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Abstract

The recent success of Large Language Models001
(LLMs) has garnered significant attention in002
both academia and industry. Prior research on003
LLMs has primarily focused on enhancing or004
leveraging their generalization capabilities in005
zero- and few-shot settings. However, there has006
been limited investigation into effectively fine-007
tuning LLMs for a specific natural language un-008
derstanding task in supervised settings. In this009
study, we conduct an experimental analysis by010
fine-tuning LLMs for the task of Chinese short011
text matching. We explore various factors that012
influence performance when fine-tuning LLMs,013
including task modeling methods, prompt for-014
mats, and output formats.015

1 Introduction016

The recent success of Large Language Mod-017

els (LLMs), such as GPT-3(Brown et al.,018

2020), LLaMA(Touvron et al., 2023) and019

PaLM(Chowdhery et al., 2023), has garnered sig-020

nificant attention in both academia and industry.021

LLMs have demonstrated remarkable generaliza-022

tion capabilities in zero- and few-shot settings,023

particularly in natural language generation (NLG)024

tasks. Substantial efforts have been made to en-025

hance and utilizing such generalization capabili-026

ties(Xu et al., 2023; Saad-Falcon et al., 2023; Yun027

et al., 2023).028

However, for natural language understanding029

(NLU) tasks, zero- and few-shot LLMs struggle to030

achieve satisfactory performance(Nie et al., 2022;031

Wei et al., 2023; Li et al., 2023a,b) compared to032

fine-tuned small models (e.g., Bert base(Devlin033

et al., 2018)). Our experimental results on the task034

of Chinese short text matching also confirm this035

phenomenon. As presented in Section3.1, fine-036

tuned Bert achieves an accuracy of 84.5% on the037

BQ(Chen et al., 2018) corpus, while GPT-41, one of038

1The metrics are measured by utilizing OpenAI API.

the most successful LLMs, only attains an accuracy 039

score of 52.9% in zero-shot and 77.9% in few-shot 040

settings. There has been limited investigation into 041

effectively tuning LLMs for a specific NLU task 042

in supervised settings. In this paper, we explore 043

various factors affecting the performance of LLMs 044

for Chinese short text matching task, including task 045

modeling methods, prompt formats, and output 046

formats. 047

• Task modeling methods: In this study, we 048

examine the impacts of modeling this task as 049

both a generative task and a discriminative 050

classification task, respectively. (1) Genera- 051

tive Task: LLMs uniformly model all tasks 052

as generative tasks. Following this principle, 053

we organize the given pair of sentences into a 054

single text as input and make the model gen- 055

erate the target label (equivalent or inequiva- 056

lent). (2) Discriminative Classification Task: 057

Motivated by the efficacy of fine-tuning Bert 058

for text matching(Chen et al., 2020; Qi et al., 059

2022), we concatenate the given pair of texts 060

as input, extract vector representations from 061

the final LLM layer as features, and perform 062

binary classifications based on the extracted 063

features. 064

• Prompt Formats: Prompt design is crucial 065

for LLMs in zero- and few-shot settings(Gu 066

et al., 2021; Liu et al., 2023). However, the im- 067

portance of prompts in supervised settings has 068

not been explored. In this paper, we compare 069

two completely different styles of prompts. 070

One is concise, directly concatenating the 071

given pair of sentences without any explana- 072

tion of the target task. The other organizes 073

the prompt through complex instructions, in- 074

cluding not only the given sentences but also 075

a detail description of the target task. 076

• Output Formats: Incorporating the Chain of 077
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Thought (CoT) into prompts has been shown078

to significantly enhance performance in rea-079

soning and complex tasks in zero- and few-080

shot settings(Wei et al., 2022; Wang et al.,081

2022). Nevertheless, the impact of CoT on082

matching tasks in supervised settings has yet083

to be examined. In this study, we address this084

gap by incorporating CoT into the output part085

of training samples.086

We conduct experiments on two widely-used Chi-087

nese short text matching datasets, LCQMC (Liu088

et al., 2018a) and BQ (Chen et al., 2018). All exper-089

iments are carried out based on CLLM-7B, which090

is a Chinese-enhanced model based on LLaMA-091

2-7B. Our preliminary results demonstrate that092

the fine-tuned CLLM-7B outperforms both fine-093

tuned BERT and few-shot GPT-4. Furthermore,094

the results indicate that the generative paradigm095

surpasses the discriminative approach, especially096

when training data is limited. Lastly, our exper-097

iments reveal that CoT is also beneficial for the098

matching task in supervised settings.099

In summary, our major contributions are twofold:100

(1) To the best of our knowledge, we are the first101

to systematically explore effective strategies for102

fine-tuning LLMs for text matching. (2) We are103

the first to verify the effectiveness of CoT for NLU104

task. Although our experiments focused on the text105

matching task, we believe that our findings may106

also be applicable to other NLU tasks, such as text107

classification.108

2 Backgrounds109

In this section, we provide a brief overview of the110

Chinese short text matching task and the datasets111

employed in this study.112

2.1 Task Definition113

Chinese short text matching, often regarded as a114

task of identifying sentence semantic equivalence,115

is a fundamental task of natural language process-116

ing. Given a pair of sentences, the goal of a match-117

ing model is to ascertain their semantic equiva-118

lence. Short text matching is extensively utilized119

in a range of NLP tasks, such as question answer-120

ing (Liu et al., 2018b) and dialogue systems (Pang121

et al., 2008).122

2.2 Datasets and Metrics123

We conduct experiments on two widely-used Chi-124

nese short text matching corpora: LCQMC (Liu125

et al., 2018a) and BQ (Chen et al., 2018). 126

LCQMC is a large-scale, open-domain question 127

matching corpus. It comprises 260,068 Chinese 128

search query pairs, including 238,766 training sam- 129

ples, 8,802 development samples, and 12,500 test 130

samples. Each pair is annotated with a binary label 131

indicating whether the two queries share the same 132

intention. 133

BQ is a domain-specific, large-scale corpus for 134

bank question matching. It consists of 120,000 135

Chinese sentence pairs, including 100,000 training 136

samples, 10,000 development samples, and 10,000 137

test samples. Each pair is also annotated with a 138

binary label indicating whether the two sentences 139

convey the same meaning. 140

We employ accuracy (ACC.) as the evaluation 141

metric, which is the percentage of correctly pre- 142

dicted examples. 143

3 Experiments and Results 144

In this section, we outline the experimental con- 145

figurations and present the results. We examine 146

the influence of the three factors discussed in Sec- 147

tion 1 through the following experiments. We tune 148

models via full-model fine-tuning. 149

3.1 Generative vs. Discriminative Models 150

We first outline our approach to fine-tuning LLMs 151

by modeling the matching task as both a generative 152

task and a discriminative task. Subsequently, we 153

present the results and provide an analysis. 154

Modeling as A Generative Task: LLMs con- 155

sistently treat all tasks as generative tasks. In line 156

with this principle, we merge the provided pair of 157

sentences with instructions into a single text input 158

and prompt the model to generate the target label. 159

We refer to this model as CLLM-7B-GEN. Figure 160

1(b) illustrates the model structure. We optimize 161

it by maximizing the generation probability of the 162

target label. 163

Modeling as A Discriminative Task: Inspired 164

by the effectiveness of fine-tuning BERT for text 165

matching tasks (see Figure 1(a)), we concatenate 166

the given pair of texts as input, extract vector repre- 167

sentations from the final LLM layer as features, and 168

perform binary classification based on the extracted 169

features. We refer to this model as CLLM-7B-CLS. 170

Figure 1(c) demonstrates the model structure. 171

We validated the performance of generative and 172

discriminative models on training sets of different 173

scales. Figure 2 shows the experimental results, 174

2



Figure 1: Model structures of modeling text matching as generative and discriminant task.

Figure 2: The results of models trained on 5,000,
20,000, 80,000 samples as well as trained on the en-
tire training set.

where the 2-shot GPT-4 results are measured by175

calling the official OpenAI API. Figure 6 and Fig-176

ure 7 in Appendix A illustrate the 2-shot prompts177

for LCQMC and BQ, respectively. From the results,178

we observe that:179

1) When the number of training samples is180

less than 20,000, CLLM-GEN significantly out-181

performs discriminative models, including BERT182

and CLLM-CLS, on both LCQMC and BQ. This183

phenomenon is quite intuitive, as the generative184

approach aligns with the pre-training procedure,185

making it easier to activate the knowledge acquired186

by the model during pre-training. Furthermore,187

due to the massive amount of data used in the pre-188

training phase of LLMs, the issue of evaluation data189

leakage cannot be ignored (Yang et al., 2023; Zhou190

et al., 2023). To determine whether CLLM-7B191

has a data leakage problem, we conducted zero-192

shot experiments on it. The model achieves an193

accuracy of 52.1% on LCQMC and 52.9% on BQ,194

slightly better than the 50% expected from random195

guessing. Consequently, we believe that both BQ196

and LCQMC are not included in CLLM-7B’s pre-197

training data.198

2) The performance of 2-shot GPT-4 on BQ is199

much worse than that of supervised models. This200

is mainly because BQ is a dataset of real customer201

Figure 3: The results of concise and complex prompts.

service questions from WeBank Inc., and a full 202

understanding of the sentences’ meaning requires 203

background information about this bank. For ex- 204

ample, questions in BQ usually mention specific 205

products or a particular function in the bank’s app. 206

This background knowledge is unknown to CLLM 207

and is also impossible to provide entirely in the 208

prompt. 209

3) CLLM-GEN trained on the whole training 210

corpus on LCQMC outperforms BERT. However, 211

it fails on the BQ corpus. We believe the reason is 212

that CLLM-7B, like BERT, also lack knowledge of 213

WeBank, and such knowledge can only be obtained 214

from the training data. Therefore, compared to 215

BERT, CLLM-7B does not have an advantage on 216

this dataset. 217

The above experiments demonstrate that genera- 218

tive paradigm is better for supervised LLMs. There- 219

fore, all subsequent experiments will be conducted 220

following this paradigm. 221

3.2 Concise vs. Complex Prompts 222

Prompt design is crucial for LLMs in zero- and 223

few-shot settings. However, the significance of 224

prompts in supervised settings remains unexplored. 225

In this subsection, we compare two distinct styles 226

of prompts. The concise prompt involves directly 227

concatenating the given text pairs without any ex- 228
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Figure 4: Illustration of how to obtain CoT via GPT-4.
All original texts in this figure are in Chinese. For ease
of reading, we translated them. The original version is
illustrated in Figure 9 in Appendix.

planation of the target task, while the complex229

prompt organizes the prompt with detailed instruc-230

tions, incorporating not only the given texts but231

also a specific description of the target task. Exam-232

ples of these prompts can be found in Figure 8 in233

Appendix A.234

Figure 3 presents the results, showing that mod-235

els separately trained by concise and complex236

prompts achieve comparable performance. This237

observation suggests that supervised LLMs are not238

sensitive to prompts. The primary function of a239

complex prompt is to enhance the model’s compre-240

hension of the target task. In supervised scenarios,241

the model can learn the task definition more accu-242

rately from the training data, rendering the prompt243

design less impactful.244

3.3 Effects of CoT245

CoT has demonstrated its effectiveness in reason-246

ing and complex tasks within zero- and few-shot247

settings. However, its efficacy for language un-248

derstanding tasks in supervised settings remains249

unexplored.250

Matching datasets provide labels without CoT.251

To obtain CoT for the training set, we enlist GPT-4252

to determine whether a given pair of texts is equiva-253

lent, while also providing explanations for its deci-254

sion. For samples where GPT-4’s judgment aligns255

with the golden label, we utilize the explanation256

as the CoT. Conversely, for inconsistent samples,257

we retain only golden label. Figure 4 depicts the258

designed prompt and response generated by GPT-4.259

Note that only the output portion of the training260

samples requires the addition of CoT. Figure 10 in261

Appendix presents a training sample that includes262

CoT. During the evaluation process, we disregard263

Figure 5: Results of models trained with CoT.

the CoT generated by the model, focusing solely 264

on the label "same" or "different". 265

In order to reduce the cost, we did not obtain 266

CoT for the entire training set. Instead, we sepa- 267

rately sampled 10,000 instances from each dataset 268

and requested GPT-4 to generate CoT. After filter- 269

ing samples with inconsistent judgments, approxi- 270

mately 86% of samples in LCQMC and 78% in BQ 271

retained CoT. We will release the data with CoT 272

for further use by the community2. 273

We conducted experiments on training sets of 274

varying scales. Figure 5 displays the results, from 275

which we observe that CoT improves performance 276

on both LCQMC and BQ. Furthermore, the BQ 277

dataset is more challenging than LCQMC, and 278

CLLM-GEN-CoT achieved a more substantial im- 279

provement on BQ. This finding suggests that CoT 280

may be particularly effective for difficult tasks. 281

4 Conclusions 282

In this work, we conduct an experimental study by 283

fine-tuning LLMs on the task of Chinese short text 284

matching. We investigate various factors affecting 285

performance in tuning LLMs, including task mod- 286

eling methods, prompt formats, and the chain of 287

thought. We systematically carry out experiments 288

on two widely used datasets. The results reveal 289

several insights. First, the fine-tuned CLLM-7B 290

outperforms both fine-tuned BERT and few-shot 291

GPT-4, indicating that LLMs serve as effective 292

backbones in supervised scenarios. Moreover, the 293

generative paradigm is superior to the discrimina- 294

tive one, particularly when training data is lim- 295

ited. Second, supervised LLMs are insensitive to 296

prompts, unlike zero- and few-shot LLMs. Third, 297

CoT is also beneficial for supervised text matching. 298

Although our experiments focus on the task of text 299

matching, the observations may be applicable to 300

other NLU tasks, such as text classification. 301

2https://github.com/xxx/xxx
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Limitations302

This study has two primary limitations: (1) Prompt303

engineering is crucial for zero- and few-shot LLMs.304

We assessed the few-shot performance of GPT-4, as305

depicted in Figure 2. Despite our meticulous design306

of the few-shot prompts, the prompt designs remain307

subjective and may not necessarily represent the308

most optimal choices. (2) This study concentrates309

on the text matching task. Additional experiments310

might be required to adequately demonstrate if the311

conclusions drawn in this article are applicable to312

other NLU tasks (e.g. text classification).313
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A Appendix437

Figure 6: An illustration of 2-shot prompt for LCQMC.

Figure 7: An illustration of 2-shot prompt for BQ.

Figure 8: Examples of complex and simple prompts in
Section3.2

Figure 9: The Chinese version of texts in Figure 4

Figure 10: An example of training sample with CoT.
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