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Abstract

The recent success of Large Language Models
(LLMs) has garnered significant attention in
both academia and industry. Prior research on
LLMs has primarily focused on enhancing or
leveraging their generalization capabilities in
zero- and few-shot settings. However, there has
been limited investigation into effectively fine-
tuning LLMs for a specific natural language un-
derstanding task in supervised settings. In this
study, we conduct an experimental analysis by
fine-tuning LLMs for the task of Chinese short
text matching. We explore various factors that
influence performance when fine-tuning LLMs,
including task modeling methods, prompt for-
mats, and output formats.

1 Introduction

The recent success of Large Language Mod-
els (LLMs), such as GPT-3(Brown et al.,
2020), LLaMA(Touvron et al., 2023) and
PalLM(Chowdhery et al., 2023), has garnered sig-
nificant attention in both academia and industry.
LLMs have demonstrated remarkable generaliza-
tion capabilities in zero- and few-shot settings,
particularly in natural language generation (NLG)
tasks. Substantial efforts have been made to en-
hance and utilizing such generalization capabili-
ties(Xu et al., 2023; Saad-Falcon et al., 2023; Yun
et al., 2023).

However, for natural language understanding
(NLU) tasks, zero- and few-shot LLMs struggle to
achieve satisfactory performance(Nie et al., 2022;
Wei et al., 2023; Li et al., 2023a,b) compared to
fine-tuned small models (e.g., Bert base(Devlin
et al., 2018)). Our experimental results on the task
of Chinese short text matching also confirm this
phenomenon. As presented in Section3.1, fine-
tuned Bert achieves an accuracy of 84.5% on the
BQ(Chen et al., 2018) corpus, while GPT-4!, one of

'The metrics are measured by utilizing OpenAI API.

the most successful LLMs, only attains an accuracy
score of 52.9% in zero-shot and 77.9% in few-shot
settings. There has been limited investigation into
effectively tuning LLMs for a specific NLU task
in supervised settings. In this paper, we explore
various factors affecting the performance of LLMs
for Chinese short text matching task, including task
modeling methods, prompt formats, and output
formats.

* Task modeling methods: In this study, we
examine the impacts of modeling this task as
both a generative task and a discriminative
classification task, respectively. (/) Genera-
tive Task: LLMs uniformly model all tasks
as generative tasks. Following this principle,
we organize the given pair of sentences into a
single text as input and make the model gen-
erate the target label (equivalent or inequiva-
lent). (2) Discriminative Classification Task:
Motivated by the efficacy of fine-tuning Bert
for text matching(Chen et al., 2020; Qi et al.,
2022), we concatenate the given pair of texts
as input, extract vector representations from
the final LLM layer as features, and perform
binary classifications based on the extracted
features.

* Prompt Formats: Prompt design is crucial
for LLMs in zero- and few-shot settings(Gu
etal.,2021; Liu et al., 2023). However, the im-
portance of prompts in supervised settings has
not been explored. In this paper, we compare
two completely different styles of prompts.
One is concise, directly concatenating the
given pair of sentences without any explana-
tion of the target task. The other organizes
the prompt through complex instructions, in-
cluding not only the given sentences but also
a detail description of the target task.

* Output Formats: Incorporating the Chain of



Thought (CoT) into prompts has been shown
to significantly enhance performance in rea-
soning and complex tasks in zero- and few-
shot settings(Wei et al., 2022; Wang et al.,
2022). Nevertheless, the impact of CoT on
matching tasks in supervised settings has yet
to be examined. In this study, we address this
gap by incorporating CoT into the output part
of training samples.

We conduct experiments on two widely-used Chi-
nese short text matching datasets, LCQMC (Liu
etal., 2018a) and BQ (Chen et al., 2018). All exper-
iments are carried out based on CLLM-7B, which
is a Chinese-enhanced model based on LLaMA-
2-7B. Our preliminary results demonstrate that
the fine-tuned CLLM-7B outperforms both fine-
tuned BERT and few-shot GPT-4. Furthermore,
the results indicate that the generative paradigm
surpasses the discriminative approach, especially
when training data is limited. Lastly, our exper-
iments reveal that CoT is also beneficial for the
matching task in supervised settings.

In summary, our major contributions are twofold:
(1) To the best of our knowledge, we are the first
to systematically explore effective strategies for
fine-tuning LLMs for text matching. (2) We are
the first to verify the effectiveness of CoT for NLU
task. Although our experiments focused on the text
matching task, we believe that our findings may
also be applicable to other NLU tasks, such as text
classification.

2 Backgrounds

In this section, we provide a brief overview of the
Chinese short text matching task and the datasets
employed in this study.

2.1 Task Definition

Chinese short text matching, often regarded as a
task of identifying sentence semantic equivalence,
is a fundamental task of natural language process-
ing. Given a pair of sentences, the goal of a match-
ing model is to ascertain their semantic equiva-
lence. Short text matching is extensively utilized
in a range of NLP tasks, such as question answer-
ing (Liu et al., 2018b) and dialogue systems (Pang
et al., 2008).

2.2 Datasets and Metrics

We conduct experiments on two widely-used Chi-
nese short text matching corpora: LCQMC (Liu

et al., 2018a) and BQ (Chen et al., 2018).

LCQMC is a large-scale, open-domain question
matching corpus. It comprises 260,068 Chinese
search query pairs, including 238,766 training sam-
ples, 8,802 development samples, and 12,500 test
samples. Each pair is annotated with a binary label
indicating whether the two queries share the same
intention.

BQ is a domain-specific, large-scale corpus for
bank question matching. It consists of 120,000
Chinese sentence pairs, including 100,000 training
samples, 10,000 development samples, and 10,000
test samples. Each pair is also annotated with a
binary label indicating whether the two sentences
convey the same meaning.

We employ accuracy (ACC.) as the evaluation
metric, which is the percentage of correctly pre-
dicted examples.

3 Experiments and Results

In this section, we outline the experimental con-
figurations and present the results. We examine
the influence of the three factors discussed in Sec-
tion 1 through the following experiments. We tune
models via full-model fine-tuning.

3.1 Generative vs. Discriminative Models

We first outline our approach to fine-tuning LLMs
by modeling the matching task as both a generative
task and a discriminative task. Subsequently, we
present the results and provide an analysis.

Modeling as A Generative Task: LLMs con-
sistently treat all tasks as generative tasks. In line
with this principle, we merge the provided pair of
sentences with instructions into a single text input
and prompt the model to generate the target label.
We refer to this model as CLLM-7B-GEN. Figure
1(b) illustrates the model structure. We optimize
it by maximizing the generation probability of the
target label.

Modeling as A Discriminative Task: Inspired
by the effectiveness of fine-tuning BERT for text
matching tasks (see Figure 1(a)), we concatenate
the given pair of texts as input, extract vector repre-
sentations from the final LLM layer as features, and
perform binary classification based on the extracted
features. We refer to this model as CLLM-7B-CLS.
Figure 1(c) demonstrates the model structure.

We validated the performance of generative and
discriminative models on training sets of different
scales. Figure 2 shows the experimental results,
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Figure 2: The results of models trained on 5,000,

20,000, 80,000 samples as well as trained on the en-
tire training set.

where the 2-shot GPT-4 results are measured by
calling the official OpenAl API. Figure 6 and Fig-
ure 7 in Appendix A illustrate the 2-shot prompts
for LCQMC and BQ, respectively. From the results,
we observe that:

1) When the number of training samples is
less than 20,000, CLLM-GEN significantly out-
performs discriminative models, including BERT
and CLLM-CLS, on both LCQMC and BQ. This
phenomenon is quite intuitive, as the generative
approach aligns with the pre-training procedure,
making it easier to activate the knowledge acquired
by the model during pre-training. Furthermore,
due to the massive amount of data used in the pre-
training phase of LLMs, the issue of evaluation data
leakage cannot be ignored (Yang et al., 2023; Zhou
et al., 2023). To determine whether CLLM-7B
has a data leakage problem, we conducted zero-
shot experiments on it. The model achieves an
accuracy of 52.1% on LCQMC and 52.9% on BQ,
slightly better than the 50% expected from random
guessing. Consequently, we believe that both BQ
and LCQMC are not included in CLLM-7B’s pre-
training data.

2) The performance of 2-shot GPT-4 on BQ is
much worse than that of supervised models. This
is mainly because BQ is a dataset of real customer
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Figure 3: The results of concise and complex prompts.

service questions from WeBank Inc., and a full
understanding of the sentences’ meaning requires
background information about this bank. For ex-
ample, questions in BQ usually mention specific
products or a particular function in the bank’s app.
This background knowledge is unknown to CLLM
and is also impossible to provide entirely in the
prompt.

3) CLLM-GEN trained on the whole training
corpus on LCQMC outperforms BERT. However,
it fails on the BQ corpus. We believe the reason is
that CLLM-7B, like BERT, also lack knowledge of
WeBank, and such knowledge can only be obtained
from the training data. Therefore, compared to
BERT, CLLM-7B does not have an advantage on
this dataset.

The above experiments demonstrate that genera-
tive paradigm is better for supervised LLMs. There-
fore, all subsequent experiments will be conducted
following this paradigm.

3.2 Concise vs. Complex Prompts

Prompt design is crucial for LLMs in zero- and
few-shot settings. However, the significance of
prompts in supervised settings remains unexplored.
In this subsection, we compare two distinct styles
of prompts. The concise prompt involves directly
concatenating the given text pairs without any ex-



You are a semantic analyzer. Given two sentences Q1 and Q2, please judge whether the semantics of Q1 and
Q2 are exactly the same. Output format: first output “same" or "different", and then give the reason.

Example 1

Q1: Guess a movie name from the picture

Q2: Guess the movie from the picture!

Output: Same. Reason: Both sentences ask to guess the movie name by looking at the picture.

Example 2:

Q1: How to connect a printer and a computer, and how to set it up

Q2: How to connect a wireless computer to a printer

Output: Different. Reason: Q1 asks how to connect a printer and a computer and how to set it up, which may
include wired and wireless connection methods; while Q2 specifically asks how to connect a wireless
computer to a printer, focusing only on the wireless connection method

Q1: What sketch can make people laugh to death? Need the name

Q2: What's the name of this sketch?
e ll

r the

Figure 4: Illustration of how to obtain CoT via GPT-4.
All original texts in this figure are in Chinese. For ease
of reading, we translated them. The original version is
illustrated in Figure 9 in Appendix.

planation of the target task, while the complex
prompt organizes the prompt with detailed instruc-
tions, incorporating not only the given texts but
also a specific description of the target task. Exam-
ples of these prompts can be found in Figure 8 in
Appendix A.

Figure 3 presents the results, showing that mod-
els separately trained by concise and complex
prompts achieve comparable performance. This
observation suggests that supervised LLMs are not
sensitive to prompts. The primary function of a
complex prompt is to enhance the model’s compre-
hension of the target task. In supervised scenarios,
the model can learn the task definition more accu-
rately from the training data, rendering the prompt
design less impactful.

3.3 Effects of CoT

CoT has demonstrated its effectiveness in reason-
ing and complex tasks within zero- and few-shot
settings. However, its efficacy for language un-
derstanding tasks in supervised settings remains
unexplored.

Matching datasets provide labels without CoT.
To obtain CoT for the training set, we enlist GPT-4
to determine whether a given pair of texts is equiva-
lent, while also providing explanations for its deci-
sion. For samples where GPT-4’s judgment aligns
with the golden label, we utilize the explanation
as the CoT. Conversely, for inconsistent samples,
we retain only golden label. Figure 4 depicts the
designed prompt and response generated by GPT-4.
Note that only the output portion of the training
samples requires the addition of CoT. Figure 10 in
Appendix presents a training sample that includes
CoT. During the evaluation process, we disregard
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Figure 5: Results of models trained with CoT.

the CoT generated by the model, focusing solely
on the label "same" or "different".

In order to reduce the cost, we did not obtain
CoT for the entire training set. Instead, we sepa-
rately sampled 10,000 instances from each dataset
and requested GPT-4 to generate CoT. After filter-
ing samples with inconsistent judgments, approxi-
mately 86% of samples in LCQMC and 78% in BQ
retained CoT. We will release the data with CoT
for further use by the community?.

We conducted experiments on training sets of
varying scales. Figure 5 displays the results, from
which we observe that CoT improves performance
on both LCQMC and BQ. Furthermore, the BQ
dataset is more challenging than LCQMC, and
CLLM-GEN-CoT achieved a more substantial im-
provement on BQ. This finding suggests that CoT
may be particularly effective for difficult tasks.

4 Conclusions

In this work, we conduct an experimental study by
fine-tuning LLMs on the task of Chinese short text
matching. We investigate various factors affecting
performance in tuning LLMs, including task mod-
eling methods, prompt formats, and the chain of
thought. We systematically carry out experiments
on two widely used datasets. The results reveal
several insights. First, the fine-tuned CLLM-7B
outperforms both fine-tuned BERT and few-shot
GPT-4, indicating that LLMs serve as effective
backbones in supervised scenarios. Moreover, the
generative paradigm is superior to the discrimina-
tive one, particularly when training data is lim-
ited. Second, supervised LLMs are insensitive to
prompts, unlike zero- and few-shot LL.Ms. Third,
CoT is also beneficial for supervised text matching.
Although our experiments focus on the task of text
matching, the observations may be applicable to
other NLU tasks, such as text classification.
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Limitations

This study has two primary limitations: (1) Prompt
engineering is crucial for zero- and few-shot LLMs.
We assessed the few-shot performance of GPT-4, as
depicted in Figure 2. Despite our meticulous design
of the few-shot prompts, the prompt designs remain
subjective and may not necessarily represent the
most optimal choices. (2) This study concentrates
on the text matching task. Additional experiments
might be required to adequately demonstrate if the
conclusions drawn in this article are applicable to
other NLU tasks (e.g. text classification).
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A Appendix

RR—MNMENSHTE, SIFRNMEFQIMNQ2, BRARQIFQANE LRGSR, Mt
& e AR AR, BAERE,
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At BE. RE: RMOFHEREREINER RSB ETR.
l2:

QUFTENHFNEBREREER:, 1ZANTRE

Q2 BT AR IR TEDHL

@ TR, RE: QUE2WEFTEMNAIBRAERARIMMEE, AaeaEELNtaE
#7550 MQABMISH RINAEHEANEERBIERENTEN. E, REETEERS

Q1: fHAMREEAKIEN. BEF
Q2: IR ABF

Figure 6: An illustration of 2-shot prompt for LCQMC.

RRE—REA HRRT ORITER, TEUSR MR SIRIRS. SRANEREEE
HMQIfIQ2, FRFQIFIQREERERR. BRNFNE: BEDENROEE
ERBEER, PEPEANE. HENERTURE. TRAENOEPTEREES
¥, BREEFIMIN. BN SRS (ERZAR) | BAHERR.

T

Ql: FTREAF=@?

Q2: FTRHBEHPLIEM M

A AE. RE: QIHQEREREFRREMLFNENR, SADEPHAIER
B, ERRLEEER.

T2

Ql: ALK EEEDEE

Q2: AtAFHET HREHE

A AR, QFRENEERZREFIRTNEE, MQRELANILEEIITTEEZR
Ql: It AT EEIGE

Q2: IHAFETHREHE

Figure 7: An illustration of 2-shot prompt for BQ.

[m: A AREZBIEE. Q2 Mt AFETRERE

(RR—REA WMARIT IRITEIR, EEWSR MR SRIRS. SRR EREDE
MQIfIQ2, ERAQIFQREEEREIER. BEERFTRE: RESRZG
BEMERREER, REPRANEE. RENESAILIZE. ERAENRETIES
BiESF, EREERIFHME. MU SRHSe (BREAR) . BAHRE.
Q1: At AREEEEIME

Q2: At AFHE T S EME

Figure 8: Examples of complex and simple prompts in
Section3.2
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Figure 9: The Chinese version of texts in Figure 4

#input

RRE—MNEXHITER, SIFRMIFQINQ2, HIRFMQIFIQMNENER-SER. BMtiEt: Sl 8
R'a" AR, BAHRE.

Q1: HANTHEABAKIEN, BEF

Q2 XANMNRAZF

#output

TR FE: QUENAGELASNANEF, RENET/NRIBKIEE, MQRIFIE—MIE/NRN
BF, RESRINEEE,

Figure 10: An example of training sample with CoT.
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