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Abstract

Brain-computer interfaces have shown great potential in motor and speech rehabili-
tation, but still suffer from low performance stability across days, mostly due to
the instabilities in neural signals. These instabilities, partially caused by neuron
deaths and electrode shifts, leading to channel-level variabilities among different
recording days. Previous studies mostly focused on aligning multi-day neural sig-
nals onto a low-dimensional latent manifold to reduce the variabilities, while faced
with difficulties when neural signals exhibit significant drift. Here, we propose to
learn a channel-level invariant neural representation to address the variabilities in
channels across days. It contains a channel-rearrangement module to learn stable
representations against electrode shifts, and a channel reconstruction module to
handle the missing neurons. The proposed method achieved the state-of-the-art per-
formance with cross-day decoding tasks over two months, on multiple benchmark
BCI datasets. The proposed approach showed good generalization ability that can
be incorporated to different neural networks.

1 Introduction

Brain-computer interfaces (BCIs) have paved a new way for motor and speech rehabilitation (Card
et al., 2024; Metzger et al., 2023). However, the long-term stability of BCIs remains a critical
problem due to the channel-wise variability of neural signals. BCI systems commonly require
frequent recalibration in use, which hinders the user experience (Ajiboye et al., 2017).

The channel-wise variability can stem from diverse reasons (Degenhart et al., 2020). First, the
appearance of new neurons and the disappearance of existing neurons can happen across different
experimental days (Figure 1a). These changes affect the distribution of the channel signal, leading
to inconsistencies in the input space used for decoding (Flesher et al., 2021; Sussillo et al., 2016).
Second, the movement of neurons or electrodes can also drift in the recorded neural signals at each
channel (Figure 1b). The situations that cause channel-wise variability can be highly diverse, such
that directly learning a channel-wise invariant neural representation can be a challenging problem.

Existing studies addressed this problem from several aspects. The first group is the data alignment
approaches, which aim to align the low-dimensional manifolds of neural signals of different days.
Researchers have demonstrated that neural signals contain a consistent low-dimensional neural
manifold over long periods of time (Gallego et al., 2017). Study (Degenhart et al., 2020) tries to
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Figure 1: We plot two types of channel-wise variability in neural signals: (a) caused by new or
lost neurons. (b) caused by drifted neurons. Our two-module CRRL framework can obtain the
channel-invariant representations across days

directly align the manifolds’ coordinate axes (the neural recording channels). However, it required
that a subset of the channels should be stable across different days. Other studies based on domain
adaptation (DA) approaches, which regard neural signals from different days as different domains
and attempt to align the signals of these domains, including the ADAN (Farshchian et al., 2018) and
Cycle-GAN (Ma et al., 2023) approaches. The second group attempts to improve the robustness of
cross-day neural decoding by using more data. NDT2 (Ye et al., 2024) and POYO (Azabou et al.,
2024) used a large set of neural data for pretraining to capture the pattern of variation between
sessions. These large-scale methods implicitly account for differences in neurons or channels, but
require higher training costs. The key challenge is to achieve long-term stable BCI at low cost.

Inspired by variability patterns of the neural signal, we propose a Channel Rearrangement and
Reconstruction Learning framework (CRRL). It contains two main modules: 1) a channel rearrange-
ment module to deal with situations such as new coming neurons explicitly and drifts in neural
signals, and 2) a channel reconstruction module to handle situations such as missing neurons. We
found that the two operations can highly enhance the channel-level consistency across different days,
facilitating a channel-invariant neural representation and improving the neural decoding performance.

We evaluate the proposed method on both simulation datasets with diverse channel-wise variabilities
and multiple neural signal datasets with motor, handwriting and speech decoding tasks. With the
neural decoding tasks, we evaluate the neural decoding performance of our approach with long-term
neural signals with time spans over two months. Experimental results demonstrate that our approach
achieves stable decoding performance compared with existing studies, especially for a long period.
Moreover, our approach can be incorporated with other methods as a plug-in module, to enhance the
neural recording performance and robustness across days.

2 Method

The factors causing channel-wise variability can be summarized into two categories: 1) new or lost
neurons, and 2) drifted neurons. CRRL uses two modules to handle these two cases separately.

Specifically, in the rearrangement module, we use the permutation matrix obtained by our permutation
network to rearrange the signals of day k, and the training objective is to maximize the similarity
between each channel on day k and day 0. In the reconstruction module, we employ a channel-based
Vector Quantized Variational Autoencoder (VQ-VAE) (Van Den Oord et al., 2017) with randomly
masked signals of day 0 to achieve the reconstruction of channel signals and frequency domain
features. During the evaluation, we used the data of day k+n as input and obtained the output
sequentially through the rearrangement and reconstruction network. Then, we use the output signal
to perform downstream decoding tasks, where the decoder is trained by the signals of day 0.

2.1 Rearrangement: Channel Permutation Network

Below, we first formulate the tasks of channel permutation and describe the structure of our permuta-
tion network. Next, we describe the process of the Sinkhorn-Knopp algorithm (Mena et al., 2018) to
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Figure 2: The framework of CRRL. Top: we plot our two-stage training process. Bottom: we plot the
network structure of our permutation network and channel encoder. Right: we plot the evaluation
process of CRRL, which needs a well-trained permutation network and channel-based VQ-VAE.

obtain differentiable approximations of permutation matrices. Finally, we introduce our loss function
for our rearrangement training.

2.1.1 Problem Formulation

Given neural signal data from k days D = {X0,X1, . . . ,Xk−1}, where Xd ∈ RN×C×T represents
the data from day d, with N samples, C channels, and T time points, our goal is to find permutation
matrices {M1, . . . ,Mk−1} that match each day’s channels with those of day 0. The rearranged data
is given by a batched matrix multiplication (BMM) over the time dimension:

X′
d = M⊤

d Xd, for d = 1, . . . , k − 1. (1)

2.1.2 Predicting Permutation Matrices by Neural Network

To parameterize the permutation matrices in a differentiable manner, we employ a multi-layer percep-
tron (MLP) fθ with shared parameters θ across all days. We chose the MLP for its flexibility across
datasets with different channel counts and for its ability to model arbitrary channel dependencies. For
each day d, we flatten the data along the channel and time dimensions to form the input to the MLP:

xflat
d = Flatten(Xd) ∈ RN×(C×T ). (2)

The MLP processes the flattened input and reshapes the output to produce logits that represent the
unnormalized log probabilities for the permutation matrix Ld:

Ld = fθ(x
flat
d ), Ld ∈ RN×C×C . (3)

2.1.3 Sinkhorn Algorithm for Doubly Stochastic Approximation

Permutation matrices are special cases of doubly stochastic matrices with binary entries. To obtain
differentiable approximations of permutation matrices while enabling gradient-based optimization,
we adopt the Sinkhorn-Knopp algorithm with a continuous relaxation strategy (Mena et al., 2018).
This relaxation allows the model to learn permutation patterns in a probabilistic manner during
training, while recovering exact permutations via discretization at inference.
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Continuous Relaxation via Gumbel-Sinkhorn To bridge the gap between discrete permutations
and continuous optimization, we introduce a Gumbel noise perturbation into the logits Ld, following
the Gumbel-Sinkhorn framework (Jang et al., 2017a). The perturbed logits are defined as:

L̃d = Ld + γϵ, ϵ ∼ Gumbel(0, 1), (4)

where γ > 0 controls the noise intensity. This perturbation encourages exploration during training
while maintaining differentiability. And the proof about this differentiability is detailed in Appendix.

The doubly stochastic matrix Md is then computed by applying the Sinkhorn operator S to the
perturbed logits:

Md = S

(
L̃d
τ

)
, (5)

where τ > 0 is a temperature parameter. Lower τ sharpens the output distribution towards a
permutation matrix, whereas higher τ results in a softer distribution.

Sinkhorn Operator with Iterative Normalization The Sinkhorn operator S iteratively normalizes
the input matrix to satisfy row and column stochasticity constraints. Starting from the exponentiated
logits:

K
(0)
d = exp

(
L̃d
τ

)
, (6)

we perform alternating row and column normalizations for Tsink iterations:

K
(t)
d = K

(t−1)
d ⊘

(
K

(t−1)
d 1C

)
(Row norm), (7)

K
(t)
d = K

(t)
d ⊘

(
1⊤
CK

(t)
d

)
(Column norm), (8)

where ⊘ denotes element-wise division, and 1C is a vector of ones. After Tsink iterations, we obtain
Md = K

(Tsink)
d .

Discretization via Hungarian Algorithm at Inference During training, Md remains a continuous
doubly stochastic matrix to preserve differentiability. At inference, we convert Md to an exact
permutation matrix Pd using the Hungarian algorithm (Kuhn, 1955):

2.1.4 Loss Functions For Rearrangement Training

To train the MLP to produce permutation matrices that effectively align the channels, we define a
loss function comprising the negative Pearson correlation loss and an entropy regularization term.
Compared to MSE, the negative Pearson correlation loss focuses more on the shape and trend of the
signals rather than their absolute amplitudes.

Negative Pearson Correlation Loss For each task t ∈ {1, . . . , T} and channel c ∈ {1, . . . , C},
we compute the average signal over all samples from day 0 belonging to task t:

x̄0,t,c =
1

N0,t

∑
n∈I0,t

x0,n,c, (9)

where N0,t is the number of samples from day 0 belonging to task t, I0,t is the index set of these
samples, x0,n,c is the signal for sample n and channel c from day 0 data.

Then, the negative Pearson correlation loss is defined as:

Lcorr,d = − 1

NC

∑
n,c

〈
x′
d,n,c − x′

d,n,c, x̄0,yn,c − x̄0,yn,c

〉
∥∥∥x′

d,n,c − x′
d,n,c

∥∥∥
2
∥x̄0,yn,c − x̄0,yn,c∥2

, (10)

4



where x′
d,n,c is the signal for sample n and channel c from reordered day d data, yn is the task label

of sample n, x̄0,yn,c is the average signal over all day 0 samples belonging to task yn and channel c,
x′
d,n,c and x̄0,yn,c are the mean over time of x′

d,n,c and x̄0,yn,c, respectively.

The total correlation loss is then:

Lcorr =

k−1∑
d=1

Lcorr,d. (11)

Entropy Regularization To encourage the approximation matrices Md to be close to true permuta-
tion matrices, we add an entropy regularization term:

Lentropy,d = − 1

N

N∑
n

C∑
i

C∑
j

Md,n,i,j logMd,n,i,j . (12)

The total entropy regularization loss is:

Lentropy =

k−1∑
d=1

Lentropy,d. (13)

Total Loss for Stage One The overall loss function for stage one is:

Lstage1 = Lcorr + λentropyLentropy. (14)

The two components of the loss function guarantee that the rearranged signal on day k closely
resembles that of day 0 while also optimizing the approximation of the permutation matrix. After
training, the parameters of the permutation network are fixed for the subsequent training or evaluation
phase.

2.2 Reconstruction: Channel-based VQ-VAE

Firstly, we formulate the tasks of channel reconstruction. Then, we describe the architecture of our
channel-based VQ-VAE. VQ-VAE discretizes the continuous latent space using vector quantization,
creating a discrete codebook which is suitable for data with discrete characteristics, such as spike
signals. Discrete encoding enhances robustness to input noise and effectively handles random
disturbances in spike signals. Next, we introduce the loss function of our reconstruction training.

2.2.1 Problem Formulation

Given neural signal data from day 0 and the rearranged data from day k, which are mixed together as
Xmix in a ratio of 7:3. Our goal is to reconstruct missing or corrupted segments in the neural signals.
During training, we simulate such conditions by randomly masking a signal segment from one of the
channels in each sample. Specifically, for each sample n, we randomly select a channel cn and a time
interval [tistart, tiend], and set:

x̃mix,n,cn [tistart : tiend] = 0, (15)

where x̃mix,n,cn is the masked signal for sample n and channel cn.

2.2.2 VQ-VAE Architecture

The architecture of the VQ-VAE is illustrated in Figure 2. It consists of an encoder that independently
embeds the raw time series from different channels as tokens, a cross-channel attention module that
captures inter-channel dependencies, and a decoder comprising an MLP network that reconstructs
the signals. The VQ-VAE also includes a vector quantization layer for discretizing the latent
representations.
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Channel Encoder The encoder Eϕ processes the masked signals to produce latent representations.

For each sample n, channel c and time Ti, the raw signal x̃mix,n,c ∈ RTi is embedded using a fully
connected layer to produce a token representation:

en,c = Embed(x̃mix,n,c) = Wex̃mix,n,c + be ∈ Rde , (16)

where We ∈ Rde×T and be ∈ Rde are learnable parameters, and de is the embedding dimension.

The embeddings from all channels are input into a cross-channel attention mechanism to cap-
ture dependencies among channels. We stack the embeddings for each sample to form En =
[en,1; en,2; . . . ; en,C ] ∈ RC×de .

We apply a self-attention mechanism (Vaswani, 2017):

Hn = MultiHeadAttention(En), (17)

where Hn ∈ RC×de contains the attention representations for each channel.

Each attention representation hn,c ∈ Rde is passed through a multi-layer perceptron to obtain the
latent representation:

zn,c = ReLU (hn,cW1 + b1)W2 + b2 ∈ Rd, (18)

where W1 ∈ Rde×dff , W2 ∈ Rdff×d, and b1, b2 are biases.

Vector Quantization Layer We use a codebook C = {ek}Kk=1, where each codeword ek ∈ Rd.
Each latent vector zn,c is quantized by finding the nearest codeword:

qn,c = ek∗ , where k∗ = argmin
k

∥zn,c − ek∥22 . (19)

MLP Decoder The decoder Dψ reconstructs the signals from the quantized embeddings. It consists
of a multi-layer perceptron:

x̂n,c = Wdqn,c + bd ∈ RT , (20)

where Wd ∈ RT×d and bd ∈ RT are learnable parameters.

2.2.3 Loss Function For Reconstruction Training

We train the VQ-VAE by minimizing a loss function, including reconstruction and commitment
losses. We reconstruct signals in both the time domain and the frequency domain simultaneously to
improve the stability of the reconstruction.

Time Domain Reconstruction Loss We compute the mean squared error (MSE) between the
reconstructed signals and the original signals for the masked entries mn,c:

Ltime =
1∑

n,cmn,c

∑
n,c

mn,c ∥x̂n,c − xn,c∥22 . (21)

Frequency Domain Reconstruction Loss We also compute the MSE in the frequency domain
features (amplitude A(·) and phase ϕ(·) via Discrete Fourier Transform (DFT)):

LA =
1∑
mn,c

∑
n,c

mn,c

∥∥A(x̂n,c)−A(xn,c)
∥∥2
2

(22)

Lϕ =
1∑
mn,c

∑
n,c

mn,c

∥∥ϕ(x̂n,c)− ϕ(xn,c)
∥∥2
2

(23)

Lfreq = LA + Lϕ (24)
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Vector Quantization Commitment Loss The commitment loss encourages the encoder outputs to
be close to the codewords:

Lvq =
1

NC

∑
n,c

∥sg[zn,c]− qn,c∥22 + β ∥zn,c − sg[qn,c]∥22 , (25)

where sg[·] denotes the stop-gradient operator, and β is the commitment cost weight.

Total Loss The total loss function is:

Lstage2 = Ltime + λfreqLfreq + λvqLvq, (26)

where λfreq and λvq are hyperparameters.

Figure 2 illustrates the conceptual CRRL training and evaluation processes. Algorithms 1 and 2
specify the two stages of CRRL training in detail. In the rearrangement training, the first step is
to predict the permutation matrices. Then, CRRL rearranges the spike channels and obtains the
rearranged spike. In the reconstruction training, we predict the masked signal and its frequency
feature. During optimization, our approach learns to robustly restore the information of the day 0
signal. For evaluation, we can obtain the reconstructed data by well-trained CRRL. The obtained
data can decode downstream tasks by a decoder trained on day 0.

3 Experiments

3.1 Setup

We evaluate our method for experiments on simulation and real neural datasets. For the simulation
dataset, we simulate two channel-wise variability in the simulation dataset: 1) new or lost neurons
and 2) drifted neurons. For 1), we delete/add part of the input channels. For 2), we randomly shuffle
the input channels. Additionally, we set different change ratios (5 % or 10 %) to compare the impact
of different ratios on performance. To simulate the plasticity of neurons, we also replace part of the
neurons with some reserved neurons that have different tuning curves. For real datasets, we use two
human datasets and five monkey datasets. The human datasets include a handwriting dataset (Willett
et al., 2021) and a speech dataset (Willett et al., 2023). And the monkey datasets (Dyer et al., 2017)
comprise two Center-out task datasets ((C) and (M)), two isometric wrist task datasets ((J) and (S)),
and a key grasping task dataset (G).

To evaluate and compare the performance of models in different periods, we divided all the datasets
into five different time intervals according to the number of days from day 0. The dataset and split
details are described in Appendix A.

Baseline Methods. We compared our method with five cross-day decoding methods used in BCI. 1)
A manifold-based method Stabilizedbci (Degenhart et al., 2020); 2) Another manifold-based method
NoMAD (Karpowicz et al., 2022); 3) A domain adaptation method SD-Net (Fang et al., 2023); 4)
An adversarial domain adaptation method ADAN (Farshchian et al., 2018); 5) Another adversarial
domain adaptation method Cycle-GAN (Ma et al., 2023). The detailed hyper-parameter settings of
these methods are described in Appendix B.

We used SVM to perform classification tasks for decoding in downstream tasks and Wiener Fil-
ter (Chen et al., 2006) to perform regression tasks.

3.2 Results on Simulation Dataset

We evaluate CRRL under three simulated neural instabilities (Table 1, 11). We ablate either the
Rearrangement Module (RA) or Reconstruction Module (RC) to analyze module contributions.
Here, we use Coefficient of Determination (R2) and accuracy (acc) to evaluate the performance of
regression and classification on the simulation dataset, respectively.

Table 1 reported that using two modules together gives the best performance in all scenarios. For the
scenario of new/lost neurons, without RC (w/o RC) degrades performance significantly (0.92/99.5% to

7



Table 1: Ablation study on simulation dataset.
R2/acc w/o RA w/o RC RA + RC

New/lost neuron (5 %) 0.83/99.1 0.72/92.7 0.92/99.5
New/lost neuron (10 %) 0.81/96.1 0.69/89.3 0.87/99.3
Shuffled channel (5 %) 0.15/55.1 0.85/92.1 0.89/98.0
Shuffled channel (10 %) 0.05/48.3 0.77/87.5 0.86/98.2
Changed function (5 %) 0.66/80.8 0.45/64.7 0.73/91.4

Table 2: The performance of regression and classification prediction which compares with different
cross-day decoding methods.

R2/acc Model Task Number of days since day 0

0 [5, 10) [10, 20) [20, 40) [40, 65) [65, 100)

Center-Out (C)
Stabilizedbci

Trajectory/
Direction 0.84/86.5

0.59/56.6 0.52/50.7 0.45/44.8 -/- -/-
SD-Net 0.73/69.3 0.65/62.5 0.62/63.3 -/- -/-
NoMAD 0.55/48.4 0.58/50.6 0.41/37.9 -/- -/-
CRRL (Ours) 0.75/77.1 0.68/70.5 0.65/66.8 -/- -/-

Center-Out (M)
Stabilizedbci

Trajectory/
Direction 0.68/73.1

-/- 0.38/51.6 0.34/43.7 -/- -/-
SD-Net -/- 0.45/62.0 0.39/52.0 -/- -/-
NoMAD -/- 0.33/39.5 0.26/29.7 -/- -/-
CRRL (Ours) -/- 0.51/63.5 0.45/57.4 -/- -/-

ISO (J)
Stabilizedbci

Trajectory/
Direction 0.73/92.5

0.38/57.4 0.32/53.1 0.23/35.0 0.20/36.5 0.17/29.1
SD-Net 0.42/65.2 0.35/58.6 0.28/44.2 0.25/43.8 0.20/34.5
NoMAD 0.44/65.2 0.45/62.4 0.37/40.8 0.28/37.5 0.31/39.7
CRRL (Ours) 0.51/66.3 0.48/61.5 0.43/62.2 0.46/48.6 0.47/51.1

ISO (S)
Stabilizedbci

Trajectory/
Direction 0.75/94.4

0.33/43.3 0.35/47.2 0.24/40.9 0.18/25.0 <0 /14.8
SD-Net 0.40/56.5 0.37/53.7 0.36/53.7 0.32/45.6 0.24/35.9
NoMAD 0.34/53.3 0.40/51.2 0.38/45.0 0.37/44.1 0.29/31.3
CRRL (Ours) 0.43/57.2 0.39/56.6 0.35/54.5 0.37/54.1 0.30/45.2

ISO (J)
ADAN

EMG 0.71
0.66 0.60 0.56 0.54 0.48

Cycle-GAN 0.68 0.65 0.63 0.59 0.50
CRRL (Ours) 0.70 0.66 0.69 0.65 0.61

Key (G)
ADAN

EMG 0.46
0.26 0.21 0.18 <0 -

Cycle-GAN 0.27 0.25 0.20 0.09 -
CRRL (Ours) 0.41 0.37 0.35 0.32 -

0.72/92.7%), indicating RC’s critical role in compensating for neuron loss. For the scenario of drifted
neurons, w/o RA gives the worst performance, and w/o RC achieves the second-best performance,
suggesting RA is vital for handling neuron drifting. When tuning function changes, RA+RC achieves
91.4% accuracy with a 26.7% relative improvement over the w/o RC. RC contributes more to R2 and
acc (0.66/80.8% compared to 0.45/64.7%), implying it effectively adapts to latent representational
shifts.

3.3 Results on Speech and Handwriting Decoding

We compare our method with SD-Net and NoMAD on speech and handwriting datasets. The
decoding target of the speech dataset is 7 words with a ”do nothing” condition, where we use acc as
the evaluation metric. Similarly, the decoding target of the handwriting dataset is 31 characters, and
we also use acc as the metric.

Figure 3 shows CRRL’s improvements in cross-day decoding performance with SD-Net and NoMAD.
For the speech dataset, CRRL shows consistent performance on different days. Notably, CRRL
achieves accuracy recovery to 86% on day 21 while accuracies of SD-Net and NoMAD decline to
62% and 42% respectively. Moreover, the performance advantage of CRRL is more obvious when
the time span is longer.

For the handwriting dataset, Our CRRL framework maintains superior long-term performance,
outperforming existing methods significantly (the pairwise statistical tests are described in Appendix
B). CRRL shows stability with 67% accuracy at Day 16 (vs SD-Net’s 57% and NoMAD’s 32%).
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Figure 3: (Left) we compare our CRRL with two baseline methods (SD-Net and NoMAD) on
speech and handwriting datasets. We evaluate the performance using the classifier trained on day 0
data. (Right) we use CRRL to decode the hand trajectory across days. First, we use the regressor
trained with the data from day 0 to evaluate the performance. In the middle figure, this regressor
completely loses its decoding ability on day k data. However, through CRRL, the regressor recovers
its performance, which is close to the performance on day 0 data.

Table 3: Ablation Study on Real Neural Datasets.

Component Center-Out (C) ISO (J) Key (G)

RA RC [5, 10) [10, 20) [20, 40) [5, 10) [10, 20) [20, 40) [5, 10) [10, 20) [20, 40)

CRRL ✓ - 0.73/68.1 0.61/64.6 0.57/63.5 0.44/57.7 0.41/48.3 0.41/52.5 0.35 0.31 0.32
CRRL - ✓ 0.73/66.4 0.64/57.6 0.52/53.2 0.47/62.2 0.36/53.0 0.32/49.3 0.38 0.33 0.26
CRRL ✓ ✓ 0.75/77.1 0.68/70.5 0.65/66.8 0.51/66.3 0.48/61.5 0.43/62.2 0.41 0.37 0.35

3.4 Results on Motor Decoding

We compare CRRL with Stabilizedbci, SD-Net, and NoMAD on five monkey neural datasets, which
include diverse motor decoding tasks. The total number of sessions (which is equal to the total
number of days) used for each dataset. For hand trajectory and electromyography (EMG) decoding,
we use R2 as an evaluation metric. For the eight-direction classification, we use accuracy as a metric.

Table 2,8 shows that CRRL achieves consistent superiority in both trajectory regression (R2) and
direction classification (acc) tasks, particularly under challenging long-term decoding scenarios.
For the Center-Out datasets (C and M), CRRL maintains stable performance as days progress.
On the Center-Out (C), CRRL achieves R2/acc of 0.75/77.1% for days [5, 10), surpassing SD-
Net (0.73/69.3%) and Stabilizedbci (0.59/56.6%). Notably, even after 20–40 days, CRRL retains
0.65/66.8, exhibiting only a 12.8% drop in R2 compared to SD-Net’s 15.1% decline. On the ISO (J)
dataset, CRRL achieves 0.47/51.1% R2/acc at [65, 100) days, outperforming NoMAD (0.31/39.7%)
and SD-Net (0.20/34.5%). For the challenging Key (G) dataset, CRRL maintains 0.35 R2 at [20, 40)
days, a 94% improvement over Cycle-GAN (0.20).

3.5 Ablation Study

We conduct ablation study experiments on Center-Out (C), ISO (J) and Key (G) datasets to investigate
the effectiveness of two modules of CRRL (shown in Table 3). The decoding target of ISO (J) is
hand trajectory. On the Center-Out (C) dataset, RA + RC achieves 0.75 R2 in [5,10) days, which is
2.7% higher than RA-alone (0.73) and RC-alone (0.73). This advantage of performance grew over
time, delivering 12.3% accuracy improvement (66.8% vs 63.5%/53.2%) at [20,40) days. Results on
the ISO (J) dataset demonstrate that RA + RC achieves classification accuracy of 62.2% at [20,40)
days, outperforming individual components by 18.7% (RC) and 18.4% (RA). Notably, RC proves
particularly crucial for Key (G) EMG decoding, where RA achieves 0.38 accuracy at [5,10) days vs
RA’s 0.35. However, RA + RC yields 7.9% additional gain (0.41).

3.6 Comparison with Large-Scale Models

The goal of our method is to achieve long-term stable BCI decoding using a small amount of data for
training. As shown in Table 4, CRRL w/o PT, which only uses 5 days of data for training, achieves a
performance close to large-scale methods such as POYO-1 (Azabou et al., 2024) and NDT2 Multi (Ye
et al., 2024).
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For a fully comparison, we perform large-scale pretraining using more training data. The pre-training
method is conducted as multiple full training runs on different monkeys, but all runs share the same
RA and RC module. Specifically, we adopt a sequential training strategy: the RA module is first
trained on one monkey’s dataset (e.g., Monkey M), and then its learned parameters are used to
initialize training on the next monkey, and so on. (Since two sessions of Monkey C were selected
as the test set when compared with POYO, the final training was performed on Monkey C). Each
training run aligns Day k to Day 0 within the same subject. After the RA module is trained on a given
monkey, we immediately train the corresponding RC module to reconstruct Day 0 neural activity
from the RA-aligned Day k input.

This progressive training enables the RA and RC modules to accumulate cross-subject channel
alignment knowledge while maintaining subject-specific alignment through Day 0 supervision. To
mitigate potential forgetting during this sequential training process, we adopt a lightweight replay
strategy: when training on a new monkey, we add a small number of samples (10%) from previously
seen monkeys in the training set. As shown in Table 4, the setting of CRRL PT + Full finetune
achieves a better performance compared to POYO-1 and NDT2.

3.7 Combining CRRL Module into DA Methods

Since our RC module can be regarded as a special domain adaptation method, and RA is a pre-
alignment before adaptation, it can be incorporated with the existing DA method as a plug-in. We
evaluate the performance of plug-ins on the Key (G) dataset. As demonstrated in Table 5. When
combined with Cycle-GAN, the RA module boosts R2 scores by 22.2% on Day 7 (0.33 vs 0.27
baseline) and maintains 122% higher accuracy by Day 56 (0.20 vs 0.09). Similar improvements are
shown in ADAN. Notably, the RA+Cycle-GAN achieves better performance separation over time:
6.7% advantage on Day 7 expands to 11.1% by Day 30 and 11.0% on Day 56. These results suggest
CRRL’s effectiveness design enables plug-and-play enhancement of DA methods.

4 Conclusion

In this work, we propose CRRL, a Channel Rearrangement and Reconstruction Learning framework.
Our model is inspired by the channel-wise variability in neural signals. By adapting different types
of variability in the model, it effectively alleviates the damage of this variability on the decoder and
achieves state-of-the-art performance on multiple tasks. CRRL has good robustness, which makes its
advantage more obvious when the time span is long. In addition, CRRL can also be combined with
other methods as plug-ins to improve the performance of other methods.

However, although our work achieves better performance than the existing methods, we still observe
a slow decline in performance over time, which may be due to slow changes in neuronal population
modulation caused by learning or environmental changes. How to accurately capture the modulation
change patterns of neuronal populations is another interesting direction for future work. Overall,
we hope the proposed cross-day decoding framework will inspire new intelligence paradigms and
provide a tool for long-term stable clinical BCIs.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, our abstract and introduction include the claims which reflect our contri-
bution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, in the last section, we discuss the limitations of our work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, in the appendix, we provide the key assumptions and proofs of our
approach
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, in the experimental section and appendix, we provide the hyperparameters
and experimental procedure for reproducing our method.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we upload the code in the supplementary file and list the link of open data
source in the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, in the appendix, we provide the hyperparameters of our method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes, we report error bar in our experiment results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, in the experiment section, we provide the information on the computer
resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, our work conforms tothe NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work does not address societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work poses no such risks.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we have mentioned it in the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should citep the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: Our work uses publicly available data from human experiments and does not
involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Again, our work does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our work dose not invole LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experiments Details

A.1 Simulation Dataset Details

We conducted the simulation dataset based on the cosine tuning curve model (Gilja et al., 2012): The
tuning function links motor cortex signals to hand movement direction. This biological tuning can be
simulated using a cosine function:

fi(t) = ai,0 + ai,xcosθt + ai,ysinθt + ϵi, (27)

where f denotes the estimated firing rates, ai,0, ai,x, ai,y are the coeffcients including baseline,
cosPDi and sinPDi respectively, PD means the preferred direction, the ϵ means the noise term and
θt means the moving direction at time t.

We simulate an 8-direction center-out reaching task, and each trial corresponds to a reach toward one
of 8 radial targets. We evaluate two tasks: 1) Classification: Predicting the intended reach direction
(8 classes). 2) Regression: Reconstructing 2D hand velocity at each timepoint.

The simulation dataset consists of: 1) 100 neurons, 2) 50 timepoints per trial, 3) 800 trials total (100
per direction).

A.2 Real Dataset Details

In Section 3, we have described the datasets used in the experiments (Dyer et al., 2017; Willett et al.,
2023, 2021). Here, we give their details and download links:

• Isometric wrist (ISO) .2 In the Isometric wrist datasets, Monkeys J and S performed an
isometric wrist task, controlling a cursor by applying forces on a padded box. Each trial
began with a center target hold (0.2–1.0 s), followed by a randomly selected outer target
and an auditory cue. EMG data were collected from 7 muscles in Monkey J’s left arm
(ECU, FCU, ECRl, EDC, FCR, FDP, ECRb) and 8 muscles in Monkey S’s left arm and
hand (FDP1, FDP2, FCR, 1DI, FPB, EDC, MD, ECRl). Trial lengths varied as no temporal
alignment was performed.

• Center-out reach.2 In the Center-Out datasets, Monkeys C and M performed a center-out
reaching task using a planar manipulandum, moving the handle in a parasagittal plane. Each
trial began with the monkey moving to the center of the workspace, followed by a random
waiting period before one of eight outer targets appeared. Trials were extracted from the ’go
cue time’ to the ’trial end’, as the monkeys remained stationary before the go cue.

• Key Grasping.2 In Key Grasping dataset, Monkey G performed a grasping task, reaching
and grasping a small rectangular cuboid under the screen using a key grasp with the thumb
and index finger. Each trial began with the monkey resting its hand on a touchpad for a
random period (0.5–1.0 s). Trials were extracted from the ’go cue time’ to the ’trial end’, as
movements were random before the go cue. EMG data were collected from 8 muscles in the
left arm and hand (FCR, FDP, PT, FPB, 1DI, SUP, ECU, EDC).

• Handwriting.3 In the handwritten dataset, the neural activity was recorded from two
microelectrode arrays which including 192 channels in the motor area. In the experiments
of handwriting dataset, the participant attempted to write 31 different characters in response
to cues shown on a computer screen. The cue list includes the following characters:’a’, ’b’,
’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, ’x’, ’y’,
’z’, ’greaterThan’, ’comma’, ’apostrophe’, ’tilde’, ’questionMark’.

• Speech.4 In the speech dataset, the neural activity was recorded from four microelectrode
arrays (each array includes 64 channels and we only use the first two arrays here). In the
experiments of speech dataset, the participant attempted to speak 7 single words (and a "do
nothing" condition) in response to cues shown on a computer. The cue list includes the
following words: ’choice’, ’day’, ’kite’, ’though’, ’veto’, and ’were’.

2https://datadryad.org/stash/dataset/doi:10.5061/dryad.cvdncjt7n
3https://datadryad.org/stash/dataset/doi:10.5061/dryad.wh70rxwmv
4https://datadryad.org/stash/dataset/doi:10.5061/dryad.x69p8czpq
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For every category, we used an equal number of training samples, resulting in a balanced number of
trials across all classes. More parameters of these datasets are shown in Table 6.

Table 6: Detailed dataset parameters.

Dataset Range of
days

Num of
recordings Day 0 Decoding target Decoding Task

ISO (J) 95 20 20150730 EMGs, hand trajectory and 8 directions Regression & Classification
ISO (S) 83 18 20120821 EMGs, hand trajectory and 8 directions Regression & Classification

Center-Out (C) 38 12 20160927 Hand trajectory and 8 directions Regression & Classification
Center-Out (M) 32 11 20140203 Hand trajectory and 8 directions Regression & Classification

Key (G) 53 8 20190812 EMGs Regression
Handwriting 51 10 20191125 31 characters Classification

Speech 41 9 20220616 7 words and a "do nothing" condition Classification

A.3 Dataset usage of Section 3.6

In Section 3.6, we compare CRRL with large-scale methods such as POYO and NDT-2, which can
implicitly account for differences in neurons or channels (in the multiunit recording case) across days
through learnt embeddings. We added two variants: CRRL w/o PT and CRRL PT + Full finetune.
The former does not perform additional pre-training, while the latter uses the data that was used in
the comparison methods for pre-training and finetuning.

For comparison with POYO-1, we use datasets from seven non-human primates spanning three
different labs, with a total of 27,373 units and 16,473 neuron-hours for training and finetuning. And
we use the two held-out sessions from Monkey C (CO task) for testing. The standard deviation is
reported over the sessions.

For comparison with NDT-2, we use datasets M1-A, which consists of 4 held-in datasets spanning 5
days, each with 53-61 minutes of calibration data, and 3 held-out datasets spanning 21 days, which
have only 1.1-2.2 minutes of calibration data available. And M2 includes 4 held-in datasets over
10 days, with between 5.9-13.3 minutes of calibration data per session available, and 4 held out
datasets over 26 days with between 0.8-1.7 minutes of calibration data provided. The FSS (Few Shot
Supervised) setting means that it uses a few calibration data in held-out datasets for f inetuning.

A.4 Dataset Split

To investigate the decoder’s performance changes over different time periods, we divide all the
datasets into five time periods: [5, 10), [10, 20), [20, 40), [40, 65), [65, 100). The data before day
5 includes day 0 as training data (Figure 4). In particular, in the handwriting and Center-Out (M)
datasets, there is no data before day 5, and we take the training set to the first day after day 0. For
each time period, we compute the average of all data performance in the time period. We average
performance across 10 random seeds for each data point. In the cross-day setting, we use data from
the first 5 consecutive days for training (held-in data). All data from these 5 days are merged, then
randomly split into 90% training and 10% validation. Data from Day 6 and onward is treated as
held-out test data. The model is evaluated on these later days without any additional training or
adaptation, to assess generalization under temporal distribution shift. And the data split ratio used for
training the day 0 decoder of all datasets is 8:1:1.

A.5 Metric Details

We adopt the Accuracy (ACC) metric to evaluate classification tasks (8 directions, phonemes and
characters), which measures the proportion of correctly predicted samples. For regression tasks (hand
trajectory), we use the Coefficient of Determination (R²) to assess the proportion of variance in the
target variable explained by the model. In multivariate regression tasks (EMGs), we extend R² to
Multi-Target R² to evaluate the model’s performance across multiple output variables simultaneously.
These metrics are calculated as follows:

Accuracy (ACC):

ACC =
1

n

n∑
i=1

I(yi = ŷi) (28)
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Figure 4: We show the selection of training data for different datasets (black rectangle). Data from
day 0-5 were selected as training data for most of the datasets. We divide the different time phases
with blue dashed lines, which correspond to the time phases of Table 2, 7.

where yi represents the true label, ŷi represents the predicted label, I(·) is the indicator function, and
n is the total number of samples.

Coefficient of Determination (R²):

R² = 1−
∑n
i=1(yi − ŷi)

2∑n
i=1(yi − ȳ)2

(29)

where yi represents the actual value, ŷi represents the predicted value, and ȳ is the mean of the actual
values.

Multi-Variate R²:

Multi-Variate R² = 1−
∑m
j=1

∑n
i=1(yi,j − ŷi,j)

2∑m
j=1

∑n
i=1(yi,j − ȳj)2

(30)

where yi,j represents the actual value of the j-th target for the i-th sample, ŷi,j represents the predicted
value of the j-th target for the i-th sample, ȳj is the mean of the actual values for the j-th target, m is
the number of targets, and n is the number of samples.

These metrics collectively offer a comprehensive evaluation of model performance across diverse
tasks.

B Additional Experiments

The results of main experiment with error intervals (the standard deviation) are as follow:

Figure 5: Comparison on different parameter setting.

B.1 Analysis of Parameter Sensitivity

We compare the parameter sensitivity of our method with Cycle-GAN and ADAN. In the experiment,
we selected a recording in the ISO (J) dataset (Day 30), and the decoding target was EMG. We
compare the performance of the models with different batch sizes (BS) and learning rates (LR),
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Table 7: The performance of regression and classification prediction which compares with different
cross-day decoding methods.

R2/acc Model Task Number of days since day 0

0 [5, 10) [10, 20) [20, 40) [40, 65) [65, 100)

Center-Out (C)
Stabilizedbci

Direction 86.5± 0.011

56.6± 0.027 50.7± 0.157 44.8± 0.110 -/- -/-
SD-Net 69.3± 0.152 62.5± 0.005 63.3± 0.232 -/- -/-
NoMAD 48.4± 0.023 50.6± 0.157 37.9± 0.226 -/- -/-
CRRL (Ours) 77.1± 0.117 70.5± 0.198 66.8± 0.117 -/- -/-

Center-Out (M)
Stabilizedbci

Direction 73.1± 0.208

- 51.6± 0.181 43.7± 0.052 - -
SD-Net - 62.0± 0.151 52.0± 0.149 - -
NoMAD - 39.5± 0.233 29.7± 0.140 - -
CRRL (Ours) - 63.5± 0.126 57.4± 0.048 - -

ISO (J)
Stabilizedbci

Direction 92.5± 0.240

57.4± 0.089 53.1± 0.205 35.0± 0.120 36.5± 0.105 29.1± 0.015
SD-Net 65.2± 0.228 58.6± 0.159 44.2± 0.061 43.8± 0.181 34.5± 0.032
NoMAD 65.2± 0.175 62.4± 0.023 40.8± 0.111 37.5± 0.203 39.7± 0.119
CRRL (Ours) 66.3± 0.160 61.5± 0.204 62.2± 0.107 48.6± 0.180 51.1± 0.008

ISO (S)
Stabilizedbci

Direction 94.4± 0.072

43.3± 0.023 47.2± 0.229 40.9± 0.172 25.0± 0.247 14.8± 0.176
SD-Net 56.5± 0.024 53.7± 0.009 53.7± 0.060 45.6± 0.048 35.9± 0.214
NoMAD 53.3± 0.065 51.2± 0.188 45.0± 0.127 44.1± 0.187 31.3± 0.135
CRRL (Ours) 57.2± 0.160 56.6± 0.077 54.5± 0.237 54.1± 0.199 45.2± 0.210

ISO (J)
ADAN

EMG 0.71± 0.060
0.66± 0.152 0.60± 0.100 0.56± 0.110 0.54± 0.106 0.48± 0.057

Cycle-GAN 0.68± 0.212 0.65± 0.074 0.63± 0.114 0.59± 0.183 0.50± 0.036
CRRL (Ours) 0.70± 0.234 0.66± 0.123 0.69± 0.223 0.65± 0.239 0.61± 0.070

Key (G)
ADAN

EMG 0.46± 0.117
0.26± 0.091 0.21± 0.019 0.18± 0.145 <0 -

Cycle-GAN 0.27± 0.112 0.25± 0.152 0.20± 0.146 0.09± 0.234 -
CRRL (Ours) 0.41± 0.193 0.37± 0.043 0.35± 0.205 0.32± 0.101 -

Center-Out (C)
Stabilizedbci

Trajectory 0.84± 0.186

0.59± 0.246 0.52± 0.163 0.45± 0.189 - -
SD-Net 0.73± 0.239 0.65± 0.070 0.62± 0.176 - -
NoMAD 0.55± 0.123 0.58± 0.234 0.41± 0.223 - -
CRRL (Ours) 0.75± 0.114 0.68± 0.009 0.65± 0.106 - -

Center-Out (M)
Stabilizedbci

Trajectory 0.68± 0.077

- 0.38± 0.199 0.34± 0.210 - -
SD-Net - 0.45± 0.060 0.39± 0.236 - -
NoMAD - 0.33± 0.036 0.26 ± 0.183 - -
CRRL (Ours) - 0.51± 0.212 0.45± 0.057 - -

ISO (J)
Stabilizedbci

Trajectory 0.73± 0.070

0.38± 0.239 0.32± 0.223 0.23± 0.204 0.20± 0.117 0.17± 0.183
SD-Net 0.42± 0.228 0.35± 0.032 0.28± 0.159 0.25± 0.157 0.20± 0.117
NoMAD 0.44± 0.163 0.45± 0.176 0.37± 0.160 0.28± 0.127 0.31± 0.187
CRRL (Ours) 0.51± 0.246 0.48± 0.186 0.43± 0.205 0.46± 0.043 0.47± 0.101

ISO (S)
Stabilizedbci

Trajectory 0.75± 0.193

0.33± 0.146 0.35± 0.152 0.24± 0.112 0.18± 0.237 <0
SD-Net 0.40± 0.145 0.37± 0.019 0.36± 0.091 0.32± 0.117 0.24± 0.234
NoMAD 0.34± 0.069 0.40± 0.061 0.38± 0.136 0.37± 0.095 0.29± 0.242
CRRL (Ours) 0.43± 0.134 0.39± 0.221 0.35± 0.187 0.37± 0.108 0.30± 0.186

respectively. Here LR is only set to the LR of the decoder. When comparing one of the parameters,
the other parameter is fixed, as shown in the bottom left of Figure 5. Results show that ADAN can
fluctuate greatly and even degrade the performance significantly under different parameter Settings.
However, our CRRL and Cycle-GAN are more stable. In contrast, our method performs better than
Cycle-GAN in all settings.

B.2 Analysis of the Learned Representations

Visualizing Latent Spaces: We applied t-SNE and PCA to the output of the Reference Alignment
(RA) module. These visualizations showed that neural activity from different sessions, after RA
transformation, clusters more tightly by behavioral condition or movement type than in the raw neural
space. This suggests that the RA module successfully maps inputs from different sessions into a
shared, behaviorally meaningful latent space.

Session-Invariance Analysis: We trained a simple linear classifier to predict session identity from
the latent representations. The classifier performed close to chance, indicating that the RA outputs
carry little information about session-specific features. This supports the idea that the latent space is
aligned across sessions and mostly reflects task-relevant structure

B.3 Analysis of the Sensitivity on Day 0 Data Quality

To evaluate the sensitivity of CRRL under different day 0 qualities, we conducted an experiment in
which noise was gradually added to the day 0 signal and observed the changes in performance.

Although CRRL performance is affected by the quality of Day 0 data, using average of multi-day
effectively reduces this dependency.
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Table 8: The sensitivity of CRRL under different day 0 qualities.

Noise Level ISO J [5, 10) ISO J [10, 20) ISO J [20, 40)

σ = 0.0 0.51/66.3 0.48/61.5 0.46/48.6
σ = 0.2× std 0.48/62.9 0.45/58.0 0.42/43.0
σ = 0.4× std 0.44/57.5 0.41/52.3 0.37/36.7
σ = 0.6× std 0.39/50.2 0.36/45.1 0.31/29.6

Table 9: Using the average of multiple days as Day 0.

Noise Level Number of days ISO J [5, 10) ISO J [10, 20) ISO J [20, 40)

σ = 0.2× std - 0.48/62.9 0.45/58.0 0.42/43.0
σ = 0.4× std - 0.44/57.5 0.41/52.3 0.37/36.7
σ = 0.6× std - 0.39/50.2 0.36/45.1 0.31/29.6
σ = 0.2× std 2 days 0.50/64.7 0.47/60.2 0.44/46.1
σ = 0.4× std 2 days 0.46/60.5 0.43/55.4 0.39/40.9
σ = 0.6× std 2 days 0.42/54.0 0.39/48.8 0.37/33.2
σ = 0.2× std 3 days 0.51/65.5 0.48/61.0 0.45/47.5
σ = 0.4× std 3 days 0.49/61.7 0.45/56.8 0.44/46.3
σ = 0.6× std 3 days 0.48/59.5 0.45/53.7 0.41/43.9
σ = 0 - 0.51/66.3 0.48/61.5 0.46/48.6

The table shows that averaging over multiple days—especially 3-day averaging—effectively mitigates
the degradation of performance and improves both stability and accuracy.

Table 10: Choosing another day as Day 0.

Day 0 Performance on the data after 20 days

Jango_20150730 0.46/48.6
Jango_20150801 0.45/53.0
Jango_20150805 0.45/51.1
Jango_20150905 0.48/59.2

We randomly selected four different days from the Jango dataset as Day 0 and trained and evaluated
them separately. We found that models trained on different Day 0 all achieved good cross-day
alignment performance which shows that it is easy to find a day 0 with good quality.

B.4 Additional Ablation Study

B.4.1 Higher Change Ratios

The results of ablation study on simulation dataset show that when the change ratios increase, the
performance of the static decoder will rapidly worsen. However, the performance of CRRL will
decline slowly.

B.4.2 Parameter Sensitivity

In our parameter sensitivity experiments, we scale the parameters of Cycle-GAN and SD-Net and
evaluate the regression R2 of EMG and the classification accuracy of directions using the Jango
dataset.

Additionally, we reduce the number of parameters in POYO-1. As the number of parameters in POYO
decreased, performance gradually declined, which is consistent with the report in the paper of POYO.

B.4.3 Loss of Rearrangement Learning

Our RA module is designed to learn a permutation matrix that aligns the channels of the re-ordered
day k data as closely as possible to those of the day 0 data. Intuitively, using MSE as the loss
function like a reasonable choice. However, compared to MSE, the negative Pearson correlation loss
focuses more on the shape and trend of the signals rather than their absolute amplitudes, which is
particularly important for processing time-series data like neural signals. In our experiments, we
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Table 11: Ablation study on simulation dataset with higher change ratios.

R2/acc w/o RA w/o RC RA + RC

New/lost neuron (5 %) 0.83/99.1 0.72/92.7 0.92/99.5
New/lost neuron (10 %) 0.81/96.1 0.69/89.3 0.87/99.3
New/lost neuron (15 %) 0.65/84.2 0.69/89.3 0.63/79.5
New/lost neuron (30 %) 0.43/56.9 0.48/51.9 0.87/99.3
Shuffled channel (5 %) 0.15/55.1 0.85/92.1 0.89/98.0
Shuffled channel (10 %) 0.05/48.3 0.77/87.5 0.86/98.2
Shuffled channel (15 %) <0/25.7 0.52/61.3 0.67/81.8
Changed function (5 %) 0.66/80.8 0.45/64.7 0.73/91.4
Changed function (10 %) 0.32/56.2 0.27/44.2 0.55/75.0
Changed function (15 %) <0/37.0 <0/28.6 0.33/48.4

Table 12: The performance of baseline methods on the simulation dataset.
Type Method R2/acc

New/lost neuron (10 %) CRRL 0.87/99.3
NoMAD 0.70/91.4
SDNet 0.80/96.3

Stabilized BCI 0.76/91.2
Shuffled Channel (10 %) CRRL 0.86/98.2

NoMAD 0.58/74.0
SDNet 0.32/60.9

Stabilized BCI 0.18/47.3
Changed Function (5 %) CRRL 0.73/91.4

NoMAD 0.52/71.5
SDNet 0.68/85.5

Stabilized BCI 0.51/70.2

observed that using negative Pearson correlation loss not only converges more easily but also delivers
better performance than MSE.

B.4.4 Backbone of Reconstruction Module

VQ-VAE discretizes the continuous latent space through vector quantization, forming a discrete
codebook. This makes it more advantageous when dealing with data with discrete characteristics
(such as spike signals). Specifically, discrete encoding is more robust to input noise and is suitable
for handling random disturbances in spike signals. Each vector in the codebook represents a potential
pattern, which helps to separate the activation patterns or behavioral states of different channels.
Recently, researchers have attempted to use VQ-VAE for encoding on various different signals and
have achieved great performance. To further demonstrate the superiority of VQ-VAE in our task, we
have conducted a minor experiment to replace VQ-VAE with the original VAE or MLP.

B.5 The Number of Parameters and Computation Time

The two-module design of CRRL results in extra parameters and computation time compared with
regular cross-day methods. However, it still outperforms large-scale pre-training methods.

B.6 Different Training Processes

End-to-end training involving both discrete permutation learning (RA) and quantized latent variables
(RC) was found to be unstable in the experiments. Training RA and RC separately allows us to
analyze their behavior better. This also facilitates model reuse and plug-and-play adaptation.

B.7 The Results of Statistical Tests

We conducted a repeated-measures ANOVA followed by post-hoc Tukey HSD tests across all days
on the handwriting dataset, where each method was trained 10 times with different random seeds.
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Table 13: The parameter sensitivity experiments.
Method Hidden Size # Params [5, 10) [10, 20) [20, 40) [40, 65) [65, 95]

Cycle-GAN Dim=192 2.9 M 0.70±0.14 0.64±0.09 0.58±0.10 0.57±0.07 0.49±0.06
Dim=256 4.9 M 0.68±0.21 0.65±0.07 0.63±0.11 0.59±0.18 0.50±0.04
Dim=384 11.1 M 0.66±0.17 0.64±0.12 0.60±0.09 0.61±0.13 0.48±0.06

SD-Net Dim=192 1.1 M 51.7±0.22 49.2±0.14 43.7±0.10 42.8±0.11 33.5±0.06
Dim=256 2.9 M 65.2±0.23 58.6±0.16 44.2±0.06 43.8±0.18 34.5±0.03
Dim=384 7.2 M 66.1±0.22 58.0±0.12 43.8±0.10 39.2±0.15 34.1±0.06

Table 14: The parameter sensitivity experiments on POYO-1.
Method Hidden Size # Params Monkey C

POYO-1 Dim=128, Layers=24 13.0 M 0.9683±0.01
Dim=64, Layers=24 5.2M 0.9512±0.0135
Dim=128, Layers=4 3.8 M 0.9469±0.0109
Dim=64, Layers=4 1.6 M 0.9403±0.0183

We performed post hoc pairwise comparisons using Tukey’s HSD test, which corrects p-values for
multiple comparisons and controls the family-wise error rate at α = 0.05: CRRL > SD-Net (p <
.001), CRRL > NoMAD (p < .001), SD-Net > NoMAD (p < .001)

B.8 The pretraining strategy of CRRL

The choice of a sequential pretraining strategy rather than a more standard joint training approach,
such as that used in POYO was based on the following considerations:

Challenges of Joint Training. Our model is designed to learn a permutation matrix that maps neural
representations from day k to day 0 within a single monkey. Extending this training regime to multiple
monkeys introduces substantial complexity. Simultaneously optimizing permutation matrices for
multiple monkeys— without introducing subject-specific modules—would require the model to
implicitly resolve both cross-day and cross-subject alignment in a shared parameter space. This
significantly increases optimization difficulty and may lead to unstable or suboptimal training.

Structural Consistency. We chose not to modify the core model architecture to accommodate
multi-subject joint training. Approaches like POYO often require additional components, such as
subject encoders or subject specific normalization, to handle inter-subject variability. Sequential
pretraining enabled us to do this without introducing new modules or auxiliary supervision, preserving
architectural simplicity and interpretability.

Empirical Support. Sequential transfer learning has been adopted in other machine learning contexts,
where models are first pretrained on general data and then fine-tuned to new domains or subjects.
Additionally, our experimental results show that sequential pretraining improves performance over
w/o pretraining. This demonstrates both the rationality and effectiveness of the approach in our
setting.

The goal of CRRL is to achieve long-term stable BCI decoding, so we chose a pretraining method
that is easy to implement. Adding more effective pretraining strategies may further improve model
performance, which is a promising direction to pursue in future work.

B.9 Visualization

As shown in Figure 6, we applied t-SNE to the output of the Reference Alignment (RA) module. These
visualizations showed that neural activity from different sessions, after RA transformation, clusters
more tightly by behavioral condition or movement type than in the raw neural space. This suggests
that the RA module successfully maps inputs from different sessions into a shared, behaviorally
meaningful latent space.

C Related Works

Cross-Day Neural Decoding. The key to cross-day neural decoding is eliminating or alleviating the
damage of neural signal changes on the decoder which trained on Day 0. The intuitive solution is to
align the neural signals from different days. Early studies typically used canonical correlation analysis
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Table 15: Albation Study on Key (G) dataset. NPC means the negative Pearson correlation loss.
Replaced means that replace with other channels from a different session.

R2 Day 7 Day 30 Day 56

CRRL & MSE 0.26± 0.050 0.18± 0.079 0.16 ± 0.088
CRRL & NPC 0.41± 0.093 0.35± 0.007 0.32± 0.091
CRRL & VAE 0.26± 0.105 0.21± 0.126 0.22± 0.148
CRRL & MLP 0.36± 0.019 0.33± 0.052 0.28± 0.091

CRRL & VQ-VAE 0.41± 0.093 0.35± 0.007 0.32± 0.091
CRRL wo Replaced 0.41± 0.093 0.35± 0.007 0.32± 0.091
CRRL wi Replaced 0.42± 0.025 0.35± 0.091 0.32± 0.056

Table 16: Number of model parameters and iter speed.

Method #Trainable parameters Iterations per second

POYO-1 13.0 M 31.91it/s
NDT2 19.1 M 11.20it/s

SD-Net 2.9 M 42.46it/s
ADAN 9.48 MB 26.72it/s

Cycle-GAN 2.5 M 21.49it/s
CRRL 6.8 M 18.25it/s

(CCA) to align Day 0 and Day k (Altan et al., 2021; Naufel et al., 2019), however, this way can
only capture linear changes in neural signals. Recently, there has been a great deal of interest in the
concept of a low-dimensional neural manifold (Gallego et al., 2017). For example, (Degenhart et al.,
2020) aligns the signals in the neural manifolds obtained by Factor Analysis, NoMAD (Karpowicz
et al., 2022) aligns the neural manifolds of Day 0 and Day k in an unsupervised way. While ADAN
(Farshchian et al., 2018), Cycle-GAN (Ma et al., 2023), and Dynamic-AE (Fang et al., 2023) use
the idea of domain adaptation to align the signals of Day 0 and Day k as source and target domains.
Although these methods have achieved good performance, their high sensitivity to perturbations and
different parameters limits their ability for clinical application. NDT2 (Ye et al., 2024) and POYO
(Azabou et al., 2024) capture the patterns of variation between sessions and sessions by using more
data. These methods usually require a large amount of labeled data and are difficult to transfer to
other tasks.

Neural Signal Reconstruction and Imputation. Reconstructing missing or corrupted neural
signals is critical for maintaining decoding accuracy. Autoencoder-based models have been employed
to learn robust representations of neural data. (Vincent et al., 2008) introduced denoising autoencoders
to reconstruct corrupted inputs by learning latent representations that capture the underlying structure
of the data. In the context of neural signals, (Saeed et al., 2021) introduces CHAnnel Reordering
Module (CHARM) for EEG data. While our Channel Rearrangement (RA) module also learns channel
permutations, the two approaches differ significantly in motivation, assumptions, and implementation.
(Liu et al., 2025) proposed BRITS, a method for imputing missing time-series data using bidirectional
RNNs with temporal masking. These methods demonstrate the potential of leveraging context
information for reconstruction but may not fully exploit inter-channel dependencies in neural signals.

D Hyperparameters Settings

D.1 Our CRRL

We undertake several practical considerations to ensure adequate training and inference in our
implementation. We adopt the Adam optimizer with a learning rate of 0.001 for model training
and utilize a batch size of 128/256 samples. The hyperparameters, such as the weights of different
loss λfreq and λvq are chosen based on validation performance. During masked channel modeling, a
masking ratio of 0.05 determines the proportion of channels to mask in each input, and a random
channel shuffling rate of 0.1 is applied during the training of the permutation network to enhance
robustness.
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Table 17: The results of ANOVA.
Dataset F p-value

Handwriting 1810.2 <.001

Table 18: The ablation study of different training processes.

Method ISO J [5, 10) ISO J [10, 20) ISO J [20, 40)

End-to-end training 0.51/65.8 0.41/57.7 0.36/40.2
Two-stage training 0.51/66.3 0.48/61.5 0.46/48.6

The embedding size of encoder Eθ is 128, and the number of attention heads is 4. The codebook
size K is 512, and the commitment cost weight β is set to 0.25 to balance expressiveness and
computational efficiency. Our model is implemented using PyTorch, enabling flexible model design
and training, and training and inference are performed on GPUs to accelerate computation. All
experiments were conducted on NVIDIA Tesla A100 GPUs, and the maximum memory usage across
all experiments was approximately 22 GB.

D.2 Stabilizedbci

Stabilizedbci (Degenhart et al., 2020) aims to stabilize brain-computer interfaces (BCIs) by leveraging
the concept of a "neural manifold," a low-dimensional representation of population-level neural activ-
ity. The proposed approach addresses the challenge of neural recording instabilities, such as electrode
shifts or neuron dropout, which can disrupt BCI performance. By aligning the neural manifold across
different time points using stable electrodes as reference points, the method maintains a consistent
mapping of neural activity to movement intent. This eliminates the need for frequent recalibration,
allowing the BCI to provide reliable performance even under severe recording instabilities, and it
does so without requiring knowledge of the user’s intent.

D.3 SD-Net

SD-Net (Fang et al., 2023) focuses on extracting both semantic and dynamic features from neural
signals, leveraging the idea that low-dimensional dynamics can represent high-dimensional neural
activity. By embedding these features into a unified space, the method enables recalibration without
requiring labeled data from new sessions. Additionally, the paper introduces a joint distribution
alignment strategy, which aligns both marginal and conditional distributions to handle complex
domain shifts in neural data. This approach is validated on real and simulated datasets, demonstrating
its effectiveness in improving BCI performance across sessions.

D.4 NoMAD

NoMAD (Nonlinear Manifold Alignment with Dynamics) (Karpowicz et al., 2022) is a novel method
to stabilize brain-computer interface (BCI) decoding performance over time. The approach leverages
the low-dimensional manifold structure and dynamics of neural activity, using unsupervised learning
to align neural data across different time periods. By incorporating recurrent neural network (RNN)
models to capture neural dynamics and an alignment network to map neural data to a consistent
manifold, NoMAD allows the initial decoder to maintain high accuracy without requiring additional
labeled data or frequent recalibration. This method was validated on monkey motor task datasets,
demonstrating superior decoding stability and performance compared to existing methods, paving the
way for more practical and robust BCI systems

D.5 Cycle-GAN

Cycle-GAN (Ma et al., 2023) uses Cycle-Consistent Adversarial Networks to align neural activity
recorded on different days, enabling a fixed decoder trained on an initial day to maintain accurate
predictions without requiring frequent recalibration. Unlike previous methods, Cycle-GAN operates
directly on the full-dimensional neural signals, avoiding information loss from dimensionality
reduction and offering greater robustness and ease of training. The approach outperforms prior
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Figure 6: Visualization of latent space.

Table 19: Hyperparameters for rearrangement training.
Hyperparameters Values

Batch Size 128
Initial Temperature τinitial 1

Shuffling Rate 0.1
Final Temperature τfinal 0.001

Decay Rate γ 0.01
Entropy Coefficient λentropy 0.2
Number of Training Epochs 300

Learning Rate 0.001

alignment techniques like ADAN and Procrustes-based methods, making it a promising solution for
long-term iBCI applications.

D.6 ADAN

ADAN (Farshchian et al., 2018) combines a deep learning-based neural autoencoder with an EMG pre-
dictor to extract a low-dimensional representation of neural signals while simultaneously predicting
movement intent. To stabilize the BMI over time, they implement domain adaptation techniques, in-
cluding Canonical Correlation Analysis (CCA), Kullback-Leibler Divergence Minimization (KLDM),
and a new Adversarial Domain Adaptation Network (ADAN). ADAN, which aligns the probability
distributions of residuals from neural signal reconstructions, outperforms other methods and requires
minimal data to adapt, offering a more robust and consistent interface for users.

D.7 POYO-1

POYO-1 (Azabou et al., 2024) is a large-scale pre-trained model based on a Transformer architecture
designed for neural population decoding, which aims to integrate neural data across experiments,
individuals, and laboratories. The core innovation lies in directly converting each neural spike into a
Token, preserving the fine temporal structure, and utilizing the PerceiverIO architecture to compress
long sequence data to reduce computational cost. The model solves the problem of no correspondence
between neurons across sessions by Unit Embedding and Session Embedding, and supports few-shot
transfer learning and fast adaptation to new datasets. Trained on a diverse dataset covering 27,373
neural units from seven nonhuman primates, POYO-1 significantly improves decoding performance
on complex behavioral tasks such as random object tracking, providing an efficient and scalable
unified framework for brain-computer interface and neurodynamics research.
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Table 20: Hyperparameters for reconstruction training.
Hyperparameters Values

Batch Size 256
Masking Ratio 0.05

Embedding Size of Encoder 128
Num of Attention Head 4

Codebook Size 1024, 64
Commitment Cost Weight β 0.25

λfreq 0.1
λvq 0.2

Number of Training Epochs 500
Learning Rate 0.001

Table 21: Hyperparameters for Stabilizedbci training.
Hyperparameters Values

Dim of Latent 10
Num of FA models 5

Maximum Num of EM iterations 100000
EM stopping criteria 0.00001

Minimum private variance threshold 0.1
Num of rows of loading matrix 90
Alignment L2 norm threshold 0.01

D.8 Neural Data Transformer 2 Multi-Context (NDT2 Multi)

NDT2 (Ye et al., 2024) is a Transformer-based neural spiking activity model, which significantly
improves the adaptation speed and performance of Brain-Computer Interface (iBCI) decoding tasks
through multi-context pre-training across sessions, subjects and tasks, combining spatio-temporal
attention and context embedding. NDT2 Multi uses neural data from multiple sessions to jointly train
the model to enhance the adaptability of the model to inter-session differences.

E Gradient Propagation Analysis for Gumbel-Sinkhorn Networks

E.1 Problem Formulation

Given a log-probability matrix L ∈ RC×C which obtained by our channel permutation network, we
seek to solve the combinatorial optimization problem:

P = arg max
P∈PC

⟨L,P⟩, (31)

where PC denotes the set of C × C permutation matrices. Direct differentiation through the discrete
argmax operator is infeasible due to its non-smooth nature.

E.2 Differentiable Reparameterization with Gumbel Noise

Following (Jang et al., 2017b), we inject Gumbel-distributed noise ϵi,j ∼ Gumbel(0, 1) into the
logits:

L̃i,j = Li,j + γϵi,j , (32)

where γ > 0 controls the noise magnitude. This reparameterization preserves the original distribu-
tional properties while enabling gradient flow.
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Table 22: Hyperparameters for SD-Net training.
Hyperparameters Values

Learning Rate 0.002
Batch Size 10

Dim of Latent 256
Epoch 60
λ1, λ2 0.1, 0.1
λ3, λ4 0.1, 0.1
λ5, λ6 0.1, 1

Table 23: Hyperparameters for NoMAD training.
Hyperparameters Values

Initial learning rate 10
Batch size 5

NLL cost weight 100000
NLL ramping epochs 0.00001
KL ramping epochs 0.1

KL weight on initial conditions 90
KL weight on controller outputs 0.01

E.3 Continuous Relaxation via Entropy-Regularized Optimal Transport

The Gumbel-perturbed logits are transformed into a doubly stochastic matrix M through the Sinkhorn-
Knopp algorithm (Cuturi, 2013). Let τ > 0 be a temperature parameter:

K(0) = exp

(
L̃

τ

)
. (33)

Alternating row and column normalizations are applied for T iterations:

R(t) = diag
(
K(t−1)1N

)−1

, (34)

K(t) = R(t)K(t−1), (35)

C(t) = diag
(
1⊤
NK(t)

)−1

, (36)

K(t) = K(t)C(t), (37)

where 1N is a column vector of ones. The final doubly stochastic matrix is M = K(T ).

E.4 Differentiability of the Sinkhorn Operator

Proposition E.1 (Implicit Gradient Computation). The Jacobian ∇L̃M can be computed via implicit
differentiation of the Sinkhorn iterations (Cuturi, 2013; Mena et al., 2018).

Proof. Let S(L̃/τ) denote the Sinkhorn operator. The gradient chain through T iterations is:

∂M

∂L̃
=

T∏
t=1

∂K(t)

∂K(t−1)
· ∂K

(0)

∂L̃
. (38)

Each term ∂K(t)

∂K(t−1) is derived from the row/column scaling operations, which are element-wise
differentiable. Full derivations are provided in (Mena et al., 2018).
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Table 24: Hyperparameters for Cycle-GAN training.
Hyperparameters Values

Batch size 256
Discriminator (D1) learning rate 0.01
Discriminator (D2) learning rate 0.01

Generator (G1) learning rate 0.001
Generator (G2) learning rate 0.001
Number of training epochs 200

Table 25: Hyperparameters for ADAN training.
Hyperparameters Values

Dim of Decoder Latent 10
Batch Size of Decoder 64

Epochs of Decoder 400
Learning Rate of Decoder 0.0001

Decoder layers 1
Epochs of ADAN 200

Batch Size of ADAN 4
Learning Rate of Discriminator 0.00001

Learning Rate of Generator 0.0001

E.5 Convergence to Exact Permutations

Proposition E.2 (Discrete Limit). As τ → 0+, M converges almost surely to the permutation matrix
P obtained by the Hungarian algorithm on L̃.

Proof. When τ → 0+, the entries of K(0) satisfy:

lim
τ→0+

exp

(
L̃i,j
τ

)
=

{
1 if (i, j) = argmaxk,l L̃k,l
0 otherwise

. (39)

The Sinkhorn iterations preserve the dominant permutation pattern, recovering the Hungarian solu-
tion (Mena et al., 2018).
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Table 26: Hyperparameters for POYO-1 training.
Hyperparameters Values

Num of Token 512
Hidden Dim 128

Num of Attention Head 8
Num of Layers 24
Len of Context 1s

Epochs 400
Batch Size total 1400

Learning Rate of Fine-Tune 0.0001
Learning Rate of Pretrain 0.0003

Table 27: Hyperparameters for NDT2 Multi training.
Hyperparameters Values

Hidden Dim 512
Num of Attention Head 8

Transformer Layers 6
Learning Rate 0.0001 - 0.0004

Dropout 0.1
Early Stopping 20

Batch Size 64
Len of Context 600 ms
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