-
order reasoning (e.g., evaluating and creat-

ing), including the generation of improved
problems.

3. We conduct extensive experiments with mul-
tiple LLMs and establish a first-of-its-kind
analysis of their reasoning performance across
Bloom’s levels, revealing key insights into
their cognitive strengths and limitations.

2 Related Work
2.1 Cognitive Views on LLMs

Understanding the human-like cognitive capabili-
ties of LLMs is essential in evaluating their poten-
tial for human-like linguistic abilities (Niu et al.,
2024), including critical analysis and creative think-
ing. Existing studies have benchmarked LLMs
across various cognitive dimensions, identifying
similarities and divergences from human cogni-
tion. Srinivasan et al. (2023) pioneered the use of
prototype analysis and understanding of proverbs
to examine the commonsense reasoning of LLM.
LLMs also demonstrate intuitive biases in psycho-
logical tests such as the Cognitive Reflection Test
(Hagendorff et al., 2023) and show layer-specific
alignment with neural signals in fMRI data (Zhang
et al.,, 2024). Yet, key gaps remain, as LLMs
often struggle with structured reasoning and in-
ductive judgment, diverging from human-like pat-
terns (Lamprinidis, 2023). Although techniques
like chain-of-thought (CoT) prompting (Wei et al.,
2022) can enhance model reasoning, they remain
insufficient to capture higher-order cognition on
a scale (Prystawski et al., 2022). Thus, current
evaluation paradigms are heavily based on heuris-
tics and lack standardized frameworks. This study
addresses these limitations by examining whether
LLMs can generalize beyond surface-level pattern
matching to support deeper metacognitive compe-
tence.

2.2 Math Word Problem Generation

Existing MWP generation methods fall into four
categories (i.e., template-based, rewriting-based,
neural network-based, and LLM-based) (Kang
et al., 2025). Template-based approach uses ab-
stract skeletons, rewriting-based method modifies
problem narrative descriptions and contexts, and
neural network-based models the MWP genera-
tion end-to-end from topics and equation (Koncel-
Kedziorski et al., 2016; Polozov et al., 2015; Zhou
and Huang, 2019). These methods either fail to cap-
ture temporal efficiency and cognitive progression



during the generation process, or make it challeng-
ing to evaluate human-like reasoning (Amirizani-
ani et al., 2024). MWP generation can be used to
explore more efficient proxy tasks as potential solu-
tions. To address these shortcomings, we propose
a feedback-driven, multi-agent framework based
on LLMs to refine and regenerate flawed MWPs
into high-quality ones with accurate answers. It
naturally aligns with cognitive frameworks like
Bloom’s Taxonomy, demands structured reasoning,
and has been employed in prior research (Scaria
et al., 2024b) to investigate LLMs’ abilities in gen-
eralization and metacognitive abilities.

3 THINK

Our THINK framework is grounded on educa-
tional foundations and designed to assess the ex-
tent to which current LLMs demonstrate HOT
skills. In this section, we present the theoretical
underpinnings that map constructs of human HOT
skills onto LLMs’ higher-order reasoning, along-
side pipeline details.

3.1 Educational Foundations for Evaluation

Rather than evaluating LLMs solely based on
surface-level correctness, our goal is to assess
whether they can reason, generalize, and reflect
in ways that align with human cognitive develop-
ment (Ragab et al., 2024). Therefore, we draw on
several key theories from the learning sciences and
incorporate them into our THINK framework.

Bloom’s Taxonomy for LLMs The revised
Bloom’s Taxonomy (Krathwohl, 2002) categorizes
cognitive processes into a hierarchical structure
comprising lower-order thinking (LOT) skills (i.e.,
remembering, understanding, and applying) and
HOT skills (i.e., analyzing, evaluating, and creat-
ing). The HOT skills of LLMs have been widely
explored (Haase et al., 2025; Zhao et al., 2024)
with research focusing on tackling complex tasks
that challenge human performance. Although not
exactly equivalent to human-like cognition, some
scholars suggest that with sufficient interaction,
LLMs could develop enhanced general intelligence
and potentially advance toward a theory of mind or
even rudimentary forms of consciousness (y Arcas,
2022).

Vygotsky’s Zone of Proximal Development
(ZPD) and Inquiry-based Learning According
to Vygotsky and Cole (1978), the ZPD refers to the

gap between the tasks that a learner can complete
on their own and those they can successfully tackle
when given targeted assistance from instructors
(Shabani et al., 2010). Applied to LLMs, appropri-
ate prompts are similar to the guidance of teachers,
which can better instruct LLMs to think about dis-
assembly and improvement, thereby triggering the
HOT skills. Inquiry-based learning (Pedaste et al.,
2015) emphasizes active engagement of learners in
formulating questions and seeking answers. The
ability to ask meaningful questions signals a tran-
sition from surface-level recall to deeper cogni-
tive engagement (Yim and Su, 2025). Under this
framework, the question generation serves as a mea-
sure of HOT skills and a mechanism to promote
metacognitive reflection. We examine whether
LLMs can simulate such inquiry behaviors, using
their generated math questions as a proxy for rea-
soning depth.

3.2 Framework Implementation

The overview of THINK is shown in Figure 2,
which includes the data preparation stage, multi-
agent evaluation structure, quality assessment pro-
tocols, and iterative revision loops, aiming to sup-
port comprehensive analysis of LLMs’ cognitive
performance.

3.2.1 Data Preparation

The foundation of our evaluation framework is built
upon a curated collection of low-quality mathemat-
ical problems. Let D = {pi,p2,...,pm} denote
our dataset of m mathematical problems, where
each problem p; consists of a question g; and its
solution s;, i.e., p; = (gi,s;). We construct D
from two primary sources. The first subset, Dpad,
contains m; = 20 poorly constructed problems
crawled from social media platforms (e.g., Reddit,
Twitter). These examples exhibit deficiencies in
pedagogical soundness and fail to satisfy core qual-
ity criteria. The second subset, Dgyn_pad, comprises
100 synthetically generated questions produced by
GPT-40 using prompts detailed in Appendix B.1.
These questions mimic the structural weaknesses
of Dyp,q by deliberately omitting the “Five Keys’
components, defined in Appendix A.1.

>

3.2.2 Multi-Agent Evaluation Structure

Algorithm 1 details the implementation of this
framework, which employs a parallelized multi-
agent system A = {A;, A, ..., A7}, where each
agent A; for j € {1,...,6} corresponds to a spec-
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Figure 2: Overview of the THINK. The pipeline begins with flawed math problems ® that are iteratively refined.
The core multi-agent evaluation stage uses six Bloom-aligned agents and one heuristic agent to assess quality,
providing scores and targeted feedback. Guided by the "Five Keys" and prior suggestions, LLMs revise or generate
new problems via a think-aloud process. A quality threshold determines success © or triggers further refinement.

ified cognitive level in Bloom’s Taxonomy, and
A~ represents a holistic language and pedagogical
evaluation. Given a problem p; € D, each agent
A; generates the tuple:

Aj(pi) = (PS;(pi), CSj(pi))

where PS;(p;) € [0,100] is the performance score
and CSj(p;) € [0,100] is the confidence score.
The detailed prompts of each agent are provided
in Appendix B.2. These are produced using CoT
prompting, encouraging explicit, step-wise reason-
ing (Wei et al., 2022) aligned with the agent’s cogni-
tive level. In addition, the holistic evaluation agent
A7 further outputs an improvement suggestion:

A7(pi) = (PS7(pi), CS7(pi), 15(pi))

where 1.5 (p;) provides structured feedback on how
to improve the problem. The prompt used by the
holistic agent is provided in Appendix B.3. This
feedback assesses whether the problem satisfies
the "Five Keys" components, evaluates lexical and
syntactic complexity, and identifies ambiguities or
unsolvable elements. It examines the alignment be-
tween the problem and its proposed solution strat-
egy (See Figure 2).

3.3 Quality Assessment Protocol

We define three core metrics to assess the quality
evolution from a given problem p; to its revised
version, collectively capturing correctness, inter-
agent consistency, and confidence:

Pass Rate (PR):

IAI

1

where 7 is the predefined passing threshold. Fol-
lowing Zheng et al. (2023), we adopt a reference-
guided rating approach in which each agent assigns
a performance score based on specific evaluation
criteria. The pass rate reflects the proportion of
agents who consider the problem sufficiently well-
constructed to meet their level-specific standards.

Agent Agreement (AA):

k- ({0(pi) [ 7 € {1, ..., |Al}})

with b;(p;) = 1(PS;(p;) > 7) as a binary in-
dicator. x(-) denotes Cohen’s Kappa coefficient,
quantifying the agreement between agents beyond
chance and reflecting evaluation consistency (Co-
hen, 1960).

Average Confidence (AC):

AA(pi) =

1 | Al
1] 2 €5

This aggregates how confident the agents are in
their evaluations. It serves as an indicator of relia-
bility, consistent with findings from recent work on
trust calibration in LLM outputs (Jung et al., 2024).

AC(p;) =



Algorithm 1 THINK Framework

Require: Problem set D = {p1,...,pn}, agents
A = {Ai,..., A7}, threshold 7, weights
(e, B,7), maximum iterations R
Ensure: Improved problem set Diyproved, final
cognitive performance scores Qfinal
I: Dimproved — @, Qﬁnal — @
2: for each p; € D do
3. r <+ 0, success <+ False
4:  while r < R and not success do
5 Evaluate p; using all agents A to obtain
scores (PS,CS) and feedback 1.5
6: Compute PR(p;), AA(p;), AC(p;), and
composite quality score Q(p;)
if Q(p;) > 7 then
success < True

: else
10: > Refine via feedback — Think-aloud
11: Di <—LLM(pi,IS)
12: r—r4+1
13: end if

14:  end while

15:  Add final version of p; t0 Dimproved
16:  Add final Q(p;) t0 Qfinal

17: end for

18: return Dimproveda Qfinal

Success Criterion: We combine the three met-
rics into a composite quality score:

Q(pi) = a- PR(p;) + 8- AA(pi) + v - AC(p)

In our setting, « = 0.5, 8 = 0.3, and v = 0.2 are
weights determined by expert tuning. Finally, a
problem is deemed successful if:

Success(p;) = 1(Q(p;) > 85)

We choose these three metrics to assess prob-
lem quality from different dimensions: PR mea-
sures correctness across cognitive dimensions, A A
checks for consistent evaluation beyond random
agreement, and AC incorporates evaluators’ confi-
dence in their judgments. Hence multi-agent struc-
ture provides a robust assessment, which is essen-
tial for evaluating higher-order reasoning.

3.4 LLM Think-aloud and Pipeline Overview

The structured pipeline enables LLMs to refine
flawed math problems using agent-generated feed-
back iteratively. Grounded in the educational the-
ories discussed in Section 3.1, the process incor-

porates a think-aloud protocol (Wolcott and Lobc-
zowski, 2021), a widely used approach in cogni-
tive psychology and learning sciences, in which
participants articulate their thought processes in
real time while engaging in experimental tasks,
particularly those involving learning and problem
solving. In this study, LLMs act as participants
in self-reflective revisions and demonstrate their
thinking processes based on agent feedback. When
a problem p; fails to meet the quality threshold, it
undergoes iterative refinement. The holistic agent
Ar provides structured feedback 1.5 (p;), which is
returned to the LLM to generate an improved ver-
sion of the problem. The revised problem is then
re-evaluated by all agents. This loop continues for
up to R iterations until the quality score exceeds
the threshold. The algorithm details are provided
in Algorithm 1. Each iteration promotes improve-
ment in question quality, also allowing us to exam-
ine the LLM’s reasoning and revision behaviors.
This enables a deeper analysis of both lower- and
higher-order thinking capabilities.

4 Experiment

We present experiments conducted with the
THINK framework using the dataset introduced in
Section 3.2.1, a curated collection of web-crawled
and synthetic flawed math problems designed to
assess LLMs’ reasoning and revision capabilities.

4.1 Metrics

Cognitive Performance via Bloom’s Evaluation
The cognitive performance of LLM is evaluated us-
ing Bloom’s taxonomy within our multi-agent eval-
uation framework, with each agent denoted as A
through Ag. Beyond raw performance, we analyze
score improvements across iterations as a proxy for
the model’s revision ability and depth of reasoning.
Given the potential unreliability of subjective per-
formance scores, we incorporate an additional final
quality check aligned with the objective scoring
protocol described below. To further ensure the re-
liability of the framework, we conduct a qualitative
comparison between zero-shot question revisions
and those guided by THINK.

Quality Performance Evaluation We define
two metrics to evaluate the effectiveness of the iter-
ative refinement process within the THINK frame-
work.

RoundsToPass Denoted as Rpags(p;), this metric
measures the efficiency of the refinement loop by



Model Remembering Understanding  Applying Analyzing  Evaluating Creating Avg.

GPT-40 86.92 1 26.92 82961579 7671046 83.501421 83541292 82.6274.21 82711351
GPT-40-MINI 8521 17 15.12 82.96 1 0.71 74.50 | 5.88 82.88 | 1.38 83.08 | 1.88 82.42 | 0.54 81.51711.91
GPT-3.5-TURBO 82.29 1 12.96 81251129  71.8316.12 81.1270.54 80.92 054 80.2570.92 79.61 1241
QWEN2.5-14B-IT 90.92 1 42.50 74921242  71.5410.71 81251746 81.8816.17 77.837592 79.39712.49
QWEN2.5-7B-IT 91.96 1 34.25 72541 0.54 68541579 7696021 783871033 73.88,0.12 77.3810.18
MISTRAL-8B-IT 91.62 1 35.79 67.96 | 3.21 66.92 | 6.21 74.7570.50 76.21]0.33 70.3313.04 74.30,2.90
LLAMA-3.1-8B-IT  90.42 1 30.38 71.58 | 3.75 69.04 | 6.58 78.08171.83 77.58]0.75 75.08,10.21 76.800.40
Average 88.48 128.42 76.0217096  71.15)4.19 79.2211.71 80.8011.45 77.2071.30 78.81711.16

Table 1: Model performance across the six cognitive levels defined by Bloom’s Taxonomy. Each cell reports
the average score for the corresponding cognitive category, with 1 and | indicating the relative improvement or
decline compared to the previous round, based on the model’s revision. Bold and underline highlight the best and

second-best performances.

recording the number of iterations required for a
problem p; to exceeds the quality threshold 7:

Rpass(pi) = min {T € [17R] ’ A(pET)) > T} )
where A(pgr)) is the quality score at iteration 7, R
is the max number of allowed refinement rounds.

AvgQualityScore Denoted as (Qayg, this metric
captures the average quality across all refinement
steps:

RSV ER
T
Qavg = N Z (Rz A(pi )) )
=1 r=1
Together, these metrics provide a holistic view of
the model’s iterative reasoning behavior, including
its ability to improve question quality, engage with
structured feedback, and maintain consistency in
producing high-quality outputs.

4.2 Evaluated Models and Settings

We evaluate a set of off-the-shelf LLMs us-
ing THINK framework to probe their capacity
for higher-order reasoning capabilities. We in-
clude four open-source models: LLAMA-3.1-8B-
IT (Llama, 2024), Mistral-8B-IT (Jiang et al.,
2023), QWEN2.5-7B-IT, and QWEN2.5-14B-IT
(Qwen2.5, 2025); and three closed-source models:
GPT-3.5-TurRBO, GPT-40-MINI, and GPT-40
(OpenAl, 2024). Notably, GPT-40 is used to im-
plement the multi-agent roles within our pipeline,
with the temperature set to 0, following its strong
cognitive reasoning performance in the current
benchmark (Huang et al., 2024). All open-source
models are run on two NVIDIA A6000 GPUs
(32GB), and the experiments involving OpenAl
models incur a cost of approximately $300.

Model Rpass(pi)  Qavg (%)

GPT-40 2.35 82.46 1 0.10
GPT-40-MINI 2.57 78.68 1 0.01
GPT-3.5-TURBO 2.60 73.46 1 0.02
QWEN2.5-14B-IT 2.08 77.10 7 0.11
QWEN2.5-7B-IT 2.12 72.47 1 0.05
MISTRAL-8B-IT 2.04 72.05 1 0.06
LLAMA-3.1-8B-IT 2.17 71.11 1 0.03
Average 2.27 75.76 1 0.05

Table 2: Performance of LLMs on iterative refinement
tasks. Rpass(pi) is the average number of refinement
rounds required for problem p; to exceed the quality
threshold. ()., represents the final quality score after all
refinement steps. T indicates the relative improvement
in quality score compared to the last iteration.

4.3 Experimental Results

Table 1 and Table 2 show the performance of LLMs
on the THINK framework, covering both cognitive
skill levels defined by Bloom’s Taxonomy and met-
rics for iterative refinement. We highlight several
observations as follows:

LLMs Underperform in Mid-Level Cognitive
Domains Table 1 shows that LLMs achieve con-
sistently high scores in lower-order reasoning tasks
such as Remembering and Understanding, indicat-
ing strong capabilities in information recall and
paraphrasing. However, there is a marked per-
formance drop in the Applying category, which
requires transferring learned concepts to a real-
world scenario. Nearly all models exhibit degra-
dation in this dimension, suggesting that while
LLMs are effective at surface-level understand-
ing, they struggle to deploy knowledge in practical



Version Question Solution

Original An orchestra of 120 players takes 40 minutes to (Implied): Assumes inverse proportionality,
play Beethoven’s 9th Symphony. How long would | suggesting it would take 80 minutes for 60 players.
it take for 60 players to play the symphony?

Zero-shot A school band with 120 members plays a song that | It will still take 40 minutes for 60 band members to

lasts 40 minutes. If the same song is played by a
band with 60 members, how long will the
performance last?

perform the song.

THINK-Guided

An orchestra of 120 musicians performs
Beethoven’s 9th Symphony in 40 minutes.
Assuming equal contribution, how long would it
take 60 musicians to complete the same symphony?

Since performance duration does not depend on the
number of musicians (as long as all parts are
covered), it would still take 40 minutes for 60
musicians.

Table 3: Comparison of the original flawed problem and its improved versions via zero-shot prompting and the
THINK framework, demonstrating enhanced domain-appropriate reasoning. Sampled from QWEN2.5-14B-IT.

or problem-solving contexts. Even GPT-40, the
top-performing model, demonstrates a noticeable
decline in this category, crafting a cognitive gap
between comprehension and execution.

LLMs Are Not Always Reliable Across Domains
Many models display inconsistencies across all
cognitive levels, demonstrating an uneven devel-
opment of cognitive capabilities. For example,
MISTRAL-8B-IT achieves 91.62 in Remembering
but drops sharply to 66.92 in Applying and 70.33 in
Creating, reflecting surface-level fluency that does
not generalize to tasks requiring flexible reason-
ing or creativity. In contrast, GPT-40 maintains a
relatively narrow performance band, showing that
sophisticated models benefit more from structured
revision and are more capable of consistent reason-
ing across cognitive levels. Additionally, Table 2
shows that closed-source models outperform open-
source ones in terms of final output quality. This
may be attributed to more extensive training data
and better instruction tuning, which help closed-
source models generate more coherent, human-like
questions.

However, illustrated in Table 2, we observe that
LOT skills, e.g., Remembering, are easy for LLMs
to perform and improve through revision. Particu-
larly, open-source models show strong gains in this
category across rounds, indicating that LL.Ms are
highly responsive to structured feedback when deal-
ing with rote or surface-level tasks. This pattern
aligns with the characteristics of "System 1" cogni-
tion, which reflects that the THINK framework is
able to isolate and evaluate effectively.

Smaller Models Are Efficient But Limited in
Quality Ceiling Table 2 reveals an interesting
trend in refinement efficiency. Models with smaller
parameter counts, e.g., MISTRAL-8B-IT, achieve

[ LOT Avg HOT Avg

Llama-3.1-8B-Instruct

250

Qwen2.5-7B-Instruct GPT-3.5-turbo

Mistral-8B-Instruct GPT-40

Qwen2.5-14B-Instruct GFTAo-mint

Figure 3: Comparison between HOT and LOT. The
scale is the sum of scores across corresponding levels.

lower average Rp.ss values, indicating faster con-
vergence during iterative revision. However, this
efficiency often comes at the cost of lower final
quality scores, reflecting a trade-off between revi-
sion speed and output quality. These findings sug-
gest that while smaller models may adapt feedback
quicker, larger models exhibit a greater capacity
for sustained, high-quality refinement.

Feedback-driven Learning Enhances Higher-
Order Thinking As shown in Table 1, perfor-
mance in higher-order cognitive categories, includ-
ing Analyzing, Evaluating, and Creating, often
outperforms that in mid-level categories. For ex-
ample, QWEN2.5-14B-IT scores above 77 in all
higher-order dimensions. This suggests that the
feedback-driven learning is particularly effective in
improving deeper reasoning abilities that may not
be captured in single-turn evaluations, highlight-
ing its value in diagnosing higher-order cognitive
competencies.

Critically, as illustrated in Figure 3, the closed-
source model shows promising results in HOT



skills. This reinforces that advanced, instruction-
tuned models are better positioned to engage with
feedback-driven reasoning tasks. These models
may have implicitly learned to perform tasks aimed
at HOT during training on feedback, an advantage
that becomes visible only under frameworks like
THINK.

Qualitative Assessment of THINK-guided En-
hancement Quality Table 3 presents a represen-
tative example evaluated across three conditions:
the original flawed question, a zero-shot variant us-
ing only the “Five Keys” prompt (Appendix A.2),
and the output generated by the THINK frame-
work. Qualitative analysis of the outputs was fur-
ther conducted, with detailed evaluations summa-
rized in Table 4 and full annotations provided in
Appendix C.

The comparison reveals that both zero-shot and
THINK-guided responses improve over the origi-
nal, but the THINK framework leads to more con-
sistent gains in contextual reasoning and concep-
tual accuracy. In particular, it correctly identifies
that the duration of a musical performance is in-
variant to ensemble size, avoiding the erroneous
inverse proportionality assumption present in the
original and baseline outputs. In other words, zero-
shot models fail to identify inconsistencies between
problem conditions and real-world environments,
leading to misleading improvements in problem
generation.

Moreover, the THINK-guided output engages
HOT skills. While the baseline reflects misapplied
procedural logic, and the zero-shot version resolves
surface-level errors, the THINK response exhibits
abstraction and analysis consistent with upper lev-
els of Bloom’s taxonomy. It unpacks implicit as-
sumptions, maintains narrative plausibility, and ap-
plies structurally coherent reasoning. These results
indicate that the THINK framework enhances not
only accuracy but also the depth and generalizabil-
ity of model reasoning.

Conclusion

In this work, we introduce THINK, a multi-
agent evaluation and feedback-driven framework
grounded in educational theory, to diagnose and im-
prove higher-order thinking skills in large language
models. THINK systematically generates, cri-
tiques, and revises mathematical problems aligned
with Bloom’s Taxonomy, allowing detailed analy-
sis of model reasoning beyond standard accuracy

metrics, enabling us to measure model performance
on applying, analyzing, and creating, not just recall.
Evaluation of seven LLMs reveals a persistent HOT
skills gap: models perform well on lower-order
tasks, but score significantly lower on practical ap-
plication and concept creation. Our framework mit-
igates this gap via structured feedback cycles and
demonstrates that closed-source models currently
outperform open-source ones in reasoning quality.
Qualitative analysis confirms that THINK-guided
outputs exhibit deeper conceptual alignment and
domain fidelity.

By making models “think-aloud” through itera-
tive critique, THINK offers a scalable, principled
approach for the community to both measure and
advance LLM cognition, paving the way for more
robust reasoning capabilities in educational and
real-world applications. Future work could extend
THINK in several promising directions, including
exploring cross-domain transfer by applying our
framework to other reasoning tasks beyond math-
ematics, and integrating THINK into human eval-
uation workflows to support the development of
more effective human-AlI collaborative reasoning
systems in educational contexts.

Limitation

This study does face certain limitations as it is a pre-
liminary framework. While our framework demon-
strates strong potential, several aspects warrant fur-
ther exploration. The current study relies on a cu-
rated set of flawed mathematical problems, which
may limit the diversity of error types encountered
in broader settings. Future work could benefit from
incorporating more varied, real-world data to en-
hance generalizability. Additionally, although the
evaluation rubric was designed to be lightweight
and prompt-efficient, more comprehensive scoring
frameworks could offer deeper insights into rea-
soning quality and consistency. At the same time,
this study did not recruit external experts for output
verification, which may reduce the reliability of
THINK in practical applications. Finally, THINK
aims to improve HOT skills performance, there is a
risk that optimization toward rubric-aligned outputs
could encourage overfitting to evaluative heuristics.
To mitigate this, we emphasize diverse tasks and
maintain transparency about rubric design. Broader
adoption should be accompanied by careful vali-
dation to avoid reinforcing narrow benchmarks of
“correctness” in open-ended reasoning tasks.



Ethical Considerations

This study involves the evaluation of large language
models using synthetic and publicly available math-
ematical problem data. No personally identifiable
information or human subject data were used in
model evaluation.

References

Peter W Airasian. 2001. A taxonomy for learning, teach-
ing, and assessing: A revision of Bloom’s Taxonomy
of Educational Objectives. Longman.

Maryam Amirizaniani, Elias Martin, Maryna
Sivachenko, Afra Mashhadi, and Chirag Shah. 2024.
Do llms exhibit human-like reasoning? evaluating
theory of mind in llms for open-ended responses.
arXiv preprint arXiv:2406.05659.

M Borge, BK Smith, and T Aldemir. 2024. Using gener-
ative ai as a simulation to support higher-order think-
ing. International Journal of Computer-Supported
Collaborative Learning, 19(4):479-532.

Seong Yeub Chu, Jong Woo Kim, and Mun Yong Yi.
2025. Think together and work better: Combining
humans’ and llms’ think-aloud outcomes for effective
text evaluation. In Proceedings of the 2025 CHI
Conference on Human Factors in Computing Systems,

pages 1-23.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37-46.

Katherine M Collins, Catherine Wong, Jiahai Feng,
Megan Wei, and Joshua B Tenenbaum. 2022. Struc-
tured, flexible, and robust: benchmarking and improv-
ing large language models towards more human-like
behavior in out-of-distribution reasoning tasks. arXiv
preprint arXiv:2205.05718.

Ioan Fazey. 2010. Resilience and higher order thinking.
Ecology and Society, 15(3).

Jennifer Haase, Paul H. P. Hanel, and Sebastian Pokutta.
2025. Has the creativity of large-language models
peaked? an analysis of inter- and intra-llm variability.

Thilo Hagendorff, Sarah Fabi, and Michal Kosinski.
2023. Human-like intuitive behavior and reasoning
biases emerged in large language models but disap-
peared in chatgpt. Nature Computational Science,
3(10):833-838.

Yinghui He, Yufan Wu, Yilin Jia, Rada Mihalcea, Yu-
long Chen, and Naihao Deng. 2023. Hi-tom: A
benchmark for evaluating higher-order theory of
mind reasoning in large language models. arXiv
preprint arXiv:2310.16755.

Bart Holterman and Kees van Deemter. 2023. Does
chatgpt have theory of mind?  arXiv preprint
arXiv:2305.14020.

Zhen Huang, Zengzhi Wang, Shijie Xia, Xuefeng Li,
Haoyang Zou, Ruijie Xu, Run-Ze Fan, Lyuman-
shan Ye, Ethan Chern, Yixin Ye, and 1 others. 2024.
Olympicarena: Benchmarking multi-discipline cog-
nitive reasoning for superintelligent ai. Advances in
Neural Information Processing Systems, 37:19209—
19253.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Jaehun Jung, Faeze Brahman, and Yejin Choi. 2024.
Trust or escalate: Llm judges with provable guar-
antees for human agreement.  arXiv preprint
arXiv:2407.18370.

Xiaoqiang Kang, Zimu Wang, Xiaobo Jin, Wei Wang,
Kaizhu Huang, and Qiufeng Wang. 2025. Template-
driven llm-paraphrased framework for tabular math
word problem generation. In Proceedings of the
AAAI Conference on Artificial Intelligence, vol-
ume 39, pages 24303-24311.

Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2016. A theme-
rewriting approach for generating algebra word prob-
lems. arXiv preprint arXiv:1610.06210.

David R. Krathwohl. 2002. A revision of bloom’s tax-
onomy: An overview. Theory Into Practice, 41:212 —
218.

Sotiris Lamprinidis. 2023. Llm cognitive judgements
differ from human. In International conference on
frontiers of artificial intelligence, ethics, and multi-
disciplinary applications, pages 17-23. Springer.

Ehsan Latif, Yifan Zhou, Shuchen Guo, Yizhu Gao,
Lehong Shi, Matthew Nayaaba, Gyeonggeon Lee,
Liang Zhang, Arne Bewersdorff, Luyang Fang, and
1 others. 2024. A systematic assessment of openai
ol-preview for higher order thinking in education.
arXiv preprint arXiv:2410.21287.

Llama. 2024. The llama 3 herd of models. Preprint,
arXiv:2407.21783.

Qian Niu, Junyu Liu, Zigian Bi, Pohsun Feng, Benji
Peng, Keyu Chen, Ming Li, Lawrence KQ Yan,
Yichao Zhang, Caitlyn Heqi Yin, and 1 others. 2024.
Large language models and cognitive science: A com-
prehensive review of similarities, differences, and
challenges. arXiv preprint arXiv:2409.02387.

OpenAl. 2024. Gpt-40 system card.
arXiv:2410.21276.

Preprint,

Margus Pedaste, Mario Méeots, Leo A Siiman, Ton
De Jong, Siswa AN Van Riesen, Ellen T Kamp, Con-
stantinos C Manoli, Zacharias C Zacharia, and Eleft-
heria Tsourlidaki. 2015. Phases of inquiry-based


https://api.semanticscholar.org/CorpusID:277857547
https://api.semanticscholar.org/CorpusID:277857547
https://api.semanticscholar.org/CorpusID:277857547
https://arxiv.org/abs/2310.06825
https://api.semanticscholar.org/CorpusID:13116159
https://api.semanticscholar.org/CorpusID:13116159
https://api.semanticscholar.org/CorpusID:13116159
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2410.21276

learning: Definitions and the inquiry cycle. Educa-
tional research review, 14:47-61.

Oleksandr Polozov, Eleanor O’Rourke, Adam M
Smith, Luke Zettlemoyer, Sumit Gulwani, and Zo-
ran Popovic. 2015. Personalized mathematical word
problem generation. In IJCAI, pages 381-388.

Ben Prystawski, Paul Thibodeau, Christopher Potts,
and Noah D Goodman. 2022. Psychologically-
informed chain-of-thought prompts for metaphor un-
derstanding in large language models. arXiv preprint
arXiv:2209.08141.

Qwen2.5. 2025. Qwen?2.5 technical report. Preprint,
arXiv:2412.15115.

Farzad Radmehr and Michael Drake. 2018. An
assessment-based model for exploring the solving
of mathematical problems: Utilizing revised bloom’s
taxonomy and facets of metacognition. Studies in
Educational Evaluation, 59:41-51.

Aya Ragab, Ahmed Kaid, and Ahmed Khamis Sayed.
2024. Enhancing higher order thinking skills (hots)
in education: Strategies and outcomes. TOFEDU:
The Future of Education Journal, 3(5):1488-1499.

Steffen Saifer. 2018. HOT skills: Developing higher-
order thinking in young learners. Redleaf Press.

Nicy Scaria, Suma Chenna, and Deepak Subramani.
2024a. How good are modern llms in generating rel-
evant and high-quality questions at different bloom’s
skill levels for indian high school social science cur-
riculum? In Proceedings of the 19th Workshop on
Innovative Use of NLP for Building Educational Ap-
plications (BEA 2024), pages 1-10.

Nicy Scaria, Suma Dharani Chenna, and Deepak Subra-
mani. 2024b. Automated educational question gen-
eration at different bloom’s skill levels using large
language models: Strategies and evaluation. In In-
ternational Conference on Artificial Intelligence in
Education, pages 165-179. Springer.

Karim Shabani, Mohamad Khatib, and Saman Ebadi.
2010. Vygotsky’s zone of proximal development:
Instructional implications and teachers’ professional
development. English language teaching, 3(4):237—-
248.

Ramya Srinivasan, Hiroya Inakoshi, and Kanji Uchino.
2023. Leveraging cognitive science for testing large
language models. In 2023 IEEE International Con-
ference On Artificial Intelligence Testing (Allest),
pages 169-171. IEEE.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, and 1 others. 2022. Beyond the
imitation game: Quantifying and extrapolating the
capabilities of language models. arXiv preprint
arXiv:2206.04615.

10

Mirac Suzgun, Nathan Scales, Nathanael Schirli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, and 1 others. 2022. Challenging big-bench
tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Alberto Testolin. 2024. Can neural networks do arith-
metic? a survey on the elementary numerical skills
of state-of-the-art deep learning models. Applied
Sciences, 14(2):744.

Lev Semenovich Vygotsky and Michael Cole. 1978.
Mind in society: Development of higher psychologi-
cal processes. Harvard university press.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

I Wayan Widana. 2017. Higher order thinking skills
assessment (hots). JISAE, 3(1):32—44.

I Wayan Widana, I Parwata, and I Komang Sukendra.
2018. Higher order thinking skills assessment to-
wards critical thinking on mathematics lesson. Inter-
national journal of social sciences and humanities,
2(1):24-32.

Michael D Wolcott and Nikki G Lobczowski. 2021. Us-
ing cognitive interviews and think-aloud protocols to
understand thought processes. Currents in Pharmacy
Teaching and Learning, 13(2):181-188.

Xiong Xiao, Yue Li, Xiuling He, Jing Fang, Zhonghua
Yan, and Chong Xie. 2025. An assessment frame-
work of higher-order thinking skills based on fine-
tuned large language models. Expert Systems with
Applications, page 126531.

Blaise Agiieray Arcas. 2022. Do large language models
understand us? Daedalus, 151:183-197.

Yiling Yao, Stephen Hwang, and Jinfa Cai. 2021. Pre-
service teachers’ mathematical understanding exhib-
ited in problem posing and problem solving. ZDM-
Mathematics Education, 53(4):937-949.

Iris Heung Yue Yim and Jiahong Su. 2025. Artificial
intelligence (ai) learning tools in k-12 education: A
scoping review. Journal of Computers in Education,

12(1):93-131.

Yunhao Zhang, Xiaohan Zhang, Chong Li, Shaonan
Wang, and Chengqging Zong. 2024. Mulcogbench:
A multi-modal cognitive benchmark dataset for eval-
uating chinese and english computational language
models. arXiv preprint arXiv:2403.01116.

Yunpu Zhao, Rui Zhang, Wenyi Li, Di Huang, Jiaming
Guo, Shaohui Peng, Yifan Hao, Yuanbo Wen, Xingui
Hu, Zidong Du, Qi Guo, Ling Li, and Yunji Chen.
2024. Assessing and understanding creativity in large
language models. ArXiv, abs/2401.12491.


https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusID:248377874
https://api.semanticscholar.org/CorpusID:248377874
https://api.semanticscholar.org/CorpusID:248377874
https://api.semanticscholar.org/CorpusID:267094860
https://api.semanticscholar.org/CorpusID:267094860
https://api.semanticscholar.org/CorpusID:267094860

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others.
2023. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Pro-
cessing Systems, 36:46595-46623.

Qingyu Zhou and Danqing Huang. 2019. Towards gen-
erating math word problems from equations and top-
ics. In Proceedings of the 12th international confer-
ence on natural language generation, pages 494-503.

Anat Zohar and Yehudit J Dori. 2003. Higher order
thinking skills and low-achieving students: Are they

mutually exclusive? The journal of the learning
sciences, 12(2):145-181.

11



Appendix

A Think-aloud Structure

A.1 The Five Keys Components of MWP

We introduce a practical decomposition of cognitive rigor in math problem design, termed the “Five
Keys” components. This schema is rooted in educational research on instructional design and cognitive
development (Airasian, 2001; Radmehr and Drake, 2018), and is aligned with the Revised Bloom’s
Taxonomy to ensure both depth of knowledge and metacognitive engagement.

This decomposition provides a structured lens for evaluating whether a math problem—and by extension,
an LLM’s solution process—demonstrates authentic HOT skills. Rather than emphasizing rote correctness,
each component targets different facets of complex reasoning, enabling a multi-dimensional assessment
of LLM behavior within the THINK framework.

1. Math Concepts and Domains: This dimension identifies the core mathematical ideas underlying
a task, such as algebraic structures, number theory, or geometry. By analyzing which concepts are
invoked, we assess the knowledge dimension activated during problem-solving and whether the LLM
navigates these domains coherently.

2. Prerequisite SKills: This component captures the foundational knowledge—both conceptual and
procedural—that a learner or model must possess to attempt a solution. These skills serve as proxies
for prior knowledge and inform whether the LLM draws upon relevant background competence.

3. Mathematical Representations: These include formal expressions (e.g., symbolic notation, equa-
tions), diagrams, or stepwise procedures. Representations are critical for logical coherence and
traceability in reasoning. Evaluating this component helps identify whether an LLM applies opera-
tions in a structured and intelligible manner.

4. Alternative Values: This refers to variations in the input parameters of a problem that preserve
its underlying structure. A model’s ability to adapt its reasoning across such variants reflects
generalization ability—an essential attribute of HOT.

5. Narrative Stories: Embedding problems in real-world or socio-cultural contexts situates abstract
mathematical reasoning within meaningful scenarios. This component supports engagement and
contextual transfer, and allows us to probe whether the LLM can maintain reasoning integrity when
the task is couched in diverse narrative frames.

By formally integrating these components into our evaluation, we enable a principled analysis of LLM
reasoning behaviors. Each element supports the dual objectives of cognitive rigor and metacognitive
awareness, offering a richer and more educationally grounded alternative to traditional correctness-based
metrics. The “Five Keys” thus serve as a pedagogical bridge between human-centered learning sciences
and machine learning evaluation, reinforcing the interpretability and validity of the THINK framework.
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A.2 Five Keys Prompt Details

Five Keys Improvement

You are a mathematical problem-maker, and at the same time an expert in cognitive science, psychology, philosophy and
education. As an LLM you can generate contents related to requirements, and now your purpose is to self-reflect on the process of
your math problem generation process, analyzing what you have done.

Remember, this is your problem generation outcome last time. Think aloud as you work on the instructions:

1. Analyze the generated problem of the last round. You should try to understand and retrieve the specific mathematical
information in it such as facts, patterns, objects, or contextual information, and decipher these meanings.

2. Use cognitive skills essential for processing and applying information effectively. It includes understanding and organizing
information, analyzing relationships, drawing conclusions, and distinguishing nuances. Additionally, you should evaluate ideas
critically.

3. Generate mathematical expressions for the new problems. These new expressions should have the same form as the given
expressions in the previous generated math problem. They must have the same complexity as well. Choose values to substitute
into the expression, and calculate the outputs.

4. Generate stories for these mathematical expressions with the appropriate questions based on the chosen values. The generated
stories must be a mathematical word problem with the corresponding expressions. The story must be creative and unique.

5. Following and combining the previous steps, and you will generate a new creative version of the given math problem. Review
the generated new version math problem, ensuring all the criteria are satisfied and double check it.

Provide your evaluation in JSON format with these exact keys:

{{
"question": "The complete question text",
"solution": "The detailed solution approach"

1

Please also address these improvement suggestions {json.dumps(improvement_suggestions, indent=2)}
|\ J

B THINK framework details

B.1 Synthetic Bad-quality Question Prompt

Bad-quality Question Generator

You are an expert in creating intentionally flawed math questions. Your task is to generate a single math question that has one or
more of the following issues:

1. Ambiguous wording or missing critical information

2. Unrealistic assumptions or scenarios

3. Multiple possible interpretations

4. Contradictory information

5. Unclear requirements or expectations

The question should follow this format:

{{

"ID": null,

"question": "The question text",

"LaTeX question": "The question text with LaTeX

formatting",

"solution": "Explanation of why the question is flawed and what information is missing or ambiguous",
"mathConcept1": "Main math concept (e.g., Arithmetic and Algebra)",
"mathConcept2": "Sub-concept (e.g., Algebraic expressions)",
"mathConcept3": "",

"Difficulty": "N/A or Easy/Medium/Hard",

"Grade": "9 12 or 6 8 or College",

"Resource": "GPT"

1

Make sure the question has a clear flaw that makes it difficult to solve or has multiple valid interpretations.
\§ J
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B.2 Multi-Agent Evaluation Prompts - A, A,, ..., Ag

Remembering - level 1

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Remembering" level skills of a math
problem generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**

Step 1: Identify "Big Five" Components. Extract these from both problems: 1) math concepts and domains, 2) required skills to
solve the problem, 3) math expressions as sequence of operations, 4) values that substitute into expressions, and 5) creative and
unique narrative story based on real-life socio-cultural experiences.

Step 2: Remembering. Compare the five components in both problems. The score should represent how well the math problem
generator remembers and retains critical information and components from the old problem in the new version.

Step 3: Levels of Remembering.

- Strong Remembering (80-100): If all math concepts, required skills, math expressions, and the narrative story in the new
problem are almost the same as in the old problem, assign a performance_score between 80 and 100.

- Medium Remembering (60-80): If two out of the following four components are similar between the new and old problems
(math concepts, required skills, math expressions, and the narrative story), assign a performance_score between 60 and 80.

- Low Remembering (<60): If less than two of these components are shared, assign a performance_score between 0 and 60. Note
that the ’values’ component is not considered in this step for partial similarity.

Step 4: Confidence Score and Suggestion. Reflect on your confidence level in making this judgment and assign a confidence_score
between 0 and 100. Provide actionable and specific suggestions to enhance the problem as improvement_suggestions.

**Details for Comparison:**

- **Previous Problem:**: {last_question_details}

- **Previous Expected Solution: **{last_question_expected_solution}
- **New Problem:** {new_question_details}

- **New Expected Solution:**{new_question_expected_solution}

**Result Format:**
Provide your evaluation in JSON format with these exact keys:
{{ "performance_score": 0-100,
"confidence_score": 0-100 }}
& J

Understanding - level 2

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Understanding" level skills of a math
problem generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**

Step 1: Identify "Big Five" Components. Extract these from both problems: 1) math concepts and domains, 2) required skills to
solve the problem, 3) math expressions as sequence of operations, 4) values that substitute into expressions, and 5) creative and
unique narrative story based on real-life socio-cultural experiences.

Step 2: Understanding. Compare the five components to assess whether the generator effectively modifies the problem across
seven subcategory operations: interpreting, exemplifying, classifying, summarizing, inferring, comparing, and associating.

Step 3: Levels of Understanding.

- Strong Understanding (80-100): Demonstrates a deep grasp of the five components, identifying at least three operations among
the seven.

- Medium Understanding (60-80): Reflects surface-level changes, identifying at least one operation among the seven.

- Low Understanding (<60): Shows minimal variation, with errors and inconsistencies. The new problem fails to demonstrate the
generator’s ability across the seven operations.

Step 4: Confidence Score and Suggestion. Reflect on your confidence level in making this judgment and assign
a confidence_score between 0 and 100. Provide actionable and specific suggestions to enhance the problem as
improvement_suggestions.

**Details for Comparison:**

- **Previous Problem:**: {last_question_details}

- **Previous Expected Solution: **{last_question_expected_solution}
- **New Problem:** {new_question_details}

- **New Expected Solution: **{new_question_expected_solution}

*#*Result Format:**

Provide your evaluation in JSON format with these exact keys:
{{

"performance_score": 0-100,

"confidence_score": 0-100

1

\\ J
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Applying - level 3

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Applying" level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**

Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.

Step 2: Applying. Look for evidence that the generator applies constructed knowledge to both familiar (executing) and unfamiliar
(implementing) tasks.

Step 3: Levels of Applying:

- Strong Applying (80-100): Demonstrates effective knowledge application and introduces useful variation or improvement.

- Medium Applying (60-80): Applies prior knowledge in familiar form with limited creativity.

- Low Applying (<60): Mostly replicates prior problem without deeper application.

Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**

- **Previous Problem:**:
{last_question_details}

- **Previous Expected Solution:**
{last_question_expected_solution}
- **New Problem:**
{new_question_details}

- **New Expected Solution:**
{new_question_expected_solution }

*#*Result Format:**

Provide your evaluation in JSON format with these exact keys:
{{

"performance_score": 0-100,

"confidence_score": 0-100

1
\

Analyzing - level 4

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Analyzing" level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Please follow these steps:

Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.

Step 2: Analyzing. Look for signs that the problem generator breaks down elements, highlights distinctions, and reorganizes
structure.

Step 3: Levels of Analyzing:

- Strong Analyzing (80-100): Breaks down and reorganizes structure effectively to highlight deeper relationships.

- Medium Analyzing (60-80): Identifies structure but without major transformation.

- Low Analyzing (<60): Surface-level manipulation or copy with minimal analysis.

Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**

- **Previous Problem:**: {last_question_details}

- **Previous Expected Solution: **{last_question_expected_solution}
- **New Problem:** {new_question_details}

- **New Expected Solution: **{new_question_expected_solution}

*#*Result Format:**

Provide your evaluation in JSON format with these exact keys:
{{

"performance_score": 0-100,

"confidence_score": 0-100

1

\§ J

15



Evaluating - level 5

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Evaluating” level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Please follow these steps:

Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.

Step 2: Evaluating. Examine whether the generator makes justified choices, defends reasoning, and prioritizes design decisions.
Step 3: Levels of Evaluating:

- Strong Evaluating (80-100): Provides justified changes and demonstrates prioritization in design logic.

- Medium Evaluating (60-80): Modifies problem with some justifications or preference reasoning.

- Low Evaluating (<60): Minor edits without clear evaluation or rationale.

Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**

- **Previous Problem:**: {last_question_details}

- **Previous Expected Solution:**{last_question_expected_solution }
- **New Problem:** {new_question_details}

- **New Expected Solution:**{new_question_expected_solution }

**Result Format:**

Provide your evaluation in JSON format with these exact keys:
{{

"performance_score": 0-100,

"confidence_score": 0-100

H

|\ J/

Creating - level 6

You are an expert in math and reasoning, acting as a refiner and evaluator, to assess the "Creating" level skills of a math problem
generator by comparing a newly generated math problem with a previous one.

**Evaluation Criteria**
Please follow these steps:

Step 1: Identify "Big Five" Components: 1) math concepts and domains, 2) required skills to solve the problem, 3) math
expressions as sequence of operations, 4) values used, and 5) creative narrative.

Step 2: Creating. Assess whether the generator develops original content by synthesizing and inventing meaningful structure or
context.

Step 3: Levels of Creating:

- Strong Creating (80-100): Constructs novel and effective problem with well-integrated ideas.

- Medium Creating (60-80): Makes some changes or combinations with partial novelty.

- Low Creating (<60): Mostly rearranges or copies with minimal originality.

Step 4: Confidence Score and Suggestion. Assign a confidence_score and suggest specific improvements.

**Details for Comparison:**

- **Previous Problem:**: {last_question_details}

- **Previous Expected Solution: **{last_question_expected_solution}
- **New Problem:** {new_question_details}

- **New Expected Solution:**{new_question_expected_solution }

*#*Result Format:**

Provide your evaluation in JSON format with these exact keys:
{{

"performance_score": 0-100,

"confidence_score": 0-100

1
\
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B.3 Holistic Evaluation Agent - A;

Holistic Evaluation - General Quality

You are an expert evaluator assessing Math Problem Quality and Math Language Quality in the educational question generation
research context.

Please evaluate the quality of the following math word problem by analyzing its big five components and linguistic features.
Identify and categorize any linguistic-level errors (e.g., ambiguity, unanswerability, or linguistic complexity) and assess the
problem’s solution strategy.

**Details for Comparison:**

- **Previous Problem:** {last_question_details}

- **Previous Expected Solution:** {last_question_expected_solution }
- **New Problem:** {new_question_details}

- **New Expected Solution:** {new_question_expected_solution}

**Step 1: Big Five Components Extraction**

1) Math concepts and domains

2) Required skills to solve the problem

3) Math expressions as sequence of operations

4) Values that substitute into expressions

5) The narrative story based on real-life socio-cultural experiences

**Step 2: Lexical and Syntactic Complexity Analysis**
- Type-Token Ratio (TTR)

- Yngve Score

- Frazier Score

- Frazier—Roark Score

- Developmental Level

- Syntactic Frequency

- Mean Dependency Distance (MDD)

- Sentence Length

**Step 3: Error Identification and Classification**
- Ambiguity

- Unanswerability

- Rationality

**Step 4: Solution Strategy Analysis**
- One-Step or Multi-Step
- Comprehension Challenges from Multi-Step Reasoning

**Step 5: Improvement Suggestions**
Suggestions should address:

- Ambiguous phrasing

- Unanswerable problems

- Linguistic complexity

- Structure consistency and narrative realism

**Step 6: Performance Score Calculation (0-100)**
1. Lexical and Syntactic Complexity

2. Error Count and Severity

3. Clarity and Solvability

4. Answerability Penalty

5. Structural Consistency and Creativity

**Scoring Guidance:**

- 90-100: Clear, simple, and error-free problem.

- 70-89: Minor complexity or errors that slightly impact clarity.

- 50-69: Moderate complexity and multiple identifiable issues.

- 0-49: Significant errors, ambiguity, or unanswerable conditions.

**Result Format:**

Please return your evaluation in the following JSON format:
{{

"performance_score": 0-100,

"confidence_score": 0-100,

"improvement_suggestions": ["suggestionl", "suggestion2"]

1

\\ J
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C Human Expert Quality Evaluation

Evaluation Zero-shot Qwen2.5-14B THINK-Guided Qwen2.5-14B | Comparison & Insight
Component
Math Concepts and | Implies inverse proportionality | Recognizes invariance of musical | The baseline activates
Domains between number of musicians performance duration, aligning | inappropriate algebraic domain
and performance time, akin to with real-world temporal reasoning, while the
shared work problems in algebra. | constraints rather than instruction-tuned version
mathematical proportional correctly disengages from it,
reasoning. reflecting conceptual coherence.
Prerequisite Skills Requires procedural knowledge | Requires conceptual The instruction-tuned version
of ratio and unit manipulation understanding of real-life activates domain-appropriate
but misapplies them due to the constraints rather than prior knowledge, indicating
incorrect premise. computation. better alighment with relevant
mental schemas.
Mathematical Suggests (implicitly) a No symbolic expression: relies | The baseline attempts structured
Representations proportional formula: (120 on verbal conceptual reasoning | reasoning but misapplies it; the

musicians X 40 minutes) + 60 =
80 minutes. No explicit
expression, but logic implies
computation.

that performance time is
independent of musician count if
ensemble is complete.

tuned version avoids misleading
formalism, showing better
traceability and logic.

Alternative Values

Fails to generalize: if given
different but equivalent values,
the baseline would still apply
faulty proportional logic.

Generalizes correctly: the model
recognizes that performance
duration is invariant under
alternative numbers of musicians,
assuming parts are covered.

Instruction tuning enhances
generalization across input
permutations that preserve the
core problem structure.

Narrative Stories

Uses a formal orchestra setting
but leverages it in a way that
misleadingly maps to
mathematical workload sharing.

Uses a school band narrative,
maintaining realism while
correctly situating the
mathematical logic within a
consistent real-world constraint.

The instruction-tuned model
better integrates narrative realism
and reasoning integrity,
supporting engagement without
conceptual distortion.

Bloom’s Taxonomy
Level

Apply (misapplied): Requires
calculation, but the wrong
concept leads to incorrect
problem-solving.

Understand / Analyze: Requires

unpacking implicit assumptions

and applying invariant reasoning
to a familiar context.

The instruction-tuned version
ascends Bloom’s hierarchy,
requiring abstract thinking and
transfer, not mechanical
execution.

Table 4: Comparative analysis of baseline and instruction-tuned QWEN2.5-14B-IT models across multiple
evaluation dimensions, highlighting improved contextual reasoning and domain-appropriate knowledge application.
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