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Abstract

We introduce MedicalSum, a Transformer-001
based sequence-to-sequence architecture for002
summarizing medical conversations by integrat-003
ing medical domain knowledge from the Uni-004
fied Medical Language System (UMLS). The005
novel knowledge augmentation is performed006
in three ways: (i) introducing a guidance sig-007
nal that consists of the medical words in the008
input sequence, (ii) leveraging semantic type009
knowledge in UMLS to create clinically mean-010
ingful input embeddings, and (iii) making use011
of a novel weighted loss function that provides012
a stronger incentive for the model to correctly013
predict words with a medical meaning.014

By applying these three strategies, Medical-015
Sum takes clinical domain knowledge into con-016
sideration during the summarization process017
and achieves state-of-the-art ROUGE score im-018
provements of 0.8-2 points (including 6.2% er-019
ror reduction in PE section ROUGE-1) when020
producing medical summaries of patient-doctor021
conversations. Furthermore, a qualitative analy-022
sis shows that medical summaries produced by023
the knowledge augmented model contain more024
relevant clinical facts from the patient-doctor025
conversation.026

1 Introduction027

The volume of data created in healthcare has grown028

considerably as a result of record keeping and reg-029

ulatory requirements policies (Kudyba, 2010). The030

documentation requirements for electronic health031

records (EHR) have been shown to be a signifi-032

cant factor contributing to physician burnout (van033

Buchem et al., 2021a; Tran et al., 2020). As a result,034

the automatic creation of medical documentation035

has been proposed as one way to address this is-036

sue. For instance, automatic speech recognition037

(ASR) for dictating medical documents has con-038

tributed significantly to the efficiency of physicians039

in creating narrative reports (Payne et al., 2018).040

Medical Note generation by abstractive summa- 041

rization is another approach to automating clini- 042

cal documentation and aims to decrease the work- 043

load associated with creating summaries of clinical 044

encounters. It does this by taking a transcript of 045

a patient-doctor conversation as input and auto- 046

matically providing a summary of relevant clinical 047

discussion (Finley et al., 2018). The extracted in- 048

formation can then be passed on to other health- 049

care providers, who may use it for the creation of 050

clinical notes or billing codes (van Buchem et al., 051

2021b). The expected impact is reduced physician 052

burnout, as well as enabling physicians to devote 053

more quality time and attention to their patients. 054

To date there have been several attempts at au- 055

tomatically generating summaries of clinical en- 056

counters. Enarvi et al. (2020) created a transformer 057

model for summarizing doctor-patient conversa- 058

tions. Joshi et al. (2020) demonstrated the effect 059

of considering medical knowledge in the summa- 060

rization of dialogue snippets. Finally, Jeblee et al. 061

(2019) and Lacson et al. (2006) used extractive 062

methods to identify the most important utterances 063

which are combined to form the final summary. 064

However, the summaries generated by current 065

summarization models are not straightforwardly 066

controllable (Li et al., 2018). Dialogue summariza- 067

tion is also challenging because casual conversation 068

can include interruptions, repetitions, and sudden 069

topic transitions (Khalifa et al., 2021), and gen- 070

erally does not follow the structure of a written 071

document (Zhu and Penn, 2006). These challenges 072

can lead to problems in generated notes, such as the 073

omission of key information, or the hallucination of 074

unsupported information. This is especially of con- 075

cern in the medical domain, as inaccuracies could 076

have a significant adverse effect on future patient 077

health outcomes. Thus a medical dialogue sum- 078

marization model should capture specific parts of 079

the conversation (Joshi et al., 2020) that are needed 080

for a medical decision. To help address this prob- 081
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lem, we propose a novel knowledge-augmented082

transformer model that uses medical knowledge to083

guide the summarization process in various ways084

to increase the likelihood of relevant medical facts085

being included in the summarized output.086

The Unified Medical Language System (UMLS)087

Metathesaurus (Bodenreider, 2004) is a com-088

pendium of many biomedical terminologies with089

associated information, such as synonyms and cat-090

egorical groupings. It allows the grouping of con-091

cepts according to their semantic type (McCray092

et al., 2001). For example, ‘migraine’ and ‘epis-093

taxis’ are in the ‘Disease or Syndrome’ semantic094

type. Our model uses UMLS to identify the words095

that have a medical meaning and to create seman-096

tically enriched representation for each of these097

words.098

Specifically, in this paper, we designed 3 spe-099

cific strategies to leverage medical information:100

(i) We propose a novel guided summarization sig-101

nal which consists of all the words in the input102

sentence with a medical meaning in order to demon-103

strate to the model the importance of these words104

in the creation of an accurate summary. (ii) In ad-105

dition, we introduce a semantic type embedding106

that enriches the input embedding process of the107

model by forcing the model to take into considera-108

tion the associations between words that have the109

same semantic type. (iii) Finally, we update the110

standard loss function of a Transformer summa-111

rization model into a novel weighted loss function112

which provides a stronger incentive to the model113

to correctly predict ‘medical’ words by passing a114

higher weight to these words.115

We present a novel architecture for integrating116

medical knowledge during the summarization pro-117

cess via a novel knowledge augmentation strategy.118

Key paper contributions include:119

1. We are the first, to the best of our knowledge,120

to propose the usage of medical knowledge121

from a clinical Metathesaurus (UMLS) in122

the summarization process of a Transformer-123

based model (MedicalSum) in order to gen-124

erate ‘medically focused’ clinical note sum-125

maries from full encounter transcripts.126

2. We answer the question of how to incorpo-127

rate structured medical knowledge in medical128

documentation generation by designing 3 spe-129

cific signals over medical entities and their130

connections (details in the earlier paragraph),131

implementing them in MedicalSum, and eval- 132

uating them. 133

3. By leveraging these methods the MedicalSum 134

model achieved a ROUGE-1 and ROUGE-L 135

improvement between 0.8% and 2.0% in all 136

experiments on medical note summarization. 137

In addition, qualitative analysis verified Med- 138

icalSum’s ability to better determine which 139

key information (medical terms) should pass 140

the model’s decision process and appear in the 141

generated summaries. 142

2 Related Work 143

There are two main approaches for summarization. 144

Extractive methods (Kupiec et al., 1995) where the 145

summary is created from passages that are copied 146

from the source text and abstractive (Chopra et al., 147

2016) methods where phrases and words not in the 148

source text can be used to create the summary. 149

Neural Abstractive Summarization: For the 150

task of abstractive summarization, sequence-to- 151

sequence (seq-to-seq) summarization models have 152

achieved state-of-the-art results (Sutskever et al., 153

2014). Furthermore, different architectures have 154

been proposed to improve the performance of a seq- 155

to-seq model. In Enarvi et al. (2020), the authors 156

incorporated a transformer-based (Vaswani et al., 157

2017) encoder-decoder architecture in order to pro- 158

duce highly-accurate summaries. In addition, in 159

See et al. (2017), a pointing mechanism was used 160

for copying words from the source document. 161

Guided Summarization: Several studies have 162

focused on including guidance signals in the stan- 163

dard seq-to-seq architecture. Li et al. (2018) in- 164

cluded a set of keywords that are incorporated into 165

the generation process. Zhu et al. (2020) proposed 166

the usage of relational triples (subject, relation, ob- 167

ject). Finally, in Dou et al. (2021) the authors cre- 168

ated a guided summarization framework which can 169

support different external guidance signals. 170

Medical Summarization: Pivovarov and El- 171

hadad (2015) introduced a summarization model 172

which was focused on creating accurate summaries 173

for clinical data. Furthermore, Enarvi et al. (2020) 174

used a pointer-generator transformer model to accu- 175

rately generate notes from doctor-patient conversa- 176

tions. Finally, Joshi et al. (2020) used a variation of 177

the pointer-generator model that leveraged shared 178

medical terminology between source and target 179

to distinguish important words from unimportant 180

words. 181
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3 Dataset182

For the training of the MedicalSum model, we had183

to choose a large enough dataset that would provide184

the necessary data for the medical signals to mean-185

ingfully affect the model’s performance. However,186

there are no publicly available large scale datasets187

for medical summarization and thus we had to use a188

proprietary one. We use English data consisting of189

encounters in a family medicine setting. These en-190

counters were recorded at the time of the encounter191

and then transcribed using ASR. Data also includes192

the associated clinical note summaries (which are193

stored in a HIPAA compliant environment and the194

required steps have been taken to protect them).195

The reports are organized under three sections196

that corresponds to three broad areas of a medical197

note: (i) History of Present Illness (HPI), which198

captures the reason for visit, and the relevant clin-199

ical and social history. (ii) Physical Examination200

(PE), which captures both normal and abnormal201

findings from a physical examination. (iii) Assess-202

ment and Plan (AP), which captures the assessment203

by the doctor and the treatment plan. We report204

experimental results on a dataset that consists of205

around 40,000 encounters for each section. Table 1206

shows detailed statistics of our dataset.207

Train Valid Test A.W P.D (%)
AP 42106 648 2525 2586 99.2
HPI 43092 657 2551 2584 96.9
PE 39815 635 2442 2633 91.7

RAD 91544 2000 600 49 100

Table 1: Number of reports/encounters for the
train/validation/test set of each section of the family
medicine reports and the MEDIQA third task; A.W. is
average number of word for each section; P.D is the
percentage of distribution per section (percentage of
encounters which have the section in their report).

In order to allow for a more open comparison,208

we also experimented with a public dataset. We209

tackle the third task of the MEDIQA 2021 chal-210

lenge (Ben Abacha et al., 2019) of automatic sum-211

marization of English radiology reports (RAD) of212

the MIMIC-CXR dataset (Johnson et al., 2019) (li-213

cense: https://tinyurl.com/mimic-licence). From214

the Table 1, it can be observed that the input doc-215

uments in the MEDIQA dataset are much smaller216

than the documents of the other real-world datasets217

that we experimented on and thus they contain less218

medical information. However, we have included it219

in order to have an evaluation of the models and the 220

baseline on an external dataset. Our experiments 221

are consistent with the datasets’ intended use, as 222

they were created for research purposes. We manu- 223

ally investigated the existence of information that 224

names individual people or offensive content, but 225

we did not find any indication of either of them. 226

4 Method 227

4.1 MedicalSum: Medical Guided 228

Transformer Pointer Generator Model 229

We adopt the transformer self-attention model 230

(Vaswani et al., 2017) to create context dependent 231

representations of the inputs. Both encoder and 232

decoder consist of six layers of self-attention with 233

8 attention heads and each decoder layer attends to 234

the top of the encoder stack after the self-attention. 235

Shared

Shared

Shared

(c)

(b) (a)

(d)

Source Conversation

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Medical guided signal

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Self-Attention

FFN FFN FFN

Summary

Self-Attention

Encoder Attention

Encoder Attention

FFN FFN FFN

Self-Attention

Encoder Attention

Encoder Attention

FFN FFN FFN

Self-Attention

Encoder Attention

Encoder Attention
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Vocabulary Distribution

+
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Figure 1: Illustration of MedicalSum a transformer
sequence-to-sequence model with a pointer-generator
and guidance mechanism.

A simplified image of the MedicalSum model 236

can be found in Figure 1. We improve the per- 237

formance of our model by introducing to the stan- 238

dard transformer encoder-decoder model for sum- 239

marization (i) a pointing mechanism for copying 240

out-of-vocabulary (OOV) words from the source 241

document (part (a) in Figure 1), (ii) a novel guided 242

summarization signal which consists of all the med- 243

ical words in the input sentence in UMLS (part (b)), 244

(iii) a new semantic type embedding that enriches 245

the input embeddings process (part (c)) (iv) a novel 246

weighted loss function which provides a stronger 247

incentive to the model to correctly predict medi- 248

cal words (part (d)). The details of each added 249

component are discussed in the following sections. 250
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4.2 Pointer-Generator251

First, we implement the pointer generator network252

as described in (Enarvi et al., 2020; See et al.,253

2017). Because the Transformer model creates254

several encoder-decoder attention distributions, we255

can choose any distribution over the source tokens256

for the copying mechanism. Following (Enarvi257

et al., 2020) we chose to use a single attention head258

in order to only train the parameters of a single259

head to attend to the tokens that are good candi-260

dates for copying. Finally, in (Garg et al., 2019) it261

was stated that the penultimate layer seems to natu-262

rally learn alignments, so we chose to use its first263

attention head for pointing (Enarvi et al., 2020).264

4.3 Medical Guidance Signal265

We include a medical guidance signal in the sum-266

marization process, that consists of all the medical267

terms in the input sequence that could be identi-268

fied in UMLS using the MedCAT toolkit (Kral-269

jevic et al., 2021), by introducing two encoders270

(that share weights) that encode the input text and271

the guidance signal respectively (Dou et al., 2021).272

Each encoder layer for both the input and the guid-273

ance signal consists of a self-attention block and274

feed-forward block. In addition, each decoder layer275

consist of a self-attention block, a cross-attention276

block with the medical guidance signal in order to277

inform the decoder which section of the source doc-278

ument are important, a cross-attention block with279

the encoded input where the decoder attends to280

the whole source document based on the guidance-281

aware representations and a feed-forward block.282

As MedicalSum focuses on the creation of sum-283

maries on medical data, we create a medical guid-284

ance signal with all the words with a medical mean-285

ing. We believe that this signal will be beneficial to286

the performance of the model as a guidance signal287

which is created as a set of individual keywords288

{w1, ..., wn}, can help the model to focus on spe-289

cific desired aspects of the input (Dou et al., 2021).290

We chose to identify medical entities with UMLS291

as it is a compendium of many biomedical vocab-292

ularies (e.g. MeSH (Dhammi and Kumar, 2014),293

ICD-10 (WHO, 2004)) and thus it contains all the294

major standardized clinical terminologies.295

There are other research works that used external296

knowledge from knowledge bases to enhance the297

performance of deep learning models such as the298

model in (Soares et al., 2019). However, we believe299

the approach of marking the entities is not fitted300

for the task of abstractive summarization as the 301

markers will change the format of the sentence and 302

they will affect the performance of summarization 303

models especially in the case when they are pre- 304

trained on large corpus (which is mostly the case 305

for transformer-based models). Finally, there is no 306

significant overhead by the additional encoder as 307

the two encoder share their weights. 308

4.4 Semantic Type Embeddings 309

We also introduce a new embedding matrix called 310

S ∈ RDs×d into the input layer where d is trans- 311

former hidden dimension (512) and Ds = 50 is the 312

number of unique UMLS semantic types that are 313

relevant to the domain of the dataset. 314

To incorporate the S embedding matrix into the 315

input embedding layer, all the words with a clinical 316

meaning defined in UMLS are identified (using 317

the MedCAT toolkit (Kraljevic et al., 2021)) and 318

their corresponding semantic type is extracted. By 319

introducing the semantic type embedding, the input 320

vector for each word wj is updated to: 321

u
(j)′
input = p(j) + Ewj + S⊤swj (1) 322

where swj ∈ RDs is a 1-hot vector corresponding 323

to the semantic type of the medical word wj (the 324

semantic type vector S⊤swj is set to a zero-filled 325

vector for words that are not identified in UMLS) 326

and p(j) ∈ Rd is the position embedding of the jth 327

token in the sentence. Finally, E ∈ Rd×D is the 328

token embedding where D = 48128 is the size of 329

the model’s vocabulary and wj ∈ RD is a 1-hot 330

vector corresponding to the jth input token. 331

Previous research work (UmlsBERT 332

(Michalopoulos et al., 2021)) demonstrated 333

that the inclusion of semantic type vectors had a 334

positive effect on the performance of a contextual 335

model in various downstream task as the semantic 336

type embeddings can provide more accurate input 337

vectors for the medical words that are rare in the 338

training corpus. Our model differs from previous 339

work as it extends the semantic policy for all of 340

the medical words that could be identified instead 341

of only including semantic embeddings for the 342

words that could be tokenized in a single token 343

(e.g. our model included the semantic type of the 344

word ‘x-ray’ but UmlsBERT did not). 345

4.5 Medical Weighted Loss Function 346

We update the loss function of the summarization 347

task to provide a stronger incentive to correctly pre- 348
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TEST
Model Micro F1 HPI PE AP RAD

Enarvi-PG
Rouge-1 48.04 ± 0.4 66.11 ± 0.3 43.02 ± 0.4 27.01 ± 0.2
Rouge-L 34.21 ± 0.3 63.15 ± 0.2 36.19 ± 0.3 25.01 ± 0.3

MedicalSumloss
Rouge-1 48.64 ± 0.2 67.37 ± 0.2 43.85 ± 0.4 27.34 ± 0.2
Rouge-L 34.32 ± 0.3 63.77 ± 0.3 36.67 ± 0.5 25.37 ± 0.2

MedicalSumguidance
Rouge-1 48.79 ± 0.3 68.02 ± 0.2 43.72 ± 0.5 27.57 ± 0.2
Rouge-L 35.14 ± 0.3 64.17 ± 0.2 36.65 ± 0.3 25.66 ± 0.2

MedicalSumsemantic
Rouge-1 48.90 ± 0.2 67.80 ± 0.3 43.64 ± 0.4 27.56 ± 0.3
Rouge-L 34.79 ± 0.2 63.93 ± 0.2 36.42 ± 0.2 25.39 ± 0.3

MedicalSum
Rouge-1 48.98 ± 0.3 68.22 ± 0.2 44.54 ± 0.3 27.77 ± 0.3
Rouge-L 35.22 ± 0.3 64.48 ± 0.3 37.34 ± 0.2 26.06 ± 0.2

VALID

Enarvi-PG
Rouge-1 48.17 ± 0.3 67.44 ± 0.2 43.23 ± 0.4 29.91 ± 0.3
Rouge-L 34.88 ± 0.3 64.68 ± 0.2 36.39 ± 0.3 29.95 ± 0.3

MedicalSumloss
Rouge-1 49.29 ± 0.2 67.89 ± 0.2 44.02 ± 0.3 30.32 ± 0.3
Rouge-L 34.94 ± 0.3 64.33 ± 0.3 36.70 ± 0.2 30.14 ± 0.3

MedicalSumguidance
Rouge-1 49.55 ± 0.3 68.18 ± 0.3 44.32 ± 0.4 30.35 ± 0.2
Rouge-L 35.14 ± 0.3 64.66 ± 0.2 37.01 ± 0.3 30.81 ± 0.2

MedicalSumsemantic
Rouge-1 49.39 ± 0.3 68.02 ± 0.2 44.16 ± 0.4 30.30 ± 0.2
Rouge-L 34.99 ± 0.4 64.41 ± 0.3 36.90 ± 0.5 30.50 ± 0.2

MedicalSum
Rouge-1 49.68 ± 0.2 68.37 ± 0.3 44.98 ± 0.3 30.63 ± 0.3
Rouge-L 35.43 ± 0.2 64.83 ± 0.2 37.90 ± 0.2 31.45 ± 0.3

Table 2: Results of mean ± standard deviation for each model on the test/validation set; best values are bolded

dict medical words. In our summarization model349

we are using the cross-entropy loss of the Fairseq350

library (Ott et al., 2019) for the target word xt for351

each timestep t. We modify the loss function to a352

weighted loss function where the weight for all of353

the medical words is higher in order to provide a354

stronger incentive to the model to correctly predict355

the words with a medical meaning. Specifically,356

the summarization loss is updated to :357

loss = −logP (xt) ∗ wt (2)358

where wt = 1 for all the non-medical words and359

wt = 1 + α for all the medical words, where α is360

an additional weight value for these words.361

4.6 Discussion362

Previous work (Michalopoulos et al., 2021) intro-363

duced a semantic type embedding, for the medical364

words that could be tokenized into a single token.365

Our semantic type signal extends the semantic pol-366

icy for all the medical words (i.e multi-token words)367

in order to capture all of the relevant medical infor-368

mation. Also, our novel medical guidance signal is369

the first attempt to ‘guide’ a summarization model370

by combining the dual-encoder architecture with371

structured medical information. Finally, our new 372

loss function, which incorporates a higher weight 373

for all the medical terms, has not been used in prior 374

work. 375

5 Experiments 376

5.1 Results 377

We report the results of the comparison of our 378

proposed MedicalSum model with the baseline 379

(Enarvi-PG) pointer generator model (Enarvi et al., 380

2020). We also experiment with variations of our 381

model that only contain, a) the guidance signal 382

(MedicalSumguidance) where the guidance signal is 383

composed by all the medical words; b) the semantic 384

type embedding (MedicalSumsemantic); and c) the 385

medical weighted loss function (MedicalSumloss), 386

in order to measure how each signal individually 387

affects the model’s performance. These models are 388

implemented using the Fairseq library (Ott et al., 389

2019) on PyTorch 1.5.0. All experiments are exe- 390

cuted on V100 32 GB GPU with 32G GB of system 391

RAM on Ubuntu 18.04.3 LTS. 392

We use a vocabulary consisting of the 45k most 393

frequent words. The same vocabulary is shared 394
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between the source and the target tokens. We train395

the models a maximum of 20k steps. It should be396

noted that Enarvi-PG, the MedicalSumguidance and397

MedicalSumloss model have the exact same num-398

ber of (74,724,353) parameters (the input and the399

‘guidance’ encoder share their weights). However,400

MedicalSum and the MedicalSumsemantic model401

have an additional 25,600 parameters due to the402

inclusion of the semantic type embeddings.403

5.1.1 Hyperparameter tuning404

We provide the search strategy and the bound for405

each hyperparameter: the batch size is set between406

4 and 8, and the α parameter of the medical weight407

loss was tested with the values 0.01, 0.1 and 0.2.408

The best values are chosen based on the valida-409

tion set micro ROUGE-1 F1 values. In the interest410

of providing a fair comparison, we tune the hy-411

perparameters of each model. For the Enarvi-PG,412

MedicalSum and the models with each individual413

medical signal, the batch size was set to 4 and the414

medical weight loss parameter was set to be 0.01.415

In order to achieve more robust results, we run416

our model on three (random) seeds and we pro-417

vide the average scores and standard deviation for418

the testing and the validation set. We compare the419

models on the ROUGE-1 F1 score that is based on420

the overlap of unigram and ROUGE-L F1 score421

that is based on the lengths of the longest common422

subsequences between the actual summary and the423

output of the model. The ROUGE scores are calcu-424

lated by using the scoring code, that was provided425

with the family medicine dataset1.426

5.1.2 Summarization model comparison427

The mean and standard deviation of ROUGE-1428

F1 and ROUGE-L F1 for all the competing mod-429

els are reported in Table 2. MedicalSum outper-430

forms the pointer generator (Enarvi-PG) baseline431

on all the datasets due to the fact that all the (three)432

previous mentioned medical signals have a posi-433

tive contribution on its performance (subsection434

5.1.3) as they encourage MedicalSum to take into435

consideration different medical information (sec-436

tion 5.2). It achieved an improvement between437

0.8% (on the radiology dataset) and 2% (on the PE438

section, where the ROUGE-1 improvement from439

66.11 to 68.22 is a 6.2% reduction in error). The440

MedicalSumsemantic, the MedicalSumloss and the441

Enarvi-PG model have similar running times (117K442

1In order to conceal the identity of the authors we did not
include the link of the scoring code in this version of the paper.

seconds for the HPI, AP and PE sections and 64K 443

seconds for the radiology dataset). MedicalSum 444

and the MedicalSumguidance are always slower (by 445

4%) due to the introduction of the second encoder. 446

We chose to compare our model with the Enarvi- 447

PG model (Enarvi et al., 2020), as it has achieved 448

state-of-the-art results in a similar medical summa- 449

rization dataset. In addition, in their experimenta- 450

tion setup, they actually compared their model with 451

other summarization models like the model of (See 452

et al., 2017) and showcased that their model out- 453

performed it in the task of medical summarization. 454

We did not re-do the experiments multiple time 455

with different splits in order to be consistent with 456

the literature in terms of testing. For both datasets 457

the splits were provided by the team who created 458

them and creating new splits will not provide a 459

fair comparison with other (current and future) re- 460

search models that will be tested on these datasets. 461

However, we run each model multiple times (with 462

different random seeds) and we provide the aver- 463

age scores and standard deviation for the testing 464

and the validation set in order to be sure that the 465

improvement was not due to the random seed. 466

5.1.3 Ablation Study 467

In order to understand the effect that each medical 468

signal has on the model performance, we conduct 469

an ablation test where the performance of three 470

variations of the MedicalSum model are compared, 471

where each model is allowed access to only one of 472

the medical signals. The results of this compari- 473

son are listed in Table 2. MedicalSum achieves its 474

best performance when all the medical signals are 475

available. However, each model that has access to 476

any of the medical signals outperforms the baseline 477

model. The guidance signal (MedicalSumguidance) 478

seems to have the most positive effect as it can 479

more clearly guide the model to the most important 480

sections of the input. On the other hand, the medi- 481

cal weight loss (MedicalSumloss) seems to have the 482

least influence over the model’s performance but as 483

we show in the qualitive analysis (Section 5.2), it 484

can aid the model to focus on medical information. 485

Furthermore, enriching the input embedding with 486

semantic information (MedicalSumsemantic) seems 487

to boost the performance of the model as it forces 488

the embeddings of words that are associated with 489

the same semantic type to become more similar. 490

These experiments provide further evidence of the 491

positive effect of each of the medical signals on the 492

performance of the MedicalSum model. Finally, in 493
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model output

target-
summary

ASSESSMENT AND PLAN –lf1– Acute left hip pain . –lf1– The patient has been
experiencing acute left hip pain since . The pain is in her sacroiliac joint on her left
side . I have prescribed a short course of prednisone to take in the morning after
breakfast . I have instructed her not to take ibuprofen , Advil , or Aleve . I have
also instructed her to apply heat to her back . we can get an x-ray of her lower back.

Enarvi-PG
ASSESSMENT AND PLAN –lf2– 1 . Left hip pain . –lf1– . I recommend the
patient take a short course of prednisone . I have advised her to apply heat to the
affected area . –lf2– 2 . Preventative care .–lf2– Instructions –lf1–

Medical-
Sumsemantic

Assessment and Plan : –lf2– 1 . Acute left hip pain . –lf1– the left hip pain is sciatic
pain. I recommend the patient take a short course of prednisone for 10 days . She
can take it in the morning after breakfast . I also recommend she take a shower
going to the kitchen daily . I also recommend she can also try applying heat to the
affected area .

Medical-
Sumguidance

ASSESSMENT AND PLAN –lf2– 1 . Acute left hip pain . –lf1– I have prescribed
a short course of prednisone . I advised the patient to take this in the morning after
breakfast . I advised the patient to apply heat to the affected area for 10 days .advised
the patient to avoid NSAIDs . I have ordered an x-ray of the lower back .

Medical-
Sumloss

ASSESSMENT AND PLAN –lf2– 1 . Acute left hip pain . –lf1– I have prescribed
her a short course of prednisone . If her symptoms do not improve , I will refer her
to physical therapy to strengthen the muscle of her back . –lf2– 2 . Preventative care
. –lf1– The patient is due for a x-ray .

MedicalSum

ASSESSMENT AND PLAN –lf1– 1 . Acute left hip pain . –lf1– I suspect the left
hip pain is sciatic pain . I will order an x-ray of the left hip . I have instructed the
patient to apply heat to the lower back and see unusual daily chores . I advised the
patient to avoid NSAIDs I recommended that she perform acute exercise when she
is acutely inflamed after 10 days.

Table 3: Distinct output from models of different medical signals

section 5.2, we provide a qualitative analysis where494

we demonstrate that each signal can ‘guide’ a sum-495

marization model to different medical information496

that the baseline model ignored.497

5.2 Qualitative Model Output Comparison498

We have shown how the MedicalSum model im-499

proves ROUGE scores compared to a state-of-the-500

art baseline. In this section, we qualitatively evalu-501

ate some of the differences in summaries produced502

by each model variant and show how each con-503

tributes to more accurate and medical summaries.504

Table 3 shows a sample target summary and505

we compare it with the output of the Enarvi-PG506

model and the medical signals of MedicalSum. It507

should be noted that the only criteria for choos-508

ing these examples was that they should contain509

medical entities. Some of the shorter input text510

contained no medical entities, and we did not in-511

clude those here as they would not showcase the512

differences between the baseline and the guided513

medical summarization model. We observe that 514

the summary from the pointer generator (Enarvi- 515

PG) baseline model does not include the following 516

medical information: (i) the medicines: ibupro- 517

fen, Advil, or Aleve and (ii) x-rays. However, the 518

MedicalSumguidance model has included in its sum- 519

mary the medical entities x-ray and NSAID (Non- 520

steroidal anti-inflammatory drugs) as they were 521

identified as medical entities and were part of the 522

guidance signal. In addition, the MedicalSumloss 523

model has included the x-ray token as a result of 524

providing a stronger incentive to predict ‘medical’ 525

words by passing a higher weight to the words that 526

have a medical meaning. The MedicalSum model 527

included all the previous mentioned medical words 528

as it take advantage of all the medical signals. 529

Another example which showcases the strength 530

of the medical signals can be found in Table 531

4. The summary from the Enarvi-PG model 532

lacks two important medical facts: (i) ophthalmic 533

drops, and (ii) Dyslipidemia. However, the 534
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model output

target-
summary

The left eye swelling with burning and itching has been present for 2 weeks . I
will prescribe olopatadine 0.2 percent ophthalmic drops . If the symptoms do not
improve , the patient will return and consider bacterial cause .–lf2– Dyslipidemia .

Enarvi-PG
ASSESSMENT AND PLAN : The patient has allergic conjunctivitis of left eye .
–lf1– - Patient Education and Counseling : The patient was advised to keep wiping
green and thick mucus from the eye

Medical-
Sumsemantic

ASSESSMENT AND PLAN : –f1– 1 . Allergic conjunctivitis of left eye. –f1– The
patient was advised to continue using his eye drops .

Medical-
Sumguidance

ASSESSMENT/PLAN –f1– Allergic conjunctivitis . I recommended that the patient
continue daily loratadine .–lf2– Dyslipidemia

Medical-
Sumloss

ASSESSMENT/PLAN –lf1– Allergic conjunctivitis –lf1– –lf1– Medical Treatment
: The patient will continue to take loratadine –lf2– Dyslipidemia

MedicalSum
ASSESSMENT/PLAN –f1– Allergic conjunctivitis . –f1– - Medical Treatment :
The patient will continue daily loratadine and eye drops .–lf2– Dyslipidemia

Table 4: Distinct output from models of different medical signals

MedicalSumguidance and the MedicalSumloss mod-535

els have included the word ‘Dyslipidemia’ as it536

was identified as a medical word. The effect of this537

is that it was part of the medical guidance signal538

for the MedicalSumguidance model and provided539

a higher weight during loss computation for the540

MedicalSumloss model. The MedicalSumsemantic541

model has also included the medical concept ‘eye542

drops’ as an replacement of ‘ophthalmic drops’.543

‘Eye’ and ‘ophthalmic’ have the same semantic544

type in UMLS and thus the model had the ability545

to learn their medical meaning even if one of these546

words (ophthalmic) is not popular in the training547

set. Finally, the MedicalSum model included all of548

the previous mentioned medical words.549

These examples demonstrate how, in addition to550

improving ROUGE scores, the MedicalSum model551

also generates clinical summaries that contain more552

relevant medical facts. In particular, they show-553

cased that a guided medical summarization model554

can help with the omission of key information,555

which is especially of concern in the medical do-556

main, because if medical key information is miss-557

ing from the output, future readers may not have558

the ability to make an accurate diagnosis.559

6 Conclusion and Future Work560

In this paper, we present MedicalSum, a novel ap-561

proach for medical conversation summarization562

that integrates medical knowledge into the summa-563

rization process of a contextual word embeddings564

model. MedicalSum can provide external medi-565

cal guidance that helps key information pass the566

model’s decision process and appear in the sum- 567

mary. Its novel weighted loss function provides a 568

stronger incentive to the model to correctly predict 569

words with a medical meaning. Lastly, it creates 570

more meaningful input embeddings by forcing the 571

embeddings of the words that are associated with 572

the same semantic type to become more similar by 573

incorporating information from the semantic type 574

of each biomedical word. 575

Our analysis showed that these features al- 576

lowed MedicalSum to produce more accurate AI- 577

generated medical documentation. MedicalSum 578

achieves ROUGE score gains of 0.8 to 2 points (and 579

up to 6.2% error reduction on the family medicine 580

dataset), which is a respectable amount of gain for 581

this task, and does a more complete job including 582

medical entities that contain crucial information. 583

As for future work, we plan to address the limi- 584

tations of this study including: (i) Investigating the 585

generality of MedicalSum to additional datasets, 586

(ii) Exploring UMLS hierarchical associations be- 587

tween words that extend the concept connection we 588

investigated and (iii) Examining different guidance 589

signals such as the inclusion of relational triples. 590

This work is the first to show how external med- 591

ical domain (UMLS) knowledge can effectively 592

improve the performance of a medical note gener- 593

ation model. Leveraging external knowledge may 594

become an important component of scaling and 595

improving future medical AI systems that automat- 596

ically generate medical documentation to combat 597

physician burnout and improve patient care. 598
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Ethical Consideration599

Medical Note generation by abstractive summariza-600

tion has the potential to reduce physician burnout,601

which occurs, in part, as a result of the vast602

amount of documentation requirements for elec-603

tronic health records (EHR). Traditionally, clinical604

professionals review clinical documents and manu-605

ally create the appropriate summaries by following606

specific guidelines. Models such as our Medical-607

Sum model could help to reduce physician burnout,608

as well as enabling physicians to devote more qual-609

ity time and attention to their patients.610

However, we need to be aware of the risks of611

over-relying on any automatic abstractive summa-612

rization model. No matter how efficient an sum-613

marization model is, it is still possible to omit key614

information or to hallucinate unsupported informa-615

tion. This is especially of concern in the medical616

domain, as inaccuracies could have a significant617

adverse effect on future patient health outcomes.618

Thus we believe that any automatic summarization619

model should only be used to assist and not replace620

trained clinical professionals.621
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