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Abstract

We introduce MedicalSum, a Transformer-
based sequence-to-sequence architecture for
summarizing medical conversations by integrat-
ing medical domain knowledge from the Uni-
fied Medical Language System (UMLS). The
novel knowledge augmentation is performed
in three ways: (i) introducing a guidance sig-
nal that consists of the medical words in the
input sequence, (ii) leveraging semantic type
knowledge in UMLS to create clinically mean-
ingful input embeddings, and (iii) making use
of a novel weighted loss function that provides
a stronger incentive for the model to correctly
predict words with a medical meaning.

By applying these three strategies, Medical-
Sum takes clinical domain knowledge into con-
sideration during the summarization process
and achieves state-of-the-art ROUGE score im-
provements of 0.8-2 points (including 6.2% er-
ror reduction in PE section ROUGE-1) when
producing medical summaries of patient-doctor
conversations. Furthermore, a qualitative analy-
sis shows that medical summaries produced by
the knowledge augmented model contain more
relevant clinical facts from the patient-doctor
conversation.

1 Introduction

The volume of data created in healthcare has grown
considerably as a result of record keeping and reg-
ulatory requirements policies (Kudyba, 2010). The
documentation requirements for electronic health
records (EHR) have been shown to be a signifi-
cant factor contributing to physician burnout (van
Buchem et al., 2021a; Tran et al., 2020). As aresult,
the automatic creation of medical documentation
has been proposed as one way to address this is-
sue. For instance, automatic speech recognition
(ASR) for dictating medical documents has con-
tributed significantly to the efficiency of physicians
in creating narrative reports (Payne et al., 2018).

Medical Note generation by abstractive summa-
rization is another approach to automating clini-
cal documentation and aims to decrease the work-
load associated with creating summaries of clinical
encounters. It does this by taking a transcript of
a patient-doctor conversation as input and auto-
matically providing a summary of relevant clinical
discussion (Finley et al., 2018). The extracted in-
formation can then be passed on to other health-
care providers, who may use it for the creation of
clinical notes or billing codes (van Buchem et al.,
2021b). The expected impact is reduced physician
burnout, as well as enabling physicians to devote
more quality time and attention to their patients.

To date there have been several attempts at au-
tomatically generating summaries of clinical en-
counters. Enarvi et al. (2020) created a transformer
model for summarizing doctor-patient conversa-
tions. Joshi et al. (2020) demonstrated the effect
of considering medical knowledge in the summa-
rization of dialogue snippets. Finally, Jeblee et al.
(2019) and Lacson et al. (2006) used extractive
methods to identify the most important utterances
which are combined to form the final summary.

However, the summaries generated by current
summarization models are not straightforwardly
controllable (Li et al., 2018). Dialogue summariza-
tion is also challenging because casual conversation
can include interruptions, repetitions, and sudden
topic transitions (Khalifa et al., 2021), and gen-
erally does not follow the structure of a written
document (Zhu and Penn, 2006). These challenges
can lead to problems in generated notes, such as the
omission of key information, or the hallucination of
unsupported information. This is especially of con-
cern in the medical domain, as inaccuracies could
have a significant adverse effect on future patient
health outcomes. Thus a medical dialogue sum-
marization model should capture specific parts of
the conversation (Joshi et al., 2020) that are needed
for a medical decision. To help address this prob-



lem, we propose a novel knowledge-augmented
transformer model that uses medical knowledge to
guide the summarization process in various ways
to increase the likelihood of relevant medical facts
being included in the summarized output.

The Unified Medical Language System (UMLS)
Metathesaurus (Bodenreider, 2004) is a com-
pendium of many biomedical terminologies with
associated information, such as synonyms and cat-
egorical groupings. It allows the grouping of con-
cepts according to their semantic type (McCray
et al., 2001). For example, ‘migraine’ and ‘epis-
taxis’ are in the ‘Disease or Syndrome’ semantic
type. Our model uses UMLS to identify the words
that have a medical meaning and to create seman-
tically enriched representation for each of these
words.

Specifically, in this paper, we designed 3 spe-
cific strategies to leverage medical information:
(i) We propose a novel guided summarization sig-
nal which consists of all the words in the input
sentence with a medical meaning in order to demon-
strate to the model the importance of these words
in the creation of an accurate summary. (ii) In ad-
dition, we introduce a semantic type embedding
that enriches the input embedding process of the
model by forcing the model to take into considera-
tion the associations between words that have the
same semantic type. (iii) Finally, we update the
standard loss function of a Transformer summa-
rization model into a novel weighted loss function
which provides a stronger incentive to the model
to correctly predict ‘medical’ words by passing a
higher weight to these words.

We present a novel architecture for integrating
medical knowledge during the summarization pro-
cess via a novel knowledge augmentation strategy.
Key paper contributions include:

1. We are the first, to the best of our knowledge,
to propose the usage of medical knowledge
from a clinical Metathesaurus (UMLS) in
the summarization process of a Transformer-
based model (MedicalSum) in order to gen-
erate ‘medically focused’ clinical note sum-
maries from full encounter transcripts.

2. We answer the question of how to incorpo-
rate structured medical knowledge in medical
documentation generation by designing 3 spe-
cific signals over medical entities and their
connections (details in the earlier paragraph),

implementing them in MedicalSum, and eval-
uating them.

3. By leveraging these methods the MedicalSum
model achieved a ROUGE-1 and ROUGE-L
improvement between 0.8% and 2.0% in all
experiments on medical note summarization.
In addition, qualitative analysis verified Med-
icalSum’s ability to better determine which
key information (medical terms) should pass
the model’s decision process and appear in the
generated summaries.

2 Related Work

There are two main approaches for summarization.
Extractive methods (Kupiec et al., 1995) where the
summary is created from passages that are copied
from the source text and abstractive (Chopra et al.,
2016) methods where phrases and words not in the
source text can be used to create the summary.

Neural Abstractive Summarization: For the
task of abstractive summarization, sequence-to-
sequence (seq-to-seq) summarization models have
achieved state-of-the-art results (Sutskever et al.,
2014). Furthermore, different architectures have
been proposed to improve the performance of a seq-
to-seq model. In Enarvi et al. (2020), the authors
incorporated a transformer-based (Vaswani et al.,
2017) encoder-decoder architecture in order to pro-
duce highly-accurate summaries. In addition, in
See et al. (2017), a pointing mechanism was used
for copying words from the source document.

Guided Summarization: Several studies have
focused on including guidance signals in the stan-
dard seq-to-seq architecture. Li et al. (2018) in-
cluded a set of keywords that are incorporated into
the generation process. Zhu et al. (2020) proposed
the usage of relational triples (subject, relation, ob-
ject). Finally, in Dou et al. (2021) the authors cre-
ated a guided summarization framework which can
support different external guidance signals.

Medical Summarization: Pivovarov and El-
hadad (2015) introduced a summarization model
which was focused on creating accurate summaries
for clinical data. Furthermore, Enarvi et al. (2020)
used a pointer-generator transformer model to accu-
rately generate notes from doctor-patient conversa-
tions. Finally, Joshi et al. (2020) used a variation of
the pointer-generator model that leveraged shared
medical terminology between source and target
to distinguish important words from unimportant
words.



3 Dataset

For the training of the MedicalSum model, we had
to choose a large enough dataset that would provide
the necessary data for the medical signals to mean-
ingfully affect the model’s performance. However,
there are no publicly available large scale datasets
for medical summarization and thus we had to use a
proprietary one. We use English data consisting of
encounters in a family medicine setting. These en-
counters were recorded at the time of the encounter
and then transcribed using ASR. Data also includes
the associated clinical note summaries (which are
stored in a HIPAA compliant environment and the
required steps have been taken to protect them).

The reports are organized under three sections
that corresponds to three broad areas of a medical
note: (i) History of Present Illness (HPI), which
captures the reason for visit, and the relevant clin-
ical and social history. (ii) Physical Examination
(PE), which captures both normal and abnormal
findings from a physical examination. (iii) Assess-
ment and Plan (AP), which captures the assessment
by the doctor and the treatment plan. We report
experimental results on a dataset that consists of
around 40,000 encounters for each section. Table 1
shows detailed statistics of our dataset.

Train Valid Test AW PD (%)
AP 42106 648 2525 2586 99.2
HPI 43092 657 2551 2584 96.9
PE 39815 635 2442 2633 91.7
RAD 91544 2000 600 49 100
Table 1: Number of reports/encounters for the

train/validation/test set of each section of the family
medicine reports and the MEDIQA third task; A.W. is
average number of word for each section; P.D is the
percentage of distribution per section (percentage of
encounters which have the section in their report).

In order to allow for a more open comparison,
we also experimented with a public dataset. We
tackle the third task of the MEDIQA 2021 chal-
lenge (Ben Abacha et al., 2019) of automatic sum-
marization of English radiology reports (RAD) of
the MIMIC-CXR dataset (Johnson et al., 2019) (li-
cense: https://tinyurl.com/mimic-licence). From
the Table 1, it can be observed that the input doc-
uments in the MEDIQA dataset are much smaller
than the documents of the other real-world datasets
that we experimented on and thus they contain less
medical information. However, we have included it

in order to have an evaluation of the models and the
baseline on an external dataset. Our experiments
are consistent with the datasets’ intended use, as
they were created for research purposes. We manu-
ally investigated the existence of information that
names individual people or offensive content, but
we did not find any indication of either of them.

4 Method

4.1 MedicalSum: Medical Guided
Transformer Pointer Generator Model

We adopt the transformer self-attention model
(Vaswani et al., 2017) to create context dependent
representations of the inputs. Both encoder and
decoder consist of six layers of self-attention with
8 attention heads and each decoder layer attends to
the top of the encoder stack after the self-attention.
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Figure 1: Illustration of MedicalSum a transformer
sequence-to-sequence model with a pointer-generator
and guidance mechanism.

A simplified image of the MedicalSum model
can be found in Figure 1. We improve the per-
formance of our model by introducing to the stan-
dard transformer encoder-decoder model for sum-
marization (i) a pointing mechanism for copying
out-of-vocabulary (OOV) words from the source
document (part (a) in Figure 1), (ii) a novel guided
summarization signal which consists of all the med-
ical words in the input sentence in UMLS (part (b)),
(iii) a new semantic type embedding that enriches
the input embeddings process (part (c)) (iv) a novel
weighted loss function which provides a stronger
incentive to the model to correctly predict medi-
cal words (part (d)). The details of each added
component are discussed in the following sections.



4.2 Pointer-Generator

First, we implement the pointer generator network
as described in (Enarvi et al., 2020; See et al.,
2017). Because the Transformer model creates
several encoder-decoder attention distributions, we
can choose any distribution over the source tokens
for the copying mechanism. Following (Enarvi
et al., 2020) we chose to use a single attention head
in order to only train the parameters of a single
head to attend to the tokens that are good candi-
dates for copying. Finally, in (Garg et al., 2019) it
was stated that the penultimate layer seems to natu-
rally learn alignments, so we chose to use its first
attention head for pointing (Enarvi et al., 2020).

4.3 Medical Guidance Signal

We include a medical guidance signal in the sum-
marization process, that consists of all the medical
terms in the input sequence that could be identi-
fied in UMLS using the MedCAT toolkit (Kral-
jevic et al., 2021), by introducing two encoders
(that share weights) that encode the input text and
the guidance signal respectively (Dou et al., 2021).
Each encoder layer for both the input and the guid-
ance signal consists of a self-attention block and
feed-forward block. In addition, each decoder layer
consist of a self-attention block, a cross-attention
block with the medical guidance signal in order to
inform the decoder which section of the source doc-
ument are important, a cross-attention block with
the encoded input where the decoder attends to
the whole source document based on the guidance-
aware representations and a feed-forward block.

As MedicalSum focuses on the creation of sum-
maries on medical data, we create a medical guid-
ance signal with all the words with a medical mean-
ing. We believe that this signal will be beneficial to
the performance of the model as a guidance signal
which is created as a set of individual keywords
{wy1, ..., wy}, can help the model to focus on spe-
cific desired aspects of the input (Dou et al., 2021).
We chose to identify medical entities with UMLS
as it is a compendium of many biomedical vocab-
ularies (e.g. MeSH (Dhammi and Kumar, 2014),
ICD-10 (WHO, 2004)) and thus it contains all the
major standardized clinical terminologies.

There are other research works that used external
knowledge from knowledge bases to enhance the
performance of deep learning models such as the
model in (Soares et al., 2019). However, we believe
the approach of marking the entities is not fitted

for the task of abstractive summarization as the
markers will change the format of the sentence and
they will affect the performance of summarization
models especially in the case when they are pre-
trained on large corpus (which is mostly the case
for transformer-based models). Finally, there is no
significant overhead by the additional encoder as
the two encoder share their weights.

4.4 Semantic Type Embeddings

We also introduce a new embedding matrix called
S € RPs*d into the input layer where d is trans-
former hidden dimension (512) and D, = 50 is the
number of unique UMLS semantic types that are
relevant to the domain of the dataset.

To incorporate the S embedding matrix into the
input embedding layer, all the words with a clinical
meaning defined in UMLS are identified (using
the MedCAT toolkit (Kraljevic et al., 2021)) and
their corresponding semantic type is extracted. By
introducing the semantic type embedding, the input
vector for each word w; is updated to:

Gy _

uinput - p(j) + ij + STSwj (1)

where s,,; € RPs is a 1-hot vector corresponding
to the semantic type of the medical word w; (the
semantic type vector S| s, j 18 set to a zero-filled
vector for words that are not identified in UMLYS)
and pU) € R? is the position embedding of the j"
token in the sentence. Finally, £ € R¥P is the
token embedding where D = 48128 is the size of
the model’s vocabulary and w; € RP is a 1-hot
vector corresponding to the j* input token.

Previous  research  work  (UmlsBERT
(Michalopoulos et al., 2021)) demonstrated
that the inclusion of semantic type vectors had a
positive effect on the performance of a contextual
model in various downstream task as the semantic
type embeddings can provide more accurate input
vectors for the medical words that are rare in the
training corpus. Our model differs from previous
work as it extends the semantic policy for all of
the medical words that could be identified instead
of only including semantic embeddings for the
words that could be tokenized in a single token
(e.g. our model included the semantic type of the
word ‘x-ray’ but UmIsBERT did not).

4.5 Medical Weighted Loss Function

We update the loss function of the summarization
task to provide a stronger incentive to correctly pre-



TEST

Model Micro F1 HPI PE AP RAD
Enarvi-PC Rouge-1  48.04 £04 66.11+03 43.02+04 27.01+£0.2
Rouge-L 3421 +£03 63.15£02 36.19+£03 2501+£03
Medical Sumy, Rouge-1  48.64+0.2 6737+0.2 4385+04 2734+02
Rouge-L.  3432+03 63.77£03 36.67+05 2537+0.2
Medical Sum,g Rouge-1  48.79+03 68.02+0.2 4372+05 2757+£02
guwdance  Rouge-L.  35.14+0.3  64.17+0.2 36.65+0.3 25.66+0.2
Medical Sum et Rouge-1  4890+0.2 67.80+03 43.64+04 27.56+0.3
Rouge-L. 3479 +£02 6393+02 3642+0.2 2539403
Medical Sum Rouge-1 4898 0.3 68.22 +0.2 44.54 +£0.3 27.77 £0.3
Rouge-L 3522 +03 644803 37.34+£0.2 26.06+ 0.2

VALID

Enarvi-PC Rouge-1  48.17+03 67.44+0.2 4323+04 2991+£03
Rouge-L 3488 £03 64.68£0.2 3639+£03 2995+03
Medical Sumy,, Rouge-1  4929+02 67.89+02 44.02+03 30.32£03
Rouge-L. 3494 +03 6433+£03 36.70+0.2 30.14+0.3
Medical Sum g Rouge-1  49.55+03 68.18+03 4432+04 3035+0.2
gudance  Rouge-L.  35.14+0.3  64.66 +£0.2 37.01 £0.3 30.81 +£0.2
Medical Sum et Rouge-1  4939+03 68.02+0.2 44.16+04 30.30+0.2
Rouge-L. 3499 +04 6441£03 3690+£05 30.50£0.2
MedicalSum Rouge-1  49.68 0.2 68.37 0.3 4498 +£0.3 30.63 0.3
Rouge-L 3543 +0.2 6483 +£0.2 37.90+0.2 3145+0.3

Table 2: Results of mean = standard deviation for each model on the test/validation set; best values are bolded

dict medical words. In our summarization model
we are using the cross-entropy loss of the Fairseq
library (Ott et al., 2019) for the target word z; for
each timestep ¢t. We modify the loss function to a
weighted loss function where the weight for all of
the medical words is higher in order to provide a
stronger incentive to the model to correctly predict
the words with a medical meaning. Specifically,
the summarization loss is updated to :

loss = —logP(xt) * wy 2)

where w; = 1 for all the non-medical words and
wy = 1 + « for all the medical words, where « is
an additional weight value for these words.

4.6 Discussion

Previous work (Michalopoulos et al., 2021) intro-
duced a semantic type embedding, for the medical
words that could be tokenized into a single token.
Our semantic type signal extends the semantic pol-
icy for all the medical words (i.e multi-token words)
in order to capture all of the relevant medical infor-
mation. Also, our novel medical guidance signal is
the first attempt to ‘guide’ a summarization model
by combining the dual-encoder architecture with

structured medical information. Finally, our new
loss function, which incorporates a higher weight
for all the medical terms, has not been used in prior
work.

S Experiments

5.1 Results

We report the results of the comparison of our
proposed MedicalSum model with the baseline
(Enarvi-PG) pointer generator model (Enarvi et al.,
2020). We also experiment with variations of our
model that only contain, a) the guidance signal
(MedicalSumy;gqnce) Where the guidance signal is
composed by all the medical words; b) the semantic
type embedding (MedicalSumgepgntic); and c) the
medical weighted loss function (MedicalSum;,ss),
in order to measure how each signal individually
affects the model’s performance. These models are
implemented using the Fairseq library (Ott et al.,
2019) on PyTorch 1.5.0. All experiments are exe-
cuted on V100 32 GB GPU with 32G GB of system
RAM on Ubuntu 18.04.3 LTS.

We use a vocabulary consisting of the 45k most
frequent words. The same vocabulary is shared



between the source and the target tokens. We train
the models a maximum of 20k steps. It should be
noted that Enarvi-PG, the MedicalSum,;qqnce and
MedicalSum;, ., model have the exact same num-
ber of (74,724,353) parameters (the input and the
‘guidance’ encoder share their weights). However,
MedicalSum and the MedicalSumge,,qntic model
have an additional 25,600 parameters due to the
inclusion of the semantic type embeddings.

5.1.1 Hyperparameter tuning

We provide the search strategy and the bound for
each hyperparameter: the batch size is set between
4 and 8, and the o parameter of the medical weight
loss was tested with the values 0.01, 0.1 and 0.2.
The best values are chosen based on the valida-
tion set micro ROUGE-1 F1 values. In the interest
of providing a fair comparison, we tune the hy-
perparameters of each model. For the Enarvi-PG,
MedicalSum and the models with each individual
medical signal, the batch size was set to 4 and the
medical weight loss parameter was set to be 0.01.

In order to achieve more robust results, we run
our model on three (random) seeds and we pro-
vide the average scores and standard deviation for
the testing and the validation set. We compare the
models on the ROUGE-1 F1 score that is based on
the overlap of unigram and ROUGE-L F1 score
that is based on the lengths of the longest common
subsequences between the actual summary and the
output of the model. The ROUGE scores are calcu-
lated by using the scoring code, that was provided
with the family medicine dataset!.

5.1.2 Summarization model comparison

The mean and standard deviation of ROUGE-1
F1 and ROUGE-L F1 for all the competing mod-
els are reported in Table 2. MedicalSum outper-
forms the pointer generator (Enarvi-PG) baseline
on all the datasets due to the fact that all the (three)
previous mentioned medical signals have a posi-
tive contribution on its performance (subsection
5.1.3) as they encourage MedicalSum to take into
consideration different medical information (sec-
tion 5.2). It achieved an improvement between
0.8% (on the radiology dataset) and 2% (on the PE
section, where the ROUGE-1 improvement from
66.11 to 68.22 is a 6.2% reduction in error). The
MedicalSumge;,antic, the MedicalSum;, s and the
Enarvi-PG model have similar running times (117K

'In order to conceal the identity of the authors we did not
include the link of the scoring code in this version of the paper.

seconds for the HPI, AP and PE sections and 64K
seconds for the radiology dataset). MedicalSum
and the MedicalSumg,;gance are always slower (by
4%) due to the introduction of the second encoder.
We chose to compare our model with the Enarvi-
PG model (Enarvi et al., 2020), as it has achieved
state-of-the-art results in a similar medical summa-
rization dataset. In addition, in their experimenta-
tion setup, they actually compared their model with
other summarization models like the model of (See
et al., 2017) and showcased that their model out-
performed it in the task of medical summarization.
We did not re-do the experiments multiple time
with different splits in order to be consistent with
the literature in terms of testing. For both datasets
the splits were provided by the team who created
them and creating new splits will not provide a
fair comparison with other (current and future) re-
search models that will be tested on these datasets.
However, we run each model multiple times (with
different random seeds) and we provide the aver-
age scores and standard deviation for the testing
and the validation set in order to be sure that the
improvement was not due to the random seed.

5.1.3 Ablation Study

In order to understand the effect that each medical
signal has on the model performance, we conduct
an ablation test where the performance of three
variations of the MedicalSum model are compared,
where each model is allowed access to only one of
the medical signals. The results of this compari-
son are listed in Table 2. MedicalSum achieves its
best performance when all the medical signals are
available. However, each model that has access to
any of the medical signals outperforms the baseline
model. The guidance signal (MedicalSumg,;qance)
seems to have the most positive effect as it can
more clearly guide the model to the most important
sections of the input. On the other hand, the medi-
cal weight loss (MedicalSum;,ss) seems to have the
least influence over the model’s performance but as
we show in the qualitive analysis (Section 5.2), it
can aid the model to focus on medical information.
Furthermore, enriching the input embedding with
semantic information (MedicalSumge;,qntic) Seems
to boost the performance of the model as it forces
the embeddings of words that are associated with
the same semantic type to become more similar.
These experiments provide further evidence of the
positive effect of each of the medical signals on the
performance of the MedicalSum model. Finally, in



ASSESSMENT AND PLAN -If1- Acute left hip pain . —If1- The patient has been
experiencing acute left hip pain since . The pain is in her sacroiliac joint on her left
side . I have prescribed a short course of prednisone to take in the morning after
breakfast . I have instructed her not to take ibuprofen , Advil , or Aleve . I have
also instructed her to apply heat to her back . we can get an x-ray of her lower back.

ASSESSMENT AND PLAN -1f2— 1 . Left hip pain . —Ifl-. I recommend the
patient take a short course of prednisone . I have advised her to apply heat to the

Assessment and Plan : —1f2— 1 . Acute left hip pain . —If1- the left hip pain is sciatic
pain. I recommend the patient take a short course of prednisone for 10 days . She
can take it in the morning after breakfast . I also recommend she take a shower
going to the kitchen daily . I also recommend she can also try applying heat to the

ASSESSMENT AND PLAN -1f2— 1 . Acute left hip pain . —If1- I have prescribed
a short course of prednisone . I advised the patient to take this in the morning after
breakfast . I advised the patient to apply heat to the affected area for 10 days .advised
the patient to avoid NSAIDs . I have ordered an x-ray of the lower back .

ASSESSMENT AND PLAN —If2- 1 . Acute left hip pain . —If1— I have prescribed
her a short course of prednisone . If her symptoms do not improve , I will refer her
to physical therapy to strengthen the muscle of her back . —1f2— 2 . Preventative care

ASSESSMENT AND PLAN -If1- 1. Acute left hip pain . —1f1— I suspect the left
hip pain is sciatic pain . I will order an x-ray of the left hip . I have instructed the
patient to apply heat to the lower back and see unusual daily chores . I advised the
patient to avoid NSAIDs I recommended that she perform acute exercise when she

model output
target-
summary
Enarvi-PG
affected area . —1f2— 2 . Preventative care .—1f2— Instructions —1f1—
Medical-
S UM semantic
affected area .
Medical-
Sum guidance
Medical-
S UM|oss
. —If1- The patient is due for a x-ray .
Medical Sum
is acutely inflamed after 10 days.

Table 3: Distinct output from models of different medical signals

section 5.2, we provide a qualitative analysis where
we demonstrate that each signal can ‘guide’ a sum-
marization model to different medical information
that the baseline model ignored.

5.2 Qualitative Model Output Comparison

We have shown how the MedicalSum model im-
proves ROUGE scores compared to a state-of-the-
art baseline. In this section, we qualitatively evalu-
ate some of the differences in summaries produced
by each model variant and show how each con-
tributes to more accurate and medical summaries.
Table 3 shows a sample target summary and
we compare it with the output of the Enarvi-PG
model and the medical signals of MedicalSum. It
should be noted that the only criteria for choos-
ing these examples was that they should contain
medical entities. Some of the shorter input text
contained no medical entities, and we did not in-
clude those here as they would not showcase the
differences between the baseline and the guided

medical summarization model. We observe that
the summary from the pointer generator (Enarvi-
PG) baseline model does not include the following
medical information: (i) the medicines: ibupro-
fen, Advil, or Aleve and (ii) x-rays. However, the
MedicalSumy;qqnce model has included in its sum-
mary the medical entities x-ray and NSAID (Non-
steroidal anti-inflammatory drugs) as they were
identified as medical entities and were part of the
guidance signal. In addition, the MedicalSum;,,
model has included the x-ray token as a result of
providing a stronger incentive to predict ‘medical’
words by passing a higher weight to the words that
have a medical meaning. The MedicalSum model
included all the previous mentioned medical words
as it take advantage of all the medical signals.

Another example which showcases the strength
of the medical signals can be found in Table
4. The summary from the Enarvi-PG model
lacks two important medical facts: (i) ophthalmic
drops, and (ii) Dyslipidemia. = However, the



model output
The left eye swelling with burning and itching has been present for 2 weeks . 1
target- . . . .
will prescribe olopatadine 0.2 percent ophthalmic drops . If the symptoms do not
summary . . . . . . . .
improve , the patient will return and consider bacterial cause .—1f2— Dyslipidemia .
ASSESSMENT AND PLAN : The patient has allergic conjunctivitis of left eye .
Enarvi-PG | —If1- - Patient Education and Counseling : The patient was advised to keep wiping
green and thick mucus from the eye
Medical- ASSESSMENT AND PLAN : —f1- 1. Allergic conjunctivitis of left eye. —f1— The
SUMsemantic | patient was advised to continue using his eye drops .
Medical- ASSESSMENT/PLAN —f1- Allergic conjunctivitis . I recommended that the patient
SuMgyidance | continue daily loratadine .—1f2— Dyslipidemia
Medical- ASSESSMENT/PLAN -If1- Allergic conjunctivitis —If1- —If1— Medical Treatment
SuUmypss : The patient will continue to take loratadine —1f2— Dyslipidemia
. ASSESSMENT/PLAN —f1- Allergic conjunctivitis . —f1— - Medical Treatment :
Medical Sum . . . . . . . .
The patient will continue daily loratadine and eye drops .—1f2— Dyslipidemia

Table 4: Distinct output from models of different medical signals

MedicalSumy;gance and the MedicalSumy,ss mod-
els have included the word ‘Dyslipidemia’ as it
was identified as a medical word. The effect of this
is that it was part of the medical guidance signal
for the MedicalSumgy;gqnce model and provided
a higher weight during loss computation for the
MedicalSum;, ;s model. The MedicalSumge,nantic
model has also included the medical concept ‘eye
drops’ as an replacement of ‘ophthalmic drops’.
‘Eye’ and ‘ophthalmic’ have the same semantic
type in UMLS and thus the model had the ability
to learn their medical meaning even if one of these
words (ophthalmic) is not popular in the training
set. Finally, the MedicalSum model included all of
the previous mentioned medical words.

These examples demonstrate how, in addition to
improving ROUGE scores, the MedicalSum model
also generates clinical summaries that contain more
relevant medical facts. In particular, they show-
cased that a guided medical summarization model
can help with the omission of key information,
which is especially of concern in the medical do-
main, because if medical key information is miss-
ing from the output, future readers may not have
the ability to make an accurate diagnosis.

6 Conclusion and Future Work

In this paper, we present MedicalSum, a novel ap-
proach for medical conversation summarization
that integrates medical knowledge into the summa-
rization process of a contextual word embeddings
model. MedicalSum can provide external medi-
cal guidance that helps key information pass the

model’s decision process and appear in the sum-
mary. Its novel weighted loss function provides a
stronger incentive to the model to correctly predict
words with a medical meaning. Lastly, it creates
more meaningful input embeddings by forcing the
embeddings of the words that are associated with
the same semantic type to become more similar by
incorporating information from the semantic type
of each biomedical word.

Our analysis showed that these features al-
lowed MedicalSum to produce more accurate Al-
generated medical documentation. MedicalSum
achieves ROUGE score gains of 0.8 to 2 points (and
up to 6.2% error reduction on the family medicine
dataset), which is a respectable amount of gain for
this task, and does a more complete job including
medical entities that contain crucial information.

As for future work, we plan to address the limi-
tations of this study including: (i) Investigating the
generality of MedicalSum to additional datasets,
(i1) Exploring UMLS hierarchical associations be-
tween words that extend the concept connection we
investigated and (iii) Examining different guidance
signals such as the inclusion of relational triples.

This work is the first to show how external med-
ical domain (UMLS) knowledge can effectively
improve the performance of a medical note gener-
ation model. Leveraging external knowledge may
become an important component of scaling and
improving future medical Al systems that automat-
ically generate medical documentation to combat
physician burnout and improve patient care.



Ethical Consideration

Medical Note generation by abstractive summariza-
tion has the potential to reduce physician burnout,
which occurs, in part, as a result of the vast
amount of documentation requirements for elec-
tronic health records (EHR). Traditionally, clinical
professionals review clinical documents and manu-
ally create the appropriate summaries by following
specific guidelines. Models such as our Medical-
Sum model could help to reduce physician burnout,
as well as enabling physicians to devote more qual-
ity time and attention to their patients.

However, we need to be aware of the risks of
over-relying on any automatic abstractive summa-
rization model. No matter how efficient an sum-
marization model is, it is still possible to omit key
information or to hallucinate unsupported informa-
tion. This is especially of concern in the medical
domain, as inaccuracies could have a significant
adverse effect on future patient health outcomes.
Thus we believe that any automatic summarization
model should only be used to assist and not replace
trained clinical professionals.
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